Micro- and Mesoplastic Consumption Tendency of Exaiptasia diaphana Sea Anemones
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. The Study Animal
2.2. Sea Anemones Consuming Food Contaminated by Microplastic
2.3. Sea Anemones Consuming Micro- and Mesoplastics Covered with a Special Food
2.4. Statistical Analyses
3. Results
3.1. Changes in the Oral Disc Size of the Exaiptasia diaphana Individuals Fed with Microplastics
3.2. Survival of the Exaiptasia diaphana Individuals
3.3. Percentage of Sea Anemones Consuming Different Microplastics
3.4. Selectivity in Consuming Micro- and Mesoplastics Covered with a Special Food
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrady, A.L. (Ed.) Plastics and the Environment; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Barnes, D.K.A.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and Fragmentation of Plastic Debris in Global Environments. Philos. Trans. R. Soc. B 2009, 364, 1992–1993. [Google Scholar] [CrossRef]
- An, L.; Liu, Q.; Deng, Y.; Wu, W.; Gao, Y.; Ling, W. Sources of Microplastic in the Environment. In Microplastics in Terrestrial Environments; He, D., Luo, Y., Eds.; The Handbook of Environmental Chemistry; Springer: Cham, Switzerland, 2020; Volume 95. [Google Scholar] [CrossRef]
- Auta, H.S.; Emenike, C.U.; Fauziah, S.H. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environ. Int. 2017, 102, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, M.; Lebreton, L.C.M.; Carson, H.S.; Thiel, M.; Moore, C.J.; Borerro, J.C.; Galgani, F.; Ryan, P.G.; Reisser, J. Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 2014, 9, e111913. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, J. Investigation of microplastics in aquatic environments: An overview of the methods used, from field sampling to laboratory analysis. TrAC 2018, 108, 195–202. [Google Scholar] [CrossRef]
- Bergmann, M.; Mützel, S.; Primpke, S.; Tekman, M.B.; Trachsel, J.; Gerdts, G. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 2019, 5, eaax1157. [Google Scholar] [CrossRef] [PubMed]
- Clarke, A.; Barnes, D.K.A.; Hodgson, D.A. How isolated is Antarctica? Trends Ecol. Evol. 2005, 20, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Young, A.M.; Elliott, J.A. Characterization of microplastic and mesoplastic debris in sediments from Kamilo Beach and Kahuku Beach, Hawaii. Mar. Pollut. Bull. 2016, 113, 477–482. [Google Scholar] [CrossRef]
- García-Regalado, A.; Herrera, A.; Almeda, R. Microplastic and mesoplastic pollution in surface waters and beaches of the Canary Islands: A review. Mar. Pollut. Bull. 2024, 201, 116230. [Google Scholar] [CrossRef]
- Karami, A.; Golieskardi, A.; Choo, C.K.; Larat, V.; Karbalaei, S.; Salamatinia, B. Microplastic and mesoplastic contamination in canned sardines and sprats. Sci. Total Environ. 2018, 612, 1380–1386. [Google Scholar] [CrossRef]
- Collignon, A.; Hecq, J.H.; Galgani, F.; Collard, F.; Goffart, A. Annual variation in neustonic micro-and meso-plastic particles and zooplankton in the Bay of Calvi (Mediterranean–Corsica). Mar. Pollut. Bull. 2014, 79, 293–298. [Google Scholar] [CrossRef]
- Galloway, T.S.; Cole, M.; Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 2017, 1, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Botterell, Z.L.; Beaumont, N.; Dorrington, T.; Steinke, M.; Thompson, R.C.; Lindeque, P.K. Bioavailability and effects of microplastics on marine zooplankton: A review. Environ. Pollut. 2019, 245, 99. [Google Scholar] [CrossRef] [PubMed]
- Kiessling, T.; Gutow, L.; Thiel, M. Marine litter as habitat and dispersal vector. In Marine Anthropogenic Litter; Springer: Berlin/Heidelberg, Germany, 2015; pp. 141–181. [Google Scholar]
- Chase, A.L.; Dijkstra, J.A.; Harris, L.G. The influence of substrate material on ascidian larval settlement. Mar. Pollut. Bull. 2016, 106, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-X.; Orihuela, B.; Zhu, M.; Rittschof, D. Recyclable plastics as substrata for settlement and growth of bryozoans Bugula neritina and barnacles Amphibalanus amphitrite. Environ. Pollut. 2016, 218, 973–980. [Google Scholar] [CrossRef]
- Glon, H.; Daly, M.; Carlton, J.T.; Flenniken, M.M.; Currimjee, Z. Mediators of invasions in the sea: Life history strategies and dispersal vectors facilitating global sea anemone introductions. Biol. Invasions 2020, 22, 3195–3222. [Google Scholar] [CrossRef]
- Teng, G.; Jin, X.; Fu, C.; Guan, L.; Jin, Y.; Chen, Y.; Yang, T.; Ding, Q.; Shan, X. Is seafloor litter contributing to sea anemone blooms? Sci. Total Environ. 2021, 759, 143479. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, M.C.; Carson, H.S.; Eriksen, M. Relationship of diversity and habitat area in North Pacific plastic-associated rafting communities. Mar. Biol. 2014, 161, 1441–1453. [Google Scholar] [CrossRef]
- Morais, L.M.S.; Sarti, F.; Chelazzi, D.; Cincinelli, A.; Giarrizzo, T.; Martinelli Filho, J.E. The sea anemone Bunodosoma cangicum as a potential biomonitor for microplastics contamination on the Brazilian Amazon coast. Environ. Pollut. 2020, 265, 114817. [Google Scholar] [CrossRef]
- Vencato, S.; Montano, S.; Saliu, F.; Coppa, S.; Becchi, A.; Liotta, I.; de Lucia, G.A. Phthalate levels in common sea anemone Actinia equina and Anemonia viridis: A proxy of short-term microplastic interaction? Mar. Pollut. Bull. 2024, 200, 116125. [Google Scholar] [CrossRef] [PubMed]
- Latva, M.; Dedman, C.J.; Wright, R.J.; Polin, M.; Christie-Oleza, J.A. Microbial pioneers of plastic colonisation in coastal seawaters. Mar. Pollut. Bull. 2022, 179, 113701. [Google Scholar] [CrossRef]
- Porras-Rojas, M.A.; Charry-Vargas, C.; Muñoz-Yustres, J.L.; Martínez-Silva, P.; Gómez-Méndez, L.D. Characterization of microplastics and mesoplastics and presence of biofilms, collected in the Gualí Wetland Cundinamarca, Colombia. Microplastics 2023, 2, 255–267. [Google Scholar] [CrossRef]
- Weideman, E.A.; Munro, C.; Perold, V.; Omardien, A.; Ryan, P.G. Ingestion of plastic litter by the sandy anemone Bunodactis reynaudi. Environ. Pollut. 2020, 267, 115543. [Google Scholar] [CrossRef]
- Romanó de Orte, M.; Clowez, S.; Caldeira, K. Response of bleached and symbiotic sea anemones to plastic microfiber exposure. Environ. Pollut. 2019, 249, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Okubo, N.; Takahashi, S.; Nakano, Y. Microplastics disturb the anthozoan-algae symbiotic relationship. Mar. Pollut. Bull. 2018, 135, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Grajales, A.; Rodriguez, E. Morphological revision of the genus Aiptasia and the family Aiptasiidae (Cnidaria, Actiniaria, Metridioidea). Zootaxa 2014, 3826, 55–100. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, C.; Davy, S.; Pilling, G.; Graham, N. The Biology of Coral Reefs; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Loya, Y.; Sakai, K.; Yamazato, K.; Nakano, Y.; Sambali, H.; Van Woesik, R. Coral bleaching: The winners and the losers. Ecol. Lett. 2001, 4, 122–131. [Google Scholar] [CrossRef]
- Carlgren, O. A survey of the Ptychodactiaria, Corallimorpharia and Actiniaria. Kungl. Svenska Vetenskapsakademiens Handl. 1949, 3, 1–121. [Google Scholar]
- Carlgren, O. Actiniaria from North America; Almqvist u Wiksell: Stockholm, Sweden, 1952. [Google Scholar]
- Baumgarten, S.; Simakov, O.; Esherick, L.Y.; Liew, Y.J.; Lehnert, E.M.; Michell, C.T.; Li, Y.; Hambleton, E.A.; Guse, A.; Oates, M.E.; et al. The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc. Natl. Acad. Sci. USA 2015, 112, 11893–11898. [Google Scholar] [CrossRef] [PubMed]
- Tan, F.; Yang, H.; Xu, X.; Fang, Z.; Xu, H.; Shi, Q.; Zhang, X.; Wang, G.; Lin, L.; Zhou, S.; et al. Microplastic pollution around remote uninhabited coral reefs of Nansha Islands, South China Sea. Sci. Total Environ. 2020, 725, 138383. [Google Scholar] [CrossRef]
- Patterson, J.; Jeyasanta, K.I.; Laju, R.L.; Booth, A.M.; Sathish, N.; Edward, J.P. Microplastic in the coral reef environments of the Gulf of Mannar, India-Characteristics, distributions, sources and ecological risks. Environ. Pollut. 2022, 298, 118848. [Google Scholar] [CrossRef] [PubMed]
- Van-Praet, M. Nutrition of sea anemones. In Advances in Marine Biology; Academic Press: Cambridge, MA, USA, 1985; pp. 65–99. [Google Scholar]
- Gray, A.D.; Weinstein, J.E. Size- and shape-dependent effects of microplastic particles on adult daggerblade grass shrimp (Palaemonetes pugio). Environ. Toxicol. Chem. 2017, 36, 3074–3080. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Takada, H. Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters. Sci. Rep. 2016, 6, 34351. [Google Scholar] [CrossRef] [PubMed]
- Prinz, N.; Korez, S. Understanding how microplastics affect marine biota on the cellular level is important for assessing ecosystem function: A review. In YOUMARES 9-The Oceans: Our Research, Our Future: Proceedings of the 2018 Conference for YOUng MArine RESearcher in Oldenburg, Germany; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 101–120. [Google Scholar]
- Jâms, I.B.; Windsor, F.M.; Poudevigne-Durance, T.; Ormerod, S.J.; Duranc, I. Estimating the size distribution of plastics ingested by animals. Nat. Commun. 2020, 11, 1594. [Google Scholar] [CrossRef]
- Ward, J.E.; Zhao, S.; Holohan, B.A.; Mladinich, K.M.; Griffin, T.W.; Wozniak, J.; Shumway, S.E. Selective ingestion and egestion of plastic particles by the blue mussel (Mytilus edulis) and eastern oyster (Crassostrea virginica): Implications for using bivalves as bioindicators of microplastic pollution. Environ. Sci. Technol. 2019, 6, 8776–8784. [Google Scholar] [CrossRef] [PubMed]
- Immerschitt, I.; Martens, A. Ejection, ingestion and fragmentation of mesoplastic fibres to microplastics by Anax imperator larvae (Odonata: Aeshnidae). Odonatologica 2021, 49, 57–66. [Google Scholar] [CrossRef]
- Tümerkan, E.T.A.; Köse, E.; Aksu, S.; Mol, O.; Kantamaneni, K.; Başkurt, S.; Emiroğlu, Ö. Beadlet anemone: A novel bio-indicator of microplastic pollution in the marine environment. J. Environ. Manag. 2024, 349, 119538. [Google Scholar] [CrossRef] [PubMed]
- Murphy, F.; Quinn, B. The effects of microplastic on freshwater Hydra attenuata feeding, morphology and reproduction. Environ. Pollut. 2018, 234, 487–494. [Google Scholar] [CrossRef]
- Jemec, A.; Horvat, P.; Kunej, U.; Bele, M.; Kržan, A. Uptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magna. Environ. Pollut. 2016, 219, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.; Barry, J.; Stenton, C.; Roberts, E.; Hicks, R.; Bignell, J.; Vethaak, A.D.; Leslie, A.H.; Sanders, M. The world is your oyster: Low-dose, long-term microplastic exposure of juvenile oysters. Heliyon 2020, 6, e03103. [Google Scholar] [CrossRef] [PubMed]
- Niemcharoen, S.; Haetrakul, T.; Palić, D.; Chansue, N. Microplastic-Contaminated Feed Interferes with Antioxidant Enzyme and Lysozyme Gene Expression of Pacific White Shrimp (Litopenaeus vannamei) Leading to Hepatopancreas Damage and Increased Mortality. Animals 2022, 12, 3308. [Google Scholar] [CrossRef]
- Leung, J.; Chan, K.Y.K. Microplastics reduced posterior segment regeneration rate of the polychaete Perinereis aibuhitensis. Mar. Pollut. Bull. 2018, 129, 782–786. [Google Scholar] [CrossRef]
- Rotjan, R.D.; Sharp, K.H.; Gauthier, A.E.; Yelton, R.; Lopez, E.M.B.; Carilli, J.; Kagan, J.C.; Urban-Rich, J. Patterns, dynamics and consequences of microplastic ingestion by the temperate coral, Astrangia poculata. Proc. R Soc. 2019, 26, 20190726. [Google Scholar] [CrossRef] [PubMed]
- Beloe, C.J.; Browne, M.A.; Johnston, E.L. Plastic debris as a vector for bacterial disease: An interdisciplinary systematic review. Environ. Sci. Technol. 2022, 56, 2950–2958. [Google Scholar] [CrossRef]
- Junaid, M.; Siddiqui, J.A.; Sadaf, M.; Liu, S.; Wang, J. Enrichment and dissemination of bacterial pathogens by microplastics in the aquatic environment. Sci. Total Environ. 2022, 830, 154720. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaliszewicz, A.; Czyżewska, A.; Karaban, K.; Olejniczak, I.; Boniecki, P. Micro- and Mesoplastic Consumption Tendency of Exaiptasia diaphana Sea Anemones. Animals 2025, 15, 405. https://doi.org/10.3390/ani15030405
Kaliszewicz A, Czyżewska A, Karaban K, Olejniczak I, Boniecki P. Micro- and Mesoplastic Consumption Tendency of Exaiptasia diaphana Sea Anemones. Animals. 2025; 15(3):405. https://doi.org/10.3390/ani15030405
Chicago/Turabian StyleKaliszewicz, Anita, Agata Czyżewska, Kamil Karaban, Izabella Olejniczak, and Paweł Boniecki. 2025. "Micro- and Mesoplastic Consumption Tendency of Exaiptasia diaphana Sea Anemones" Animals 15, no. 3: 405. https://doi.org/10.3390/ani15030405
APA StyleKaliszewicz, A., Czyżewska, A., Karaban, K., Olejniczak, I., & Boniecki, P. (2025). Micro- and Mesoplastic Consumption Tendency of Exaiptasia diaphana Sea Anemones. Animals, 15(3), 405. https://doi.org/10.3390/ani15030405