The Effect of Dietary Supplementation of Vitamin E, Selenium, Zinc, Folic Acid, and N-3 Polyunsaturated Fatty Acids on Sperm Motility and Membrane Properties in Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
- Vitamin E (3 mg/kg body weight (BW));
- Zinc (2.4 mg/kg BW);
- Selenium (0.003 mg/kg BW);
- Folic Acid (0.02 mg/kg BW).
2.2. Food Supplementation
2.3. Experimental Protocol
2.4. Sperm Analysis
2.4.1. Computer Assisted Sperm Analysis
2.4.2. Structural Membrane Integrity
2.4.3. Functional Membrane Integrity
2.5. Statistical Analysis
2.6. Ethical Guidelines Committee
3. Results
4. Discussion
4.1. Concentration and Motility
4.2. Structural and Functional Membrane Integrity
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Celis, R.; Pedrón-Nuevo, N.; Feria-Velasco, A. Toxicology of male reproduction in animals and humans. Arch. Androl. 1996, 37, 201–218. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Prabakaran, S.A. Mechanism, measurement, and prevention of oxidative stress in male reproductive physiology. Indian J. Exp. Biol. 2005, 43, 963–974. [Google Scholar] [PubMed]
- Surai, P.; Noble, R.; Sparks, N.; Speake, B. Effect of long-term supplementation with arachidonic or docosahexaenoic acids on sperm production in the broiler chicken. J. Reprod. Fertil. 2000, 120, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Rooke, J.; Shao, C.; Speake, B. Effects of feeding tuna oil on the lipid composition of pig spermatozoa and in vitro characteristics of semen. Reproduction 2001, 121, 315–322. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wathes, D.C.; Abayasekara, D.R.; Aitken, R.J. Polyunsaturated fatty acids in male and female reproduction. Biol. Reprod. 2007, 77, 190–201. [Google Scholar] [CrossRef]
- Safarinejad, M.R.; Safarinejad, S. The roles of omega-3 and omega-6 fatty acids in idiopathic male infertility. Asian J. Androl. 2012, 14, 514–515. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Domosławska, A.; Zdunczyk, S.; Nizanski, W.; Jurczak, A.; Janowski, T. Effect of selenium and vitamin E supplementation on semen quality in dogs with lowered fertilitity. Bull. Vet. Inst. Pulawy 2015, 59, 85–90. [Google Scholar] [CrossRef]
- Kirchhoff, K.T.; Failing, K.; Goericke-Pesch, S. Effect of dietary vitamin E and selenium supplementation on semen quality in Cairn Terriers with normospermia. Reprod. Dom. Anim. 2017, 52, 945–952. [Google Scholar] [CrossRef]
- Mitre, R.; Cheminade, C.; Allaume, P.; Legrand, P.; Legrand, A.B. Oral intake of shark liver oil modifies lipid composition and improves motility and velocity of boar sperm. Theriogenology 2004, 62, 1557–1566. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, Y.F.; Duan, R.J.; Wei1, H.K.; Peng, J.; Jiang, S.W. Dietary n-6:n-3 ratio and Vitamin E improve motility characteristics in association with membrane properties of boar spermatozoa. J. Androl. 2016, 18, 1–7. [Google Scholar] [CrossRef]
- Castellano, C.A.; Audet, I.; Bailey, J.L.; Laforest, J.P.; Matte, J.J. Dietary omega-3 fatty acids (fish oils) have limited effects on boar semen stored at 17 degrees C or cryopreserved. Theriogenology 2010, 74, 1482–1490. [Google Scholar] [CrossRef]
- Marin-Guzman, J.; Mahan, D.; Chung, Y.; Pate, J.; Pope, W. Effects of dietary selenium and Vitamin E on boar performance and tissue responses, semen quality, and subsequent fertilization rates in mature gilts. J. Anim. Sci. 1997, 75, 2994–3003. [Google Scholar] [CrossRef]
- Cerolini, S.; Maldjian, A.; Surai, P.; Noble, R. Viability, susceptibility to peroxidation and fatty acid composition of boar semen during liquid storage. Anim. Reprod. Sci. 2000, 58, 99–111. [Google Scholar] [CrossRef]
- Yeste, M.; Barrera, X.; Coll, D.; Bonet, S. The effects on boar sperm quality of dietary supplementation with omega-3 polyunsaturated fatty acids differ among porcine breeds. Theriogenology 2011, 76, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Glander, H.J.; Paasch, U.; Grunewald, S. Medikamtöse Therapieansätze zur Behandlung der männlichen Infertilität. Blick. Mann. 2007, 5, 19–24. [Google Scholar]
- Balázs, C.; Rácz, K. The role of selenium in endocrine system diseases. Orv. Hetil. 2013, 154, 1628–1635. [Google Scholar] [CrossRef] [PubMed]
- Garratt, M.; Bathgate, R.; de Graaf, S.P.; Brooks, R.C. Copper-zinc superoxide dismutase deficiency impairs sperm motility and in vivo fertility. Reproduction 2013, 146, 297–304. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lipovac, M.; Bodner, F.; Imhof, M.; Chedraui, P. Comparison of the effect of a combination of eight micronutrients versus a standard mono preparation on sperm parameters. Reprod. Biol. Endocrinol. 2016, 4, 84. [Google Scholar] [CrossRef]
- Aitken, R.J.; Buckingham, D.; Harkiss, D. Use of a xanthine oxidase free radical generating system to investigate the cytotoxic effects of reactive oxygen species on human spermatozoa. J. Reprod. Fertil. 1993, 97, 441–450. [Google Scholar] [CrossRef]
- Fraga, C.G.; Motchnik, P.A.; Shigenaga, M.K.; Helbock, H.J.; Jacob, R.A.; Ames, B.N. Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc. Natl. Acad. Sci. USA 1991, 88, 11003–11006. [Google Scholar] [CrossRef]
- Agarwal, A.; Saleh, R.A.; Bedaiwy, M.A. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil. Steril. 2003, 79, 82. [Google Scholar] [CrossRef]
- Kokcam, I.; Naziroglu, M. Effects of vitamin E supplementation on blood antioxidants levels in patients with Behçet’s disease. Clin. Biochem. 2002, 35, 633–639. [Google Scholar] [CrossRef]
- Raederstorff, D.; Wyss, A.; Calder, P.C.; Weber, P.; Eggersdorfer, M. Vitamin E function and requirements in relation to PUFA. Br. J. Nutr. 2015, 114, 1113–1122. [Google Scholar] [CrossRef]
- Zhu, H.; Luo, H.; Meng, H.; Zhang, G.; Yan, L.; Yue, D. Effect of vitamin E supplement in diet on antioxidant ability of testis in Boer goat. Anim. Reprod. Sci. 2010, 117, 90–94. [Google Scholar] [CrossRef]
- Yue, D.; Yan, L.; Luo, H.; Xu, X.; Jin, X. Effect of Vitamin E supplementation on semen quality and the testicular cell membranal and mitochondrial antioxidant abilities in Aohan fine-wool sheep. Anim. Reprod. Sci. 2010, 118, 217–222. [Google Scholar] [CrossRef]
- Yousef, M.I.; Abdallah, G.A.; Kamel, K.I. Effect of ascorbic acid and Vitamin E supplementation on semen quality and biochemical parameters of male rabbits. Anim. Reprod. Sci. 2003, 76, 99–111. [Google Scholar] [CrossRef]
- Aydilek, N.; Aksakal, M.; Karakilçik, A.Z. Effects of testosterone and vitamin E on the antioxidant system in rabbit testis. Andrology 2004, 36, 277–281. [Google Scholar] [CrossRef]
- Agarwal, A.; Saleh, R.A. Role of oxidants in male infertility: Rationale, significance, and treatment. Urol. Clin. N. Am. 2002, 29, 817–827. [Google Scholar] [CrossRef]
- Nenkova, G.; Petrov, L.; Alexandrova, A. Role of Trace Elements for Oxidative Status and Quality of Human Sperm. Balk. Med. J. 2017, 34, 343–348. [Google Scholar] [CrossRef]
- De Lamirande, E.; Lamothe, G. Levels of semenogelin in human spermatozoa decrease during capacitation: Involvement of reactive oxygen species and zinc. Hum. Reprod. 2010, 25, 1619–1630. [Google Scholar] [CrossRef]
- Foresta, C.; Garolla, A.; Cosci, I.; Menegazzo, M.; Ferigo, M.; Gandin, V.; De Toni, L. Role of zinc trafficking in male fertility: From germ to sperm. Hum. Reprod. 2014, 29, 1134–1145. [Google Scholar] [CrossRef]
- Chvapil, M. New aspects in the biological role of zinc: A stabilizer of macromolecules and biological membranes. Life Sci. 1973, 13, 1041–1049. [Google Scholar] [CrossRef]
- Björndahl, L.; Kvist, U. Human sperm chromatin stabilization: A proposed model including zinc bridges. Mol. Hum. Reprod. 2010, 16, 23–29. [Google Scholar] [CrossRef]
- Gavella, M.; Lipovac, V. In vitro effect of zinc on oxidative changes in human semen. Andrology 1998, 30, 317–323. [Google Scholar] [CrossRef]
- Michailov, Y.; Ickowick, D.; Breitbart, H. Zn2+ -stimulation of sperm capacitation and of the acrosome reaction is mediated by EGFR activation. Devel. Biol. 2014, 396, 246–255. [Google Scholar] [CrossRef]
- Sunde, R.A.; Hoekstra, W.G. Structure, synthesis and function of glutathione Peroxidase. Nutr. Rev. 1980, 38, 265–273. [Google Scholar] [CrossRef]
- Lushchak, V.I. Glutathione homeostasis and functions: Potential targets for medical interventions. J. Amin. 2012, 1, 26. [Google Scholar] [CrossRef]
- Surai, P.; Kostjuk, I.; Wishart, G.; Macpherson, A.; Speake, B.; Noble, R.; Kutz, E. Effect of vitamin E and selenium supplementation of cockerel diets on glutathione peroxidase activity and lipid peroxidation susceptibility in sperm, testes, and liver. Biol. Trace Elem. Res. 1998, 64, 120–132. [Google Scholar] [CrossRef]
- Castellini, C.; Lattaioli, P.; Dal Bosco, A.; Beghelli, D. Effect of supranutritional level of dietary α-tocopheryl acetate and selenium on rabbit semen. Theriogenology 2002, 58, 1723–1732. [Google Scholar] [CrossRef]
- Castellini, C.; Lattaioli, L.; Dal Bosco, A.; Minelli, A.; Mugnai, C. Oxidative status and semen characteristics of rabbit buck as affected by dietary vitamin E, C and n-3 fatty acids. Reprod. Nutr. Dev. 2003, 43, 91–103. [Google Scholar] [CrossRef]
- Gliozzi, T.M.; Zaniboni, L.; Maldjian, A.; Luzi, F.; Maertens, L.; Cerolini, S. Quality and lipid composition of spermatozoa in rabbits fed DHA and vitamin E rich diets. Theriogenology 2009, 71, 910–919. [Google Scholar] [CrossRef]
- Jerysz, A.; Lukaszewicz, E. Effect of dietary selenium and vitamin E on ganders response to semen collection and ejaculate characteristics. Biol. Trace Elem. Res. 2013, 153, 196–204. [Google Scholar] [CrossRef]
- Gaskins, A.J.; Chavarro, J.E. Diet and fertility. A review. Am. J. Obstetr. Gynecol. 2017, 24, 2–11. [Google Scholar] [CrossRef]
- Domosławska, A.; Jurczak, A.; Janowski, T. Oral folic acid supplementation decreases palate and/or lip cleft occurrence in Pug and Chihuahua puppies and elevates folic acid blood levels in pregnant bitches. Pol. J. Vet. Sci. 2013, 16, 33–37. [Google Scholar] [CrossRef][Green Version]
- Wallock, L.; Jacob, R.; Woodall, A.; Ames, B. Nutritional status and positive relation of plasma folate to fertility indices in nonsmoking men. Fed. Am. Soc. Exp. Biol. J. 1997, 11, 184. [Google Scholar]
- Wallock, L.M.; Tamura, T.; Mayr, C.A.; Johnston, K.; Ames, B.N.; Jacob, R.A. Low seminal plasma folate concentrations are associated with low sperm density and count in male smokers and nonsmokers. Fertil. Steril. 2001, 75, 252–259. [Google Scholar] [CrossRef]
- Kawakami, E.; Kobayashi, M.; Hori, T.; Kaneda, T. Therapeutic effecs of vitamin E supplementation in 4 dogs with poor semen quality and low superoxide dismutase activity in seminal plasma. J. Vet. Med. Sci. 2015, 77, 1711–1714. [Google Scholar] [CrossRef]
- Risso, A.; Pellegrino, F.J.; Relling, A.E.; Corrada, Y. Effect of long term fish oil supplementation on semen quality and serum testosterone concentrations in male dogs. Fertil. Steril. 2016, 10, 223–231. [Google Scholar]
- Davidson, A.P.; Baker, T.W. Reproductive Ultrasound of the dog and tom. Topics Comp. Anim. Med. 2009, 24, 64–70. [Google Scholar] [CrossRef]
- Parkinson, T.J. Fertility, subfertility and infertility in male animals—Breeding soundness examination. In Veterinary Reproduction and Obstetrics, 9th ed.; Noakes, D.E., Parkinson, T.J., England, G.C.W., Eds.; Saunders Elsevier: Philadelphia, PA, USA, 2009; pp. 706–717. [Google Scholar]
- Alonge, S.; Melandri, M.; Aiudi, G.G.; Lacalandra, G.M. Advances in Prostatic Diagnostics in Dogs: The Role of Canine Prostatic Specific Esterase in the Early Diagnosis of Prostatic Disorders. Topics Comp. Anim. Med. 2018, 33, 105–108. [Google Scholar] [CrossRef]
- Alonge, S.; Melandri, M.; Fanciullo, L.; Lacalandra, G.M.; Aiudi, G.G. Prostate vascular flow: the effect of the ejaculation on the Power Doppler ultrasonographic examination. Reprod. Dom. Anim. 2018, 53, 110–115. [Google Scholar] [CrossRef]
- Alonge, S.; Melandri, M.; Leoci, R.; Lacalandra, G.M.; Aiudi, G.G. Canine Prostate Specific Esterase (CPSE) as an useful biomarker in preventive screening program of Canine Prostate: CPSE threshold value assessment and its correlation with ultrasonographic prostatic abnormalities in asymptomatic dogs. Reprod. Dom. Anim. 2018, 53, 359–364. [Google Scholar] [CrossRef]
- Alonge, S.; Melandri, M.; Leoci, R.; Lacalandra, G.M.; Aiudi, G.G. Ejaculation effect on blood testosterone and prostatic pulsed-wave Doppler ultrasound in dogs. Reprod Dom Anim. 2018, 53(2), 70–73. [Google Scholar] [CrossRef]
- Ahlstrøm, O.; Biagi, G.; Dobenecker, B.; Hendricks Hesta, M.; Iben, C.; Nguyen, P.; Paragon, B.; Villaverde, C.; Zentek, J. Nutritional Guidelines for Complete and Complementary Petfood for Cats and Dogs; FEDIAF: Bruxelles, Belgium; Available online: http://www.fediaf.org (accessed on 1 November 2016).
- Christiansen, I. Andrology of the normal male. In Reproduction in the Dog and Cat; Christiansen, I., Ed.; Bailliere Tindall: Philadelphia, PA, USA, 1984; pp. 99–107. [Google Scholar]
- Soares, J.M.; Avelar, G.F.; França, L.R. The seminiferous epithelium cycle and its duration in different breeds of dog (Canis familiaris). J. Anat. 2009, 215, 462–471. [Google Scholar] [CrossRef][Green Version]
- Iguer-ouada, M.; Verstegen, J.P. Evaluation of the “Hamilton Thorn computer-based automated system” for dog semen analysis. Theriogenology 1999, 55, 733–749. [Google Scholar] [CrossRef]
- Lagergren, C.G. On the eosin-nigrosin stain and some other methods for the appraisal of sperm vitality with special reference to practical application. Ann. Obstetr. Gynecol. 1953, 75, 998–1005. [Google Scholar]
- Ramu, S.; Jeyendran, R.S. The hypo-osmotic swelling test for evaluation of sperm membrane integrity. Meth. Mol. Biol. 2013, 927, 21–25. [Google Scholar] [CrossRef]
- Hawkes, W.C.; Turek, P. Effects of dietary selenium on sperm motility in healthy men. J. Androl. 2001, 22, 764–772. [Google Scholar]
- Danikowski, S.; Sallmann, H.P.; Halle, I.; Flachowsky, G. Influence of high levels of vitamin E on semen parameters of cocks. J. Anim. Physiol. Anim. Nutr. 2002, 86, 376–382. [Google Scholar] [CrossRef]
- Purswell, B.J.; Althouse, G.C.; Root Kustritz, M.V. Guidelines for using the canine breeding soundness evaluation form. Clin. Theriogenol. 2010, 2, 51–59. [Google Scholar]
- Eskenazi, B.; Kidd, S.A.; Marks, A.R.; Sloter, E.; Block, G.; Wyrobek, A.J. Antoxidant intake is associated with semen quality in healthy men. Hum. Reprod. 2005, 20, 1006–1012. [Google Scholar] [CrossRef]
- Bentivoglio, G.; Melica, F.; Cristoforoni, P. Folinic acid in the treatment of human male infertility. Fertil. Steril. 1993, 60, 698–701. [Google Scholar] [CrossRef]
- Omu, A.E.; Dashti, H.; Al-Othman, S. Treatment of asthenozoospermia with zinc sulphate: Andrological, immunological and obstetric outcome. Eur. J. Obstet. Gynecol. 1998, 79, 179–184. [Google Scholar] [CrossRef]
- Wong, W.Y.; Merkus, H.M.; Thomas, C.M.; Menkveld, R.; Zielhuis, G.A.; Steegers-Theunissen, R.P. Effects of folic acid and zinc sulfate on male factor subfertility: A double-blind, randomized, placebo-controlled trial. Fertil. Steril. 2002, 77, 491–498. [Google Scholar] [CrossRef]
- Cooper, T. Role of the epididymis in mediating changes in the male gamete during maturation. Adv. Exp. Med. Biol. 1995, 377–387. [Google Scholar]
- Knox, R.; Levis, D.; Safranski, T.; Singleton, W. An update on North American boar stud practices. Theriogenology 2008, 70, 1202–1208. [Google Scholar] [CrossRef]
- Doshi, H.; Oza, H.; Tekani, H.; Mankad, M.; Kumar, S. Zinc levels in seminal plasma and its relationship with seminal characteristics. J. Obstet. Gynecol. India 2008, 58, 52–55. [Google Scholar]
- Badade, Z.G.; More, K.M.; Narshetty, J.G.; Badade, V.Z.; Yadav, B.K. Human seminal oxidative stress: Correlation with antioxidants and sperm quality parameters. Ann. Biol. Res. 2011, 2, 351–359. [Google Scholar]
- Hussain, N.K.; Rzoqi, S.S.; Numan, A.W.; Ali, D.T. A comparative study of fructose, zinc and copper levels in seminal plasma in fertile and infertile men. Ir. J. Med. Sci. 2011, 9, 48. [Google Scholar]
- Atig, F.; Raffa, M.; Habib, B.A.; Kerkeni, A.; Saad, A.; Ajina, M. Impact of seminal trace element and glutathione levels on semen quality of Tunisian infertile men. Urology 2012, 12, 6. [Google Scholar] [CrossRef][Green Version]
- Abed, A.A. Essence of some trace elements in seminal fluid and their role in infertility. Int. J. Chem. Life Sci. 2013, 2, 1179–1184. [Google Scholar]
- Fuse, H.; Kazama, T.; Ohta, S.; Fujiuchi, Y. Relationship between zinc concentrations in seminal plasma and various sperm parameters. Int. Urol. Nephrol. 1999, 31, 401–408. [Google Scholar] [CrossRef]
- Chia, S.E.; Ong, C.N.; Chua, L.H.; Ho, L.M.; Tay, S.K. Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters between fertile and infertile men. J. Androl. 2000, 21, 53–57. [Google Scholar]
- Nashivochnikova, N.A.; Krupin, V.N.; Selivanova, S.A. Antioxidant therapy for infertile couples. Urology 2015, 3, 71–74. [Google Scholar]
- Gholami, H.; Chamani, M.; Towhidi, A.; Fazeli, M. Effect of feeding a docosahexaenoic acid-enriched nutriceutical on the quality of fresh and frozen-thawed semen in Holstein bulls. Theriogenology 2010, 74, 1548–1558. [Google Scholar] [CrossRef]
- Mourvaki, E.; Cardinali, R.; Dal Bosco, A.; Corazzi, L.; Castellini, C. Effects of flaxseed dietary supplementation on sperm quality and on lipid composition of sperm subfractions and prostatic granules in rabbit. Theriogenology 2010, 73, 629–637. [Google Scholar] [CrossRef]
- Jafaroghli, M.; Abdi-Benemar, H.; Zamiri, M.; Khalili, B.; Farshad, A. Effects of dietary n-3 fatty acids and Vitamin C on semen characteristics, lipid composition of sperm and blood metabolites in fat-tailed Moghani rams. Anim. Reprod. Sci. 2014, 147, 17–24. [Google Scholar] [CrossRef]
- Strzezek, J.; Fraser, L.; Kuklinska, M.; Dziekonska, A.; Lecewicz, M. Effects of dietary supplementation with polyunsaturated fatty acids and antioxidants on biochemical characteristics of boar semen. Reprod. Biol. 2004, 4, 271–287. [Google Scholar]
- Hashimoto, M.; Hossain, S.; Shimada, T.; Shido, O. Docosahexaenoic acid-induced protective effect against impaired learning in amyloid beta-infused rats is associated with increased synaptosomal membrane fluidity. Clin. Exp. Pharmacol. Physiol. 2006, 33, 934. [Google Scholar] [CrossRef]
- Flesch, F.M.; Gadella, B.M. Dynamics of the mammalian sperm plasma membrane in the process of fertilization. Rev. Biomembr. 2000, 1469, 197–235. [Google Scholar] [CrossRef]
- Lenzi, A.; Gandini, L.; Picardo, M.; Tramer, F.; Sandri, G. Lipoperoxidation damage of spermatozoa polyunsaturated fatty acids (PUFA): Scavenger mechanisms and possible scavenger therapies. Front. Biosci. 2000, 5, 1–15. [Google Scholar]
- Alvarez, J.G.; Storey, B.T. Differential incorporation of fatty acids into and peroxidative loss of fatty acids from phospholipids of human spermatozoa. Mol. Reprod. Dev. 1995, 42, 334–346. [Google Scholar] [CrossRef]
- Haidl, G.; Opper, C. Changes in lipids and membrane anisotropy in human spermatozoa during epididymal maturation. Hum. Reprod. 1997, 12, 2720–2723. [Google Scholar] [CrossRef][Green Version]
- Ramos Angrimani, D.S.; Nichi, M.; Losano, J.D.; Lucio, C.F.; Lima Veiga, G.A.; Franco, M.V.; Vannucchi, C.I. Fatty acid content in epididymal fluid and spermatozoa during sperm maturation in dogs. J. Anim. Sci. Biotechnol. 2017, 8, 18. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chang, T.C.; Tseng, Y.J.; Lin, Y.L.; Huang, F.J.; Kung, F.T.; Chang, S.Y. Seminal plasma zinc levels and sperm motion characteristics in infertile samples. Changgeng Yi Xue Za Zhi 2000, 23, 260–266. [Google Scholar]
Breed | Bodyweight (kg) | Age (years) | Maintenance Energy Requirement (kcal/die) | Required Daily Food Intake (kg) | Group |
---|---|---|---|---|---|
Amstaff Terrier | 34.0 | 4 | 1703.70 | 0.44 | T |
Boxer | 29.5 | 3 | 1392.38 | 0.36 | T |
Boxer | 33.0 | 2 | 1514.53 | 0.39 | T |
Husky | 26.0 | 4 | 1114.56 | 0.29 | T |
Golden Retriever | 33.0 | 1.5 | 1499.38 | 0.38 | T |
Weimaraner | 32.0 | 4 | 1627.98 | 0.42 | T |
Irish Setter | 32.0 | 1.5 | 1775.98 | 0.45 | T |
German Shepherd | 35.0 | 2 | 1582.90 | 0.41 | C |
Labrador Retriever | 30.0 | 3.5 | 1127.28 | 0.29 | C |
English Setter | 25.0 | 2.5 | 1229.80 | 0.32 | C |
Husky | 27.0 | 4.5 | 937.73 | 0.24 | C |
Chow Chow | 33.0 | 1.5 | 1454.11 | 0.37 | C |
Golden Retriever | 34.0 | 2 | 1533.31 | 0.39 | C |
Bull Terrier | 29.0 | 3 | 1375.00 | 0.35 | C |
Group | Treatment Group | Control Group | ||||||
---|---|---|---|---|---|---|---|---|
Parameter | T0 | T30 | T60 | T90 | T0 | T30 | T60 | T90 |
Sperm-Rich Fraction Volume (mL) | 0.99 ± 0.04 | 1.23 ± 0.39 | 1.03 ± 0.10 | 1.07 ± 0.19 | 0.95 ± 0.08 | 1.24 ± 0.45 | 1.43 ± 0.73 | 1.14 ± 0.35 |
Concentration (spz × 106/mL) | 390.86 a ± 82.13 | 464.57 a,b ± 153.12 | 873.57 b,# ± 262.04 | 899.43 b,# ± 150.67 | 377.56 ± 72.48 | 420.38 ± 67.8 | 376.79 § ± 62.22 | 387.89 § ± 89.77 |
Total Sperm Count (spz × 106) | 386.57 a ± 88.22 | 613.71 a,b ± 392.29 | 892.13 b,# ± 247.01 | 956.00 b,# ± 175.85 | 358.83 ± 72.70 | 533.30 ± 177.53 | 567.36 § ± 363.18 | 440.6 § ± 150.8 |
Total Motility (%) | 93.00 ± 7.44 | 96.43 ± 6.40 | 98.86 ± 1.07 | 98.71 ± 0.76 | 94.43 ± 6.97 | 95.57 ± 6.16 | 95.86 ± 5.28 | 96.29 ± 5.36 |
Progressive Motility (%) | 51.29 a ± 22.51 | 71.86 a,b ± 9.92 | 77.86 b,# ± 11.51 | 82.86 b,# ± 7.99 | 55.43 ± 14.02 | 65.57 ± 15.49 | 62.14 § ± 12.05 | 68.43 § ± 13.59 |
Rapid (%) | 73.29 a ± 10.24 | 83.40 a,b,# ± 6.20 | 86.43 b,# ± 3.64 | 86.79 b,# ± 3.58 | 71.43 ± 11.32 | 73.86 § ± 4.79 | 79.71 § ± 6.43 | 80.43 § ± 5.21 |
Medium (%) | 6.14 a ± 3.34 | 8.86 a,b ± 6.54 | 10.86 a,b,# ± 3.08 | 11.00 b ± 2.31 | 6.43 ± 7.13 | 5.29 ± 3.99 | 5.29 § ± 6.47 | 8.14 ± 3.56 |
Slow (%) | 11.14 a ± 5.76 | 5.29 a,b,# ± 2.75 | 2.14 b,# ± 1.68 | 1.79 b,# ± 1.73 | 12 A ± 4.69 | 9.86 A,§ ± 3.14 | 6.14 B,§ ± 2.95 | 4.71 B,§ ± 2.05 |
Static (%) | 9.43 a ± 3.51 | 2.43 b,# ± 1.62 | 0.86 b,# ± 0.38 | 0.71 b,# ± 0.49 | 10.14 A ± 2.1 | 11 A,§ ± 2.56 | 8.86 A,B,§ ± 3.64 | 6.71 B,§ ± 3.41 |
HOS (% curled) | 91.14 a ± 4.22 | 94.71 a,b,# ± 4.61 | 97.43 b,# ± 1.62 | 96.29 b,# ± 2.36 | 91.14 ± 2.95 | 90.57 § ± 4.27 | 92.14 § ± 5.51 | 92.71 § ± 2.25 |
Sperm Viability (Eo-Nig) (%) | 91.29 a ± 5.94 | 94.86 a,b,# ± 3.85 | 98.71 b,# ± 1.25 | 98.71 b,# ± 0.95 | 91.13 ± 0.69 | 91.57 § ± 3.64 | 91.86 § ± 3.34 | 93.65 § ± 3.80 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonge, S.; Melandri, M.; Leoci, R.; Lacalandra, G.M.; Caira, M.; Aiudi, G.G. The Effect of Dietary Supplementation of Vitamin E, Selenium, Zinc, Folic Acid, and N-3 Polyunsaturated Fatty Acids on Sperm Motility and Membrane Properties in Dogs. Animals 2019, 9, 34. https://doi.org/10.3390/ani9020034
Alonge S, Melandri M, Leoci R, Lacalandra GM, Caira M, Aiudi GG. The Effect of Dietary Supplementation of Vitamin E, Selenium, Zinc, Folic Acid, and N-3 Polyunsaturated Fatty Acids on Sperm Motility and Membrane Properties in Dogs. Animals. 2019; 9(2):34. https://doi.org/10.3390/ani9020034
Chicago/Turabian StyleAlonge, Salvatore, Monica Melandri, Raffaella Leoci, Giovanni M. Lacalandra, Michele Caira, and Giulio G. Aiudi. 2019. "The Effect of Dietary Supplementation of Vitamin E, Selenium, Zinc, Folic Acid, and N-3 Polyunsaturated Fatty Acids on Sperm Motility and Membrane Properties in Dogs" Animals 9, no. 2: 34. https://doi.org/10.3390/ani9020034