Composition and Factors Affecting Quality of Bovine Colostrum: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Colostrum’s Chemical Composition
3. Colostrum Quality Evaluation
4. Discussion
Factors Shaping the Quality and Chemical Composition of Colostrum
- -
- A sheep colostrum product, including 11.3% conjugated linoleic acid dienes (CLA); it is more efficient in suppressing the development of cancer cells than a commercial 80% Bio-CLA.
- -
- Colostrinin, a protein complex from cow or sheep colostrum; it slows down Alzheimer’s disease.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kehoe, S.I.; Jayarao, B.M.; Heinrichs, A.J. A survey of bovine colostrum composition and colostrum management practices on Pennsylvania dairy farms. J. Dairy Sci. 2007, 90, 4108–4116. [Google Scholar] [CrossRef] [PubMed]
- Levieux, D.; Ollier, A. Bovine immunoglobulin G, beta-lactoglobulin, alpha-lactalbumin and serum albumin in colostrum and milk during the early post partum period. J. Dairy Res. 1999, 66, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Hurley, W.L.; Theil, P.K. Perspectives on Immunoglobulins in Colostrum and Milk. Nutrients 2011, 3, 442–474. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zou, Y.; Wu, Z.H.; Li, S.L.; Cao, Z.J. Colostrum quality affects immune system establishment and intestinal development of neonatal calves. J. Dairy Sci. 2015, 98, 7153–7163. [Google Scholar] [CrossRef]
- Szulc, T.; Zachwieja, A. Siara-eliksir życia osesków. Zeszyty Naukowe Akademii Rolniczej we Wrocławiu 1998, 13–25. [Google Scholar]
- Elfstrand, L.; Lindmark-Månsson, H.; Paulsson, M.; Nyberg, L.; Åkesson, B. Immunoglobulins, growth factors and growth hormone in bovine colostrum and the effects of processing. Int. Dairy J. 2002, 12, 879–887. [Google Scholar] [CrossRef]
- McGrath, B.A.; Fox, P.F.; McSweeney, P.L.H.; Kelly, A.L. Composition and properties of bovine colostrum: A review. Dairy Sci. Technol. 2016, 96, 133–158. [Google Scholar] [CrossRef]
- Christiansen, S.; Guo, M.; Kjelden, D. Chemical composition and nutrient profile of low molecular weight fraction of bovine colostrum. Int. Dairy J. 2010, 20, 630–636. [Google Scholar] [CrossRef]
- Szulc, T. Mleko Biologia Chemia Analizy; Uniwersytet Przyrodniczy we Wrocławiu: Wrocław, Poland, 2010; pp. 22–26. [Google Scholar]
- Wasowska, E.; Puppel, K. Changes in the content of immunostimulating components of colostrum obtained from dairy cows at different levels of production. J. Sci. Food Agric. 2018, 98, 5062–5068. [Google Scholar] [CrossRef]
- Grodzki, H. Odchów Cieląt i Jałówek Hodowlanych; Wydawnictwo SGGW: Warszawa, Poland, 2011. [Google Scholar]
- Staley, T.E.; Bush, L.J. Receptor Mechanisms of the Neonatal Intestine and Their Relationship to Immunoglobulin Absorption and Disease. J. Dairy Sci. 1985, 68, 184–205. [Google Scholar] [CrossRef]
- Fox, P.F.; McSweeney, P.L.H. Advanced Dairy Chemistry, 3th ed.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2003; Volume 1, Proteins. [Google Scholar]
- Wieczorek, M. Siara- nazdrowie! Top Agrar Polska- Top Bydło 2013, 9, 26–27. [Google Scholar]
- Farrell, H.M., Jr.; Jimenez-Flores, R.; Bleck, G.; Brown, E.; Butler, J.; Creamer, L.; Hicks, C.; Hollar, C.; Ng-Kwai-Hang, K.; Swaisgood, H. Nomenclature of the proteins of cows’ milk—Sixth revision. J. Dairy Sci. 2004, 87, 1641–1674. [Google Scholar] [CrossRef]
- Jaster, E.H. Evaluation of quality, quantity, and timing of colostrum feeding on immunoglobulin G(1) absorption in Jersey calves. J. Dairy Sci. 2005, 88, 296–302. [Google Scholar] [CrossRef]
- Korhonen, H.; Marnila, P.; Gill, H.S. Milk immunoglobulins and complement factors. Br. J. Nutr. 2000, 84, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Saldana, D.J.; Gelsinger, S.L.; Jones, C.M.; Heinrichs, A.J. Effect of different heating times of high-, medium-, and low-quality colostrum on immunoglobulin G absorption in dairy calves. J. Dairy Sci. 2019, 102, 2068–2074. [Google Scholar] [CrossRef] [PubMed]
- Desjardins-Morrissette, M.; Van Niekerk, J.K.; Haines, D.; Sugino, T.; Oba, M.; Steele, M.A. The effect of tube versus bottle feeding colostrum on immunoglobulin G absorption, abomasal emptying, and plasma hormone concentrations in newborn calves. J. Dairy Sci. 2018, 101, 4168–4179. [Google Scholar] [CrossRef]
- McCoy, G.; Reneau, J.; Hunter, A.; Williams, J. Effects of diet and time on blood serum proteins in the newborn calf. J. Dairy Sci. 1970, 53, 358–362. [Google Scholar] [CrossRef]
- Raboisson, D.; Trillat, P.; Cahuzac, C. Failure of passive immune transfer in calves: A meta-analysis on the consequences and assessment of the economic impact. PLoS ONE 2016, 11, e0150452. [Google Scholar] [CrossRef]
- Quigley, J.D., III; Drewry, J.J. Nutrient and immunity transfer from cow to calf pre-and postcalving. J. Dairy Sci. 1998, 81, 2779–2790. [Google Scholar] [CrossRef]
- Morrill, K.M.; Conrad, E.; Lago, A.; Campbell, J.; Quigley, J.; Tyler, H. Nationwide evaluation of quality and composition of colostrum on dairy farms in the United States. J. Dairy Sci. 2012, 95, 3997–4005. [Google Scholar] [CrossRef]
- El-Fattah, A.M.A.; Rabo, F.H.A.; El-Dieb, S.M.; El-Kashef, H.A. Changes in composition of colostrum of Egyptian buffaloes and Holstein cows. BMC Vet. Res. 2012, 8, 19. [Google Scholar] [CrossRef] [PubMed]
- Paulik, S.; Slanina, L.; Polacek, M. Lysozyme in the colostrum and blood of calves and dairy cows. Vet. Med. 1985, 30, 21–28. [Google Scholar]
- Priyadarshini, S.; Kansal, V.K. Lysozyme activity in buffalo milk: Effect of lactation period, parity, mastitis, season in India, pH and milk processing heat treatment. Asian-Australas. J. Anim. Sci. 2002, 15, 895–899. [Google Scholar] [CrossRef]
- Puppel, K.; Kuczynska, B.; Nalecz-Tarwacka, T.; Sakowski, T.; Golebiewski, M.; Kunowska-Slosarz, M.; Budzinski, A.; Grodzki, H. Effect of fish oil and linseed supplementation on the protein composition of milk from cows with different beta-lactoglobulin phenotypes. J. Sci. Food Agric. 2014, 94, 1253–1257. [Google Scholar] [CrossRef]
- Tsuji, S.; Hirata, Y.; Mukai, F.; Ohtagaki, S. Comparison of Lactoferrin Content in Colostrum between Different Cattle Breeds. J. Dairy Sci. 1990, 73, 125–128. [Google Scholar] [CrossRef]
- Yoshida, A.; Wei, Z.; Shinmura, Y.; Fukunaga, N. Separation of lactoferrin-a and -b from bovine colostrum. J. Dairy Sci. 2000, 83, 2211–2215. [Google Scholar] [CrossRef]
- Van der Strate, B.W.A.; Beljaars, L.; Molema, G.; Harmsen, M.C.; Meijer, D.K.F. Antiviral activities of lactoferrin. Antivir. Res. 2001, 52, 225–239. [Google Scholar] [CrossRef]
- Kruzel, M.L. Rola laktoferyny w rozwoju ostrych stanów zapalnych. Postępy Higieny i Medycyny Doświadczalnej 2003, 57, 377–404. [Google Scholar]
- Robblee, E.D.; Erickson, P.S.; Whitehouse, N.L.; McLaughlin, A.M.; Schwab, C.G.; Rejman, J.J.; Rompala, R.E. Supplemental lactoferrin improves health and growth of Holstein calves during the preweaning phase. J. Dairy Sci. 2003, 86, 1458–1464. [Google Scholar] [CrossRef]
- Habing, G.; Harris, K.; Schuenemann, G.M.; Pineiro, J.M.; Lakritz, J.; Clavijo, X.A. Lactoferrin reduces mortality in preweaned calves with diarrhea. J. Dairy Sci. 2017, 100, 3940–3948. [Google Scholar] [CrossRef]
- Van Hooijdonk, A.C.; Kussendrager, K.; Steijns, J. In vivo antimicrobial and antiviral activity of components in bovine milk and colostrum involved in non-specific defense. Br. J. Nutr. 2000, 84, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Claeys, W.; Verraes, C.; Cardoen, S.; De Block, J.; Huyghebaert, A.; Raes, K.; Dewettinck, K.; Herman, L. Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits. Food Control 2014, 42, 188–201. [Google Scholar] [CrossRef]
- Fiocchi, A.; Restani, P.; Leo, G.; Martelli, A.; Bouygue, G.R.; Terracciano, L.; Ballabio, C.; Valsasina, R. Clinical tolerance to lactose in children with cow’s milk allergy. Pediatrics 2003, 112, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, Z.M. Siara to nie tylko immunoglobuliny. Hoduj z głową-Bydło 2010, 4, 14–16. [Google Scholar]
- Berleć, K.; Traczykowski, A. Wpływ wybranych probiotyków na kształtowanie się wybranych makroelementów w surowicy krwi cieląt. Zeszyty Naukowe Akademii Rolniczej we Wrocławiu Zootechnika 2004, 501, 19–24. [Google Scholar]
- Juszczak, J.; Zalewski, W. Hodowla Bydła; Państwowe Wydawnictwo Rolnicze i Leśne: Warszawa, Poland, 1986. [Google Scholar]
- Tsioulpas, A.; Grandison, A.S.; Lewis, M.J. Changes in physical properties of bovine milk from the colostrum period to early lactation. J. Dairy Sci. 2007, 90, 5012–5017. [Google Scholar] [CrossRef]
- Marnila, P.; Korohnen, H. Colostrum. Encyclopedia of Dairy Sciences, 1st ed.; Academic Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Calderón, F.; Chauveau-Duriot, B.; Pradel, P.; Martin, B.; Graulet, B.; Doreau, M.; Nozière, P. Variations in carotenoids, vitamins A and E, and color in cow’s plasma and milk following a shift from hay diet to diets containing increasing levels of carotenoids and vitamin E. J. Dairy Sci. 2007, 90, 5651–5664. [Google Scholar] [CrossRef]
- Krzymowski, T.; Dusza, L.; Maćkowiak, P. Fizjologia zwierząt; Państwowe Wydawnictwo Rolnicze i Leśne: Warszawa, Poland, 2008; pp. 498–503. [Google Scholar]
- Debier, C.; Pottier, J.; Goffe, C.; Larondelle, Y. Present knowledge and unexpected behaviours of vitamins A and E in colostrum and milk. Livest. Product. Sci. 2005, 98, 135–147. [Google Scholar] [CrossRef]
- Schweigert, F. Effect of gestation and lactation on lipoprotein pattern and composition in dairy cows 1. J. Anim. Physiol. Anim. Nutr. 1990, 63, 75–83. [Google Scholar] [CrossRef]
- Friedrich, M. Witaminy; Wydawnictwo Uczelniane Zachodniopomorskiego Uniwersytetu Technologicznego: Szczecin, Poland, 2016. [Google Scholar]
- Brzezińska, M. Wpływ zróżnicowanego żywienia krów i różnych źródeł karotenu oraz witaminy “A” na poziom wybranych składników biochemicznych krwi i siary krwi, a także krwi cieląt, jego wskaźników efektywności ich odchowu; Wydawnictwo Naukowe Uniwersytetu Szczecińskiego: Szczecin, Poland, 1998; pp. 7–10. [Google Scholar]
- Krijnen, J.; Kołacz, D. Zapewnić cielętom perfekcyjny start. Hodowca Bydła 2016, 1, 23–26. [Google Scholar]
- Osaka, I.; Matsui, Y.; Terada, F. Effect of the mass of immunoglobulin (Ig)G intake and age at first colostrum feeding on serum IgG concentration in Holstein calves. J. Dairy Sci. 2014, 97, 6608–6612. [Google Scholar] [CrossRef] [PubMed]
- Godden, S.; McMartin, S.; Feirtag, J.; Stabel, J.; Bey, R.; Goyal, S.; Metzger, L.; Fetrow, J.; Wells, S.; Chester-Jones, H. Heat-treatment of bovine colostrum. II: Effects of heating duration on pathogen viability and immunoglobulin G. J. Dairy Sci. 2006, 89, 3476–3483. [Google Scholar] [CrossRef] [Green Version]
- Horecka, M. Ocena jakości siary. Hodowca Bydła 2016, 9, 64–67. [Google Scholar]
- Buczinski, S.; Vandeweerd, J. Diagnostic accuracy of refractometry for assessing bovine colostrum quality: A systematic review and meta-analysis. J. Dairy Sci. 2016, 99, 7381–7394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quigley Iii, J.; Martin, K.; Dowlen, H.; Wallis, L.; Lamar, K. Immunoglobulin concentration, specific gravity, and nitrogen fractions of colostrum from Jersey cattle. J. Dairy Sci. 1994, 77, 264–269. [Google Scholar] [CrossRef]
- Quigley, J.D.; Lago, A.; Chapman, C.; Erickson, P.; Polo, J. Evaluation of the Brix refractometer to estimate immunoglobulin G concentration in bovine colostrum. J. Dairy Sci. 2013, 96, 1148–1155. [Google Scholar] [CrossRef]
- Laestander, C. Comparison of Three Different Colostrum Feeding Methods on Passive Transfer of Immunity, Growth and Health in Dairy Calves. 2016. Available online: https://stud.epsilon.slu.se/9018/7/laestander_c_160513.pdf (accessed on 30 November 2019).
- Quigley, J.D.; Strohbehn, R.E.; Kost, C.J.; O’Brien, M.M. Formulation of colostrum supplements, colostrum replacers and acquisition of passive immunity in neonatal calves. J. Dairy Sci. 2001, 84, 2059–2065. [Google Scholar] [CrossRef]
- Ganchev, G.; Yavuz, E.; Todorov, N. Effect of feeding program for first two months after birth of female calves on growth, development and first lactation performance. Agric. Sci. Technol. 2015, 7, 389–401. [Google Scholar]
- Kryzer, A.; Godden, S.M.; Schell, R. Heat-treated (in single aliquot or batch) colostrum outperforms non-heat-treated colostrum in terms of quality and transfer of immunoglobulin G in neonatal Jersey calves. J. Dairy Sci. 2015, 98, 1870–1877. [Google Scholar] [CrossRef] [Green Version]
- Furman-Fratczak, K.; Rzasa, A.; Stefaniak, T. The influence of colostral immunoglobulin concentration in heifer calves’ serum on their health and growth. J. Dairy Sci. 2011, 94, 5536–5543. [Google Scholar] [CrossRef]
- Chigerwe, M.; Tyler, J.W.; Schultz, L.G.; Middleton, J.R.; Steevens, B.J.; Spain, J.N. Effect of colostrum administration by use of oroesophageal intubation on serum IgG concentrations in Holstein bull calves. Am. J. Vet. Res. 2008, 69, 1158–1163. [Google Scholar] [CrossRef] [PubMed]
- Godden, S.M.; Haines, D.; Konkol, K.; Peterson, J. Improving passive transfer of immunoglobulins in calves. II: Interaction between feeding method and volume of colostrum fed. J. Dairy Sci. 2009, 92, 1758–1764. [Google Scholar] [CrossRef] [PubMed]
- Lago, A.; Socha, M.; Geiger, A.; Cook, D.; Silva-del-Río, N.; Blanc, C.; Quesnell, R.; Leonardi, C. Efficacy of colostrum replacer versus maternal colostrum on immunological status, health, and growth of preweaned dairy calves. J. Dairy Sci. 2018, 101, 1344–1354. [Google Scholar] [CrossRef] [PubMed]
- Pithua, P.; Godden, S.M.; Wells, S.J.; Oakes, M.J. Efficacy of feeding plasma-derived commercial colostrum replacer for the prevention of transmission of Mycobacterium avium subsp paratuberculosis in Holstein calves. J. Am. Vet. Med. Assoc. 2009, 234, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Demkowicz, M. Bioactive Preparations from Cow Colostrum Retaining Parameters of Its Nutritional Value and Its Digestibility in Lambs and Calves; Uniwersytet Przyrodniczy we Wrocławiu: Wrocław, Poland, 2012. [Google Scholar]
- Lach, Z. Pierwszy łyk życia. Hodowla i Chów bydła 2009, 9, 18–19. [Google Scholar]
- Kuczaj, M.; Jakińcza, A.; Korczyński, M.; Janik-Dubowiecka, A.; Tatys, M. Wpływ ojców na przyrosty dobowe i masę ciała cieląt w okresie żywienia siarą. Zeszyty Naukowe Akademii Rolniczej we Wrocławiu Zootechnika 2004, 501, 143–146. [Google Scholar]
- Kuczaj, M.; Janik-Dubowiecka, A.; Szulc, T.; Zachwieja, A. Wpływ rasy i genotypu krów oraz liczby komórek somatycznych na wybrane cechy siary. Med. Wet. 2006, 62, 1403–1406. [Google Scholar]
- Silva-del-Río, N.; Rolle, D.; García-Muñoz, A.; Rodríguez-Jiménez, S.; Valldecabres, A.; Lago, A.; Pandey, P. Colostrum immunoglobulin G concentration of multiparous Jersey cows at first and second milking is associated with parity, colostrum yield, and time of first milking, and can be estimated with Brix refractometry. J. Dairy Sci. 2017, 100, 5774–5781. [Google Scholar] [CrossRef]
- Straub, O.; Matthaeus, W. The immunoglobulin composition of colostrum and the persistence of acquired immunoglobulins and specific antibodies in the calf. Ann. Rech. Vet. 1978, 9, 269–275. [Google Scholar]
- Maunsell, F.; Morin, D.; Constable, P.D.; Hurley, W.; McCoy, G.; Kakoma, I.; Isaacson, R. Effects of mastitis on the volume and composition of colostrum produced by Holstein cows. J. Dairy Sci. 1998, 81, 1291–1299. [Google Scholar] [CrossRef]
- Ferdowsi Nia, E.; Nikkhah, A.; Rahmani, H.R.; Alikhani, M.; Mohammad Alipour, M.; Ghorbani, G.R. Increased colostral somatic cell counts reduce pre-weaning calf immunity, health and growth. J. Anim. Physiol. Anim. Nutr. 2010, 94, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Baumrucker, C.; Burkett, A.; Magliaro-Macrina, A.; Dechow, C.D. Colostrogenesis: Mass transfer of immunoglobulin G1 into colostrum. J. Dairy Sci. 2010, 93, 3031–3038. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, R.; Gaskins, C.; Hillers, J.; Brinks, J.; Denham, A. Inbreeding and immunoglobulin G1 concentrations in cattle. J. Anim. Sci. 1988, 66, 2490–2497. [Google Scholar] [CrossRef] [PubMed]
- Conneely, M.; Berry, D.; Sayers, R.; Murphy, J.; Lorenz, I.; Doherty, M.; Kennedy, E. Factors associated with the concentration of immunoglobulin G in the colostrum of dairy cows. Animal 2013, 7, 1824–1832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuczaj, M. Wyniki odchowu cieląt w okresie żywienia siarą w zależności od sezonu wycielenia i długości zasuszenia krów. Zeszyty Naukowe Akademii Rolniczej we Wrocławiu Zootechnika 2004, 501, 137–140. [Google Scholar]
- Nardone, A.; Lacetera, N.; Bernabucci, U.; Ronchi, B. Composition of colostrum from dairy heifers exposed to high air temperatures during late pregnancy and the early postpartum period. J. Dairy Sci. 1997, 80, 838–844. [Google Scholar] [CrossRef]
- Ontsouka, C.; Bruckmaier, R.; Blum, J. Fractionized milk composition during removal of colostrum and mature milk. J. Dairy Sci. 2003, 86, 2005–2011. [Google Scholar] [CrossRef] [Green Version]
- Wroński, M.; Sosnowska, W. Physiochemical properties of colostrum and milk from Angus and Black-and-White cows during the first ten days after calving. Pol. J. Nat. Sci. 2007, 22, 620–632. [Google Scholar] [CrossRef]
- Zachwieja, A.; Chrzanowski, J.; Szulc, T.; Dworak, J.; Dobicki, A. Genetyczny polimorfizm beta-laktoglobuliny a sklad i właściwości siary krow oraz poziom immunoglobulin w surowicy krwi cielat. Med.Wet. 2002, 58, 989–991. [Google Scholar]
- Kuczaj, M.; Preś, J.; Bodarski, R.; Kinal, S.; Mordak, R.; Orda, J.; Twardoń, J.; Zachwieja, A. Wybrane elementy żywienia a problemy zdrowotne krów mlecznych. Wrocław; MedPharm Polska: Wrocław, Poland, 2014; pp. 88–92. ISBN 978-83-7846-054-1. [Google Scholar]
- Donovan, G.; Badinga, L.; Collier, R.J.; Wilcox, C.; Braun, R. Factors influencing passive transfer in dairy calves. J. Dairy Sci. 1986, 69, 754–759. [Google Scholar] [CrossRef]
- Weaver, D.M.; Tyler, J.W.; VanMetre, D.C.; Hostetler, D.E.; Barrington, G.M. Passive transfer of colostral immunoglobulins in calves. J. Vet. Int. Med. 2000, 14, 569–577. [Google Scholar] [CrossRef]
- Zachwieja, A. Wpływ wieku krów na jakość siary i poziom białek w surowicy krwi ich cieląt. Med.Wet. 1991, 47, 270–271. [Google Scholar]
- Guliński, P.; Młynek, K.; Giersz, B. Wpływ długości okresu po wycieleniu i wieku krów na poziom immunoglobulin w siarze. Rocz. Naukowe Zootech. 2006, 33, 193–200. [Google Scholar]
- Devery-Pocius, J.; Larson, B. Age and previous lactations as factors in the amount of bovine colostral immunoglobulins. J. Dairy Sci. 1983, 66, 221–226. [Google Scholar] [CrossRef]
- Błaszczykowska, M.; Twardoń, J. Wpływ koncentracji immunoglobulin całkowitych w siarze i surowicy krów na poziom odporności biernej u potomstwa. Med. Wet. 2006, 62, 185–188. [Google Scholar]
- Cummins, M.J.; Papas, A.; Kammer, G.M.; Fox, P.C. Treatment of primary Sjogren’s syndrome with low-dose human interferon alfa administered by the oromucosal route: Combined phase III results. Arthritis Care Res. 2003, 49, 585–593. [Google Scholar] [CrossRef]
- Cummins, C.; Berry, D.; Murphy, J.; Lorenz, I.; Kennedy, E. The effect of colostrum storage conditions on dairy heifer calf serum immunoglobulin G concentration and preweaning health and growth rate. J. Dairy Sci. 2017, 100, 525–535. [Google Scholar] [CrossRef] [Green Version]
- Denholm, K.; Hunnam, J.; Cuttance, E.; McDougall, S. Associations between management practices and colostrum quality on New Zealand dairy farms. N. Z. Vet. J. 2017, 65, 257–263. [Google Scholar] [CrossRef]
- Knipping, K.; McNeal, M.M.; Crienen, A.; Van Amerongen, G.; Garssen, J.; Van’t Land, B. A gastrointestinal rotavirus infection mouse model for immune modulation studies. Virol. J. 2011, 8, 109. [Google Scholar] [CrossRef] [Green Version]
- Huppertz, H.I.; Rutkowski, S.; Busch, D.H.; Eisebit, R.; Lissner, R.; Karch, H. Bovine colostrum ameliorates diarrhea in infection with diarrheagenic Escherichia coli, shiga toxin-producing E. Coli, and E. coli expressing intimin and hemolysin. J. Pediatr. Gastroenterol. Nutr. 1999, 29, 452–456. [Google Scholar] [CrossRef] [PubMed]
Species | Chemical Composition (g/kg) | ||
---|---|---|---|
Fat | Protein | Lactose | |
Horse | 7 | 191 | 46 |
Cattle | 36 | 130 | 31 |
Sheep | 124 | 130 | 34 |
Goat | 90 | 80 | 25 |
Pig | 72 | 180 | 24 |
Dog | 78 | 138 | 27 |
Rabbit | 47 | 135 | 16 |
Specification | Protein | Casein | Albumin, Globulin | Fat | Lactose |
---|---|---|---|---|---|
Colostrum (h) | |||||
0 | 16.8 | 4.1 | 12.7 | 6.7 | 2.9 |
6 | 11.7 | 3.5 | 8.0 | 6.1 | 3.5 |
12 | 6.3 | 3.1 | 3.2 | 4.4 | 3.9 |
24 | 5.5 | 2.9 | 2.6 | 4.1 | 4.1 |
48 | 4.8 | 2.8 | 2.0 | 3.9 | 4.2 |
120 | 3.6 | 2.7 | 0.9 | 0.8 | 4.5 |
Milk | 3.2 | 2.6 | 0.6 | 3.8 | 4.6 |
Testing Time | Calcium | Magnesium | Potassium | Sodium Chloride | Phosphorus | Chloride |
---|---|---|---|---|---|---|
At the time of calving | 0.256 | 0.037 | 0.137 | 0.074 | 0.235 | 0.118 |
After 11 days | 0.130 | 0.011 | 0.153 | 0.036 | 0.113 | - |
Time from Calving | Water | Casein | Albumin, Globulin | Fat | Lactose |
---|---|---|---|---|---|
directly | 66.4 | 5.57 | 16.92 | 6.5 | 2.13 |
after 12 h | 79.1 | 4.47 | 8.98 | 2.5 | 3.51 |
after 24 h | 84.4 | 4.23 | 2.63 | 3.6 | 4.24 |
after 48 h | 86.3 | 3.91 | 1.23 | 3.7 | 4.51 |
after 6 days | 87.9 | 2.76 | 0.75 | 3.7 | 4.78 |
after 25 days | 87.6 | 3.0 | 0.5 | 3.8 | 4.6 |
Component | Colostrum | Milk |
---|---|---|
Protein including whey protein | 14.56 10.87 | 3.3 0.6 |
Fat | 5.35 | 4.0 |
Lactose | 2.03 | 4.8 |
Minerals | 1.2 | 0.65 |
Amino Acids | Colostrum | Milk |
---|---|---|
Aspartic Acid | 42.95 | 28.83 |
Threonine | 33.26 | 14.64 |
Serine | 44.95 | 19.74 |
Glutamic Acid | 88.84 | 91.12 |
Proline | 25.96 | 56.98 |
Cystine | 8.51 | 2.39 |
Glycine | 15.65 | 5.96 |
Alanine | 15.79 | 11.42 |
Valine | 28.33 | 16.95 |
Methionine | 9.31 | 12.00 |
Isoleucine | 15.1 | 13.67 |
Leucine | 47.30 | 35.94 |
Tyrosine | 39.56 | 15.34 |
Phenylalanine | 25.22 | 17.16 |
Histidine | 14.60 | 12.12 |
Lysine | 40.90 | 28.51 |
Arginine | 14.40 | 10.22 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puppel, K.; Gołębiewski, M.; Grodkowski, G.; Slósarz, J.; Kunowska-Slósarz, M.; Solarczyk, P.; Łukasiewicz, M.; Balcerak, M.; Przysucha, T. Composition and Factors Affecting Quality of Bovine Colostrum: A Review. Animals 2019, 9, 1070. https://doi.org/10.3390/ani9121070
Puppel K, Gołębiewski M, Grodkowski G, Slósarz J, Kunowska-Slósarz M, Solarczyk P, Łukasiewicz M, Balcerak M, Przysucha T. Composition and Factors Affecting Quality of Bovine Colostrum: A Review. Animals. 2019; 9(12):1070. https://doi.org/10.3390/ani9121070
Chicago/Turabian StylePuppel, Kamila, Marcin Gołębiewski, Grzegorz Grodkowski, Jan Slósarz, Małgorzata Kunowska-Slósarz, Paweł Solarczyk, Monika Łukasiewicz, Marek Balcerak, and Tomasz Przysucha. 2019. "Composition and Factors Affecting Quality of Bovine Colostrum: A Review" Animals 9, no. 12: 1070. https://doi.org/10.3390/ani9121070
APA StylePuppel, K., Gołębiewski, M., Grodkowski, G., Slósarz, J., Kunowska-Slósarz, M., Solarczyk, P., Łukasiewicz, M., Balcerak, M., & Przysucha, T. (2019). Composition and Factors Affecting Quality of Bovine Colostrum: A Review. Animals, 9(12), 1070. https://doi.org/10.3390/ani9121070