Effect of Different Levels and Sources of Dietary Copper, Zinc and Manganese on the Performance and Immune and Redox Status of Turkeys
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Animals
2.2. Growth Trial and Sample Collection
2.3. Laboratory Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Richards, J.D.; Zhao, J.; Harrell, R.J.; Atwell, C.A.; Dibner, J.J. Trace mineral nutrition in poultry and swine. Asian-Aust. J. Anim. Sci. 2010, 23, 1527–1534. [Google Scholar] [CrossRef]
- Olgun, O. Manganese in poultry nutrition and its effect on performance and eggshell quality. Worlds Poult. Sci. J. 2017, 73, 45–56. [Google Scholar] [CrossRef]
- Kozłowski, K.; Jankowski, J.; Otowski, K.; Zduńczyk, Z.; Ognik, K. Metabolic parameters in young turkeys fed diets with different inclusion levels of copper nanoparticles. Pol. J. Vet. Sci. 2018, 21, 245–253. [Google Scholar] [PubMed]
- Ognik, K.; Sembratowicz, I.; Cholewińska, E.; Jankowski, J.; Kozłowski, K.; Juśkiewicz, J.; Zduńczyk, Z. The effect of administration of copper nanoparticles to chickens in their drinking water on the immune and antioxidant status of the blood. Anim. Sci. J. 2018, 89, 579–588. [Google Scholar] [CrossRef]
- Ognik, K.; Kozłowski, K.; Stępniowska, A.; Szlązak, R.; Tutaj, K.; Zduńczyk, Z.; Jankowski, J. The effect of manganese nanoparticles on performance, redox reactions and epigenetic changes in turkey tissues. Animal 2019, 13, 1137–1144. [Google Scholar] [CrossRef]
- Jankowski, J.; Ognik, K.; Stępniowska, A.; Zduńczyk, Z.; Kozłowski, K. The effect of manganese nanoparticles on apoptosis and on redox and immune status in the tissues of young turkeys. PLoS ONE 2018, 13, e0201487. [Google Scholar] [CrossRef]
- Jankowski, J.; Ognik, K.; Stępniowska, A.; Zduńczyk, Z.; Kozłowski, K. The effect of the source and dose of manganese on the performance, digestibility and distribution of selected minerals, redox, and immune status of turkeys. Poult. Sci. 2019, 98, 1379–1389. [Google Scholar] [CrossRef]
- Bao, Y.M.; Choct, M. Trace mineral nutrition for broiler chickens and prospects of application of organically complexed trace minerals: A review. Anim. Prod. Sci. 2009, 49, 269–282. [Google Scholar] [CrossRef]
- Świątkiewicz, S.; Arczewska-Włosek, A.; Józefiak, D. The efficacy of organic minerals in poultry nutrition: Review and implications of recent studies. World Poult. Sci. J. 2014, 70, 475–486. [Google Scholar] [CrossRef]
- Scott, A.; Vadalasetty, K.P.; Chwalibog, A.; Sawosz, E. Copper nanoparticles as an alternative feed additive in poultry diet: A review. Nanotechnol. Rev. 2018, 7, 69–93. [Google Scholar] [CrossRef]
- Saripinar Aksu, D.; Aksu, T.; Ozsoy, B.; Baytok, E. The effects of replacing inorganic with a lower level of organically complexed minerals (Cu, Zn, and Mn) in broiler diets on lipid peroxidation and antioxidant defense systems. Asian-Aust. J. Anim. Sci. 2010, 23, 1066–1072. [Google Scholar] [CrossRef]
- Oliveira, T.F.B.; Bertechini, A.G.; Bricka, R.M.; Kim, E.J.; Gerard, P.D.; Peebles, E.D. Effects of in ovo injection of organic zinc, manganese, and copper on the hatchability and bone parameters of broiler hatchlings. Poult. Sci. 2015, 94, 2488–2494. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (NRC). Nutrient Requirements of Poultry, 9th ed.; National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- British United Turkeys; Aviagen Turkeys. Management Guidelines for Raising Commercial Turkeys. 2013. Available online: https://www.aviagenturkeys.com/media/183481/aviagen commercial guide.pdf (accessed on 20 October 2013).
- Hybrid Commercial Nutrient Guidelines. Available online: https://www.hybridturkeys.com/en/resources/commercial-management (accessed on 9 October 2019).
- European Commission. Opinion of the Scientific Committee for Animal Nutrition on the Use of Copper in Feeding Stuffs. 2003. Available online: https://echa.europa.eu/documents/10162/13630/vrar_appendix_e_en.pdf/5ff87011-605c-434e-a661-7a687da97bf5 (accessed on 20 October 2019).
- Commission Implementing Regulation (EU) 2018/1039. concerning the authorisation of Copper(II) diacetate monohydrate, Copper(II) carbonate dihydroxy monohydrate, Copper(II) chloride dihydrate, Copper(II) oxide, Copper(II) sulphate pentahydrate, Copper(II) chelate of amino acids hydrate, Copper(II) chelate of protein hydrolysates, Copper(II) chelate of glycine hydrate (solid) and Copper(II) chelate of glycine hydrate (liquid) as feed additives for all animal species and amending Regulations (EC) No 1334/2003, (EC) No 479/2006 and (EU) No 349/2010 and Implementing Regulations (EU) No 269/2012, (EU) No 1230/2014 and (EU) 2016/2261. 2018.
- Collins, N.E.; Moran, E.T. Influence of supplemental manganese and zinc on live performance and carcass quality of broilers. J. Appl. Poult. Res. 1999, 8, 222–227. [Google Scholar] [CrossRef]
- Suttle, N.F. The Mineral Nutrition of Livestock, 4th ed.; CABI Publishing: Oxfordshire, UK, 2010. [Google Scholar]
- Ognik, K.; Stępniowska, A.; Cholewińska, E.; Kozłowski, K. The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium. Poult. Sci. 2016, 95, 2045–2051. [Google Scholar] [CrossRef]
- Dusek, P.; Jankovic, J.; Le, W. Iron dysregulation in movement disorders. Neurobiol. Dis. 2012, 46, 1–18. [Google Scholar] [CrossRef]
- Du, Y.; Zhu, Y.H.; Teng, X.J.; Zhang, K.; Teng, X.H.; Li, S. Toxicological effect of manganese on NF-κB/iNOS-COX-2 signaling pathway in chicken testes. Biol. Trace Elem. Res. 2015, 168, 227–234. [Google Scholar] [CrossRef]
- Aksu, T.; Aksu, M.I.; Yoruk, M.A.; Karaoglu, M. Effects of organically complexed minerals on meat quality in chickens. Br. Poult. Sci. 2011, 52, 558–563. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Revision of the currently authorised maximum copper content in complete feed. EFSA J. 2016, 14, 4563. [Google Scholar]
- Sri Sindhura, K.; Prasad, T.N.V.K.V.; Panner Selvam, P.; Hussain, O.M. Synthesis, characterization and evaluation of effect of phytogenic zinc nanoparticles on soil exo-enzymes. Appl. Nanosci. 2014, 4, 819–827. [Google Scholar] [CrossRef]
- Ognik, K.; Wertelecki, T. Effect of different vitamin E sources and levels on selected oxidative status indices in blood and tissues as well as on rearing performance of slaughter turkey hens. J. Appl. Poult. Res. 2012, 21, 259–271. [Google Scholar] [CrossRef]
- Yang, X.J.; Sun, X.X.; Li, C.Y.; Wu, X.H.; Yao, J.H. Effects of copper, iron, zinc, and manganese supplementation in a corn and soybean meal diet on the growth performance, meat quality, and immune responses of broiler chickens. J. Appl. Poult. Res. 2011, 20, 263–271. [Google Scholar] [CrossRef]
- El-Husseiny, O.M.; Hashish, S.M.; Ali, R.A.; Arafa, S.A.; Abd El- Samee, L.D.; Olemy, A.A. Effects of Feeding Organic Zinc, Manganese and Copper on Broiler Growth, Carcass Characteristics, Bone Quality and Mineral Content in Bone, Liver and Excreta. Int. J. Poult. Sci. 2012, 11, 368–377. [Google Scholar] [CrossRef] [Green Version]
- Gheisari, A.A.; Rahimi-Fathkoohi, A.; Toghyani, M.; Gheisari, M.M. Effects of organic chelates of zinc, manganese and copper in comparison to their inorganic sources on performance of broiler chickens. J. Anim. Plant Sci. 2010, 6, 630–636. [Google Scholar]
- Fathi, M. Effects of Zinc Oxide Nanoparticles Supplementation on Mortality due to Ascites and Performance Growth in Broiler Chickens. Iran. J. Appl. Anim. Sci. 2016, 6, 389–394. [Google Scholar]
- Jankowski, J.; Kozłowski, K.; Ognik, K.; Otowski, K.; Juśkiewicz, J.; Zduńczyk, Z. The effect of the dietary inclusion levels and sources of zinc on the performance, metabolism, redox and immune status of turkeys. Anim. Feed Sci. Technol. 2019, 252, 103–114. [Google Scholar] [CrossRef]
- Wang, X.; Fosmire, G.J.; Gay, C.V.; Leach, R.M. Short term zinc deficiency inhibits chondrocyte proliferation and induced cell apoptosis in the epiphyseal growth plate of young chickens. J. Nutr. 2002, 132, 665–673. [Google Scholar] [CrossRef]
- Azad, S.K.; Shariatmadari, F.; Torshizi, M.A.K.; Ahmadi, H. Effect of zinc concentration and source on performance, tissue mineral status, activity of superoxide dismutase enzyme and lipid peroxidation of meat in broiler chickens. Anim. Prod. Sci. 2017, 58, 1837–1846. [Google Scholar] [CrossRef]
- Bao, M.Y.; Choct, M.; Iji, P.A.; Bruerton, K. Effect of organically complexed copper, iron, manganese, and zinc on broiler performance, mineral excretion and accumulation in tissues. J. Appl. Poult. Res. 2007, 16, 448–455. [Google Scholar] [CrossRef]
- Berta, E.; Andrásofszky, E.; Bersényi, A.; Glávits, R.; Gáspárdy, A.; Fekete, S.G. Effect of inorganic and organic manganese supplementation on the performance and tissue manganese content of broiler chicks. Acta Vet. Hung. 2004, 52, 199–209. [Google Scholar] [CrossRef]
- Cholewińska, E.; Ognik, K.; Fotschki, B.; Zduńczyk, Z.; Juśkiewicz, J. Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the copper biodistribution and gastrointestinal and hepatic morphology and function in a rat model. PLoS ONE 2018, 13, e0197083. [Google Scholar] [CrossRef]
- Cholewińska, E.; Fotschki, B.; Juśkiewicz, J.; Rusinek-Prystupa, E.; Ognik, K. The effect of copper level in the diet on the distribution, and biological and immunological responses in a rat model. J. Anim. Feed Sci. 2018, 27, 349–360. [Google Scholar] [CrossRef]
- Cholewińska, E.; Juśkiewicz, J.; Ognik, K. Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the metabolic and immune status in a rat model. J. Trace Elem. Med. Biol. 2018, 48, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Gajula, S.S.; Chelasani, V.K.; Panda, A.K.; Mantena, V.L.; Savaram, R.R. Effect of Supplemental Inorganic Zn and Mn and their Interactions on the Performance of Broiler Chicken, Mineral Bioavailability, and Immune Response. Biol. Trace. Elem. Res. 2011, 139, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Sunder, G.S.; Panda, A.K.; Gopinath, N.C.S.; Rama Rao, S.V.; Raju, M.V.L.N.; Reddy, M.R.; Vijaya Kumar, C. Effects of higher levels of zinc supplementation on performance, mineral availability, and immune competence in broiler chickens. J. Appl. Poult. Res. 2008, 17, 79–86. [Google Scholar] [CrossRef]
- Cao, H.; Su, R.; Hu, G.; Li, C.; Guo, J.; Pan, J.; Tang, Z. In vivo effects of high dietary copper levels on hepatocellular mitochondrial respiration and electron transport chain enzymes in broilers. Br. Poult. Sci. 2016, 57, 63–70. [Google Scholar] [CrossRef]
- Min, L.; Wei, C.; Xi, P.; Cai Min, B.; Heng Min, C. Effect of dietary high copper on the oxidization in brain tissue of chickens. Chin. J. Vet. Sci. 2009, 29, 1334–1337. [Google Scholar]
- Oguz, E.O.; Enli, Y.; Tufan, A.C.; Turgut, G. Toxic effects of copper sulfate on the brains of term Hubbard broiler chicks: A stereological and biochemical study. Biotech. Histochem. 2014, 89, 23–28. [Google Scholar] [CrossRef]
Feeding Period, Days | ||||
---|---|---|---|---|
Components, g/kg | 1–28 | 29–56 | 57–84 | 85–112 |
Wheat | 521.6 | 547.6 | 650.6 | 744.3 |
Soybean meal | 409.5 | 354.1 | 236.5 | 143.5 |
Rapeseeds | - | 20.0 | 40.0 | 60.0 |
Soybean oil | 18.9 | 31.6 | 33.7 | 20.9 |
MCP | 16.4 | 15.5 | 9.8 | 5.1 |
Limestone | 16.6 | 14.7 | 13.7 | 12.1 |
Salt | 2.0 | 1.6 | 1.6 | 1.2 |
L-Lysine HCl (780 g/kg) | 4.6 | 4.5 | 4.6 | 4.3 |
DL-Methionine (990 g/kg) | 2.9 | 2.7 | 1.8 | 1.4 |
L-Threonine (985 g/kg) | 1.0 | 1.2 | 1.2 | 0.7 |
NaHCO3 | 1.5 | 1.5 | 1.5 | 1.5 |
Min-vit. Premix 1 | 5.0 | 5.0 | 5.0 | 5.0 |
Calculated nutrient density, g/kg | ||||
Crude protein | 265.0 | 240.0 | 205.0 | 175.0 |
Calcium | 11.5 | 11.0 | 8.5 | 6.5 |
Available phosphorus | 5.5 | 5.0 | 4.0 | 3.0 |
Sodium | 1.5 | 1.3 | 1.3 | 1.1 |
Lysine | 17.0 | 15.5 | 13.0 | 10.7 |
Met+cys | 11.0 | 10.0 | 8.5 | 7.5 |
Threonine | 10.3 | 9.6 | 8.2 | 6.5 |
AME (kcal/kg) | 2750 | 2900 | 3050 | 3100 |
Amount of Cu added to feed | Analysed content of Cu, mg/kg | |||
20 mg/kg CuSO4 (PC) | 24 | 31 | 28 | 27 |
2 mg/kg CuSO4 (IR) | 12 | 15 | 12 | 8 |
2 mg/kg NP-Cu (NR) | 10 | 16 | 14 | 7 |
0 mg/kg (NC) | 10 | 13 | 10 | 6 |
Amount of Zn added to feed | Analysed content of Zn, mg/kg | |||
100 mg/kg ZnO (PC) | 125 | 140 | 139 | 138 |
10 mg/kg ZnO (IR) | 49 | 79 | 64 | 58 |
10 mg/kg NP-ZnO (NR) | 61 | 84 | 82 | 49 |
0 mg/kg (NC) | 50 | 78 | 55 | 39 |
Amount of Mn added to feed | Analysed content of Mn, mg/kg | |||
100 mg/kg MnO (PC) | 124 | 113 | 146 | 141 |
10 mg/kg MnO (IR) | 57 | 86 | 78 | 62 |
10 mg/kg NP-Mn2O3 (NR) | 68 | 81 | 95 | 53 |
0 mg/kg (NC) | 57 | 73 | 70 | 48 |
Item | PC | IR | NR | NC | SEM | p-Value |
---|---|---|---|---|---|---|
BW, 1 day kg | 0.065 | 0.065 | 0.065 | 0.065 | <0.001 | 0.570 |
BW, 28 days kg | 1.254 | 1.257 | 1.261 | 1.249 | 0.004 | 0.818 |
BW, 56 days kg | 4.094 | 4.086 | 4.096 | 4.044 | 0.015 | 0.614 |
BW, 84 days kg | 7.862 | 7.872 | 7.825 | 7.739 | 0.024 | 0.181 |
BW, 112 days kg | 10.43 | 10.41 | 10.43 | 10.40 | 0.031 | 0.992 |
BWG, 1–28 days g/day | 42.5 | 42.6 | 42.7 | 42.3 | 0.155 | 0.822 |
BWG, 29–56 days g/day | 101.3 | 101.0 | 101.3 | 99.8 | 0.489 | 0.669 |
BWG, 57–84 days g/day | 134.5 | 135.2 | 133.2 | 132.0 | 0.655 | 0.314 |
BWG, 85–112 days g/day | 91.8 | 90.9 | 93.1 | 95.3 | 0.832 | 0.277 |
BWG, 1–112 days g/day | 92.6 | 92.4 | 92.6 | 92.3 | 0.279 | 0.992 |
DFI, 1–28 days g/bird/day | 61.5 | 61.7 | 61.7 | 61.4 | 0.170 | 0.952 |
DFI, 29-56 days g/bird/day | 171.6 | 173.4 | 174.9 | 170.7 | 0.980 | 0.452 |
DFI, 57–84 days g/bird/day | 339.7 | 339.6 | 342.7 | 338.7 | 1.780 | 0.874 |
DFI, 85–112 days g/bird/day | ||||||
DFI, 1–112 days g/bird/day | 238.2 | 243.4 | 241.1 | 235.6 | 1.425 | 0.240 |
FCR, 1–28 days kg/kg | 1.448 | 1.450 | 1.444 | 1.453 | 0.005 | 0.936 |
FCR, 29–56 days kg/kg | 1.685 | 1.713 | 1.722 | 1.703 | 0.009 | 0.535 |
FCR, 57–84 days kg/kg | 2.538 | 2.524 | 2.574 | 2.571 | 0.010 | 0.261 |
FCR, 85–112 days kg/kg | 3.931 | 3.862 | 3.883 | 3.774 | 0.027 | 0.236 |
FCR, 1–112 days kg/kg | 2.500 | 2.501 | 2.532 | 2.503 | 0.006 | 0.195 |
Liveability % | 97.1 | 97.1 | 99.4 | 98.6 | 0.488 | 0.268 |
Item | PC | IR | NR | NC | SEM | p-Value |
---|---|---|---|---|---|---|
Carcass yield, % | 80.50 | 80.58 | 81.26 | 81.26 | 0.219 | 0.459 |
Breast muscles, % | 23.59 | 22.80 | 22.26 | 23.30 | 0.249 | 0.252 |
Thigh muscles, % | 10.05 | 10.42 | 9.92 | 10.34 | 0.113 | 0.371 |
Drumstick muscles, % | 7.65 | 8.00 | 7.80 | 8.28 | 0.105 | 0.161 |
Abdominal fat, % | 1.46 C | 1.61 B | 1.86 A | 1.89 A | 0.069 | 0.079 |
Gizzard, % | 0.75 a | 0.75 a | 0.72 a | 0.62 b | 0.018 | 0.033 |
Liver, % | 1.36 a | 1.40 a | 1.18 b | 1.29 ab | 0.030 | 0.031 |
Heart, % | 0.309 | 0.281 | 0.268 | 0.277 | 0.006 | 0.062 |
Spleen, % | 0.091 b | 0.123 ab | 0.069 b | 0.150 a | 0.011 | 0.028 |
Bursa of Fabricius, % | 0.070 | 0.059 | 0.069 | 0.067 | 0.195 | 0.199 |
Femur, % | 0.454 ab | 0.480 a | 0.446 b | 0.487 a | 0.006 | 0.039 |
Tibia, % | 0.583 | 0.613 | 0.564 | 0.595 | 0.007 | 0.103 |
Item | PC | IR | NR | NC | SEM | p-Value | |
---|---|---|---|---|---|---|---|
Plasma | Mn mg/L | LOQ | LOQ | LOQ | LOQ | - | - |
Cu µmol/L | 3.01 | 3.06 | 3.39 | 3.09 | 0.118 | 0.675 | |
Zn µmol/L | 28.21 | 28.66 | 31.81 | 28.96 | 1.108 | 0.675 | |
Liver | Mn mg/kg | 2.477 d | 3.105 c | 3.660 b | 4.460 a | 0.170 | <0.001 |
Cu mg/kg | 2.730 | 3.385 | 2.608 | 2.973 | 0.136 | 0.193 | |
Zn mg/kg | 19.87 b | 23.95 a | 20.98 b | 22.37 ab | 0.521 | 0.022 | |
Breast muscle | Mn mg/kg | 0.545 | 0.464 | 0.362 | 0.611 | 0.041 | 0.162 |
Cu mg/kg | 2.513 | 2.817 | 2.722 | 3.167 | 0.124 | 0.319 | |
Zn mg/kg | 9.607 | 9.245 | 9.897 | 10.008 | 0.316 | 0.851 | |
Skin | Mn mg/kg | 0.348 c | 0.513 c | 1.232 b | 2.147 a | 0.161 | <0.001 |
Cu mg/kg | 0.669 a | 0.525 b | 0.533 b | 0.777 a | 0.028 | <0.001 | |
Zn mg/kg | 10.427 a | 6.230 b | 7.610 b | 7.728 b | 0.468 | 0.006 |
Item | PC | IR | NR | NC | SEM | p-Value |
---|---|---|---|---|---|---|
IgM, ng/mL | 453.56 | 471.67 | 512.24 | 466.51 | 13.451 | 0.465 |
IL-6, pg/mL | 9.59 b | 12.04 a | 9.66 b | 8.75 b | 0.276 | <0.001 |
Casp 3, pg/mL | 54.42 | 61.52 | 58.77 | 60.40 | 1.185 | 0.156 |
Casp 8, ng/mL | 7.34 | 7.76 | 7.79 | 8.56 | 0.212 | 0.232 |
Item | PC | IR | NR | NC | SEM | p-Value |
---|---|---|---|---|---|---|
Cp, U/L | 1.095 | 1.298 | 1.298 | 1.035 | 0.060 | 0.288 |
SOD, U/gHb | 200.46 a | 205.24 a | 141.64 b | 216.21 a | 8.598 | 0.005 |
GPx, U/g Hb | 37.04 ab | 43.39 a | 36.64 ab | 30.78 b | 1.455 | 0.016 |
CAT, U/gHb | 1788.3 | 1849.5 | 1628.6 | 1792.0 | 54.811 | 0.543 |
FRAP, µmol/L | 123.9 | 121.3 | 117.7 | 113.2 | 1.502 | 0.059 |
GSH+GSSG, µmol/L | 0.136 b | 0.214 a | 0.211 a | 0.205 a | 0.009 | 0.001 |
VIT C, µmol/L | 89.29 b | 100.19 a | 92.13 b | 96.18 ab | 1.340 | 0.016 |
LOOH, µmol/L | 11.51 ab | 9.88 b | 12.46 a | 12.88 a | 0.364 | 0.011 |
MDA, µmol/L | 1.600 | 1.834 | 1.644 | 1.834 | 0.089 | 0.715 |
Item | PC | IR | NR | NC | SEM | p-Value |
---|---|---|---|---|---|---|
SOD U/g protein | 6.73 b | 5.93 b | 7.01 b | 8.63 a | 0.314 | 0.013 |
CAT U/g protein | 44.08 | 40.79 | 40.57 | 41.47 | 0.875 | 0.483 |
GSH+GSSG µmol/kg | 0.450 | 0.430 | 0.420 | 0.451 | 0.012 | 0.763 |
VIT C µmol/kg | 72.85 | 80.03 | 76.42 | 80.63 | 1.418 | 0.184 |
LOOH µmol/ kg | 15.85 | 15.11 | 14.15 | 15.00 | 0.406 | 0.554 |
MDA µmol/kg | 8.30 ab | 7.09 b | 8.98 a | 5.09 c | 0.355 | <0.001 |
Item | PC | IR | NR | NC | SEM | p-Value |
---|---|---|---|---|---|---|
SOD U/g protein | 6.56 | 5.71 | 6.95 | 6.14 | 0.269 | 0.408 |
CAT U/g protein | 11.57 | 11.14 | 10.00 | 11.35 | 0.479 | 0.684 |
GSH+GSSG µmol/kg | 0.223 | 0.239 | 0.227 | 0.241 | 0.003 | 0.163 |
VIT C µmol/kg | 82.30 | 83.69 | 83.45 | 81.05 | 1.037 | 0.811 |
LOOH µmol/ kg | 2.508 b | 2.464 b | 2.713 ab | 2.930 a | 0.063 | 0.024 |
MDA µmol/kg | 1.903 | 1.802 | 1.820 | 1.792 | 0.025 | 0.395 |
Item | PC | IR | NR | NC | SEM | p-Value |
---|---|---|---|---|---|---|
SOD U/g protein | 4.67 | 5.83 | 5.19 | 5.82 | 0.235 | 0.241 |
CAT U/g protein | 58.07 | 51.40 | 57.01 | 58.21 | 1.322 | 0.218 |
GSH+GSSG µmol/kg | 0.378 | 0.393 | 0.449 | 0.445 | 0.017 | 0.329 |
VIT C µmol/kg | 170.58 | 173.45 | 167.85 | 168.04 | 4.178 | 0.965 |
LOOH µmol/ kg | 6.83 | 6.83 | 6.82 | 6.84 | 0.005 | 0.630 |
MDA µmol/kg | 5.71 a | 4.66 b | 6.36 a | 6.02 a | 0.174 | 0.001 |
Item | PC | IR | NR | NC | SEM | p-Value |
---|---|---|---|---|---|---|
SOD U/g protein | 14.82 a | 10.19 b | 6.74 c | 6.12 c | 0.812 | <0.001 |
CAT U/g protein | 38.29 | 39.84 | 38.00 | 37.67 | 0.383 | 0.193 |
GSH+GSSG µmol/kg | 0.746 | 0.704 | 0.683 | 0.678 | 0.014 | 0.300 |
VIT C µmol/kg | 202.34 | 231.37 | 226.93 | 236.14 | 5.096 | 0.080 |
LOOH µmol/ kg | 6.99 | 6.96 | 7.06 | 7.04 | 0.021 | 0.317 |
MDA µmol/kg | 5.52 | 6.48 | 6.97 | 6.13 | 0.256 | 0.243 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jankowski, J.; Ognik, K.; Kozłowski, K.; Stępniowska, A.; Zduńczyk, Z. Effect of Different Levels and Sources of Dietary Copper, Zinc and Manganese on the Performance and Immune and Redox Status of Turkeys. Animals 2019, 9, 883. https://doi.org/10.3390/ani9110883
Jankowski J, Ognik K, Kozłowski K, Stępniowska A, Zduńczyk Z. Effect of Different Levels and Sources of Dietary Copper, Zinc and Manganese on the Performance and Immune and Redox Status of Turkeys. Animals. 2019; 9(11):883. https://doi.org/10.3390/ani9110883
Chicago/Turabian StyleJankowski, Jan, Katarzyna Ognik, Krzystof Kozłowski, Anna Stępniowska, and Zenon Zduńczyk. 2019. "Effect of Different Levels and Sources of Dietary Copper, Zinc and Manganese on the Performance and Immune and Redox Status of Turkeys" Animals 9, no. 11: 883. https://doi.org/10.3390/ani9110883
APA StyleJankowski, J., Ognik, K., Kozłowski, K., Stępniowska, A., & Zduńczyk, Z. (2019). Effect of Different Levels and Sources of Dietary Copper, Zinc and Manganese on the Performance and Immune and Redox Status of Turkeys. Animals, 9(11), 883. https://doi.org/10.3390/ani9110883