High-Throughput Sequencing-Based Assessment of Intestinal Parasitic Infections in Economically and Medicinally Valuable Captive Tokay Gecko (Gekko gecko) and Chinese Blue-Tailed Skink (Plestiodon chinensis)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Sample Collection
2.3. DNA Extraction and PCR Amplification
2.4. Sequencing and Bioinformatic Processing
2.5. Data Analysis
3. Results
3.1. ASV-Based Rarefaction Patterns
3.2. Host Separation Revealed by PCA
3.3. Parasite Infection Patterns
3.4. Parasite–Microbe Co-Occurrence Network
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Green, J.; Schmidt-Burbach, J.; Elwin, A. Taking Stock of Wildlife Farming: A Global Perspective. Glob. Ecol. Conserv. 2023, 43, e02452. [Google Scholar] [CrossRef]
- Roeber, F.; Kahn, L. The Specific Diagnosis of Gastrointestinal Nematode Infections in Livestock: Larval Culture Technique, Its Limitations and Alternative DNA-Based Approaches. Vet. Parasitol. 2014, 205, 619–628. [Google Scholar] [CrossRef]
- Mesa-Pineda, C.; Navarro-Ruíz, J.L.; López-Osorio, S.; Chaparro-Gutiérrez, J.J.; Gómez-Osorio, L.M. Chicken Coccidiosis: From the Parasite Lifecycle to Control of the Disease. Front. Vet. Sci. 2021, 8, 787653. [Google Scholar] [CrossRef] [PubMed]
- Haitao, S.; Parham, J.F.; Zhiyong, F.; Meiling, H.; Feng, Y. Evidence for the Massive Scale of Turtle Farming in China. Oryx 2008, 42, 147–150. [Google Scholar] [CrossRef]
- Meeks, D.; Morton, O.; Edwards, D.P. Wildlife Farming: Balancing Economic and Conservation Interests in the Face of Illegal Wildlife Trade. People Nat. 2024, 6, 446–457. [Google Scholar] [CrossRef]
- da Nóbrega Alves, R.R.; da Silva Vieira, W.L.; Santana, G.G. Reptiles Used in Traditional Folk Medicine: Conservation Implications. Biodivers. Conserv. 2008, 17, 2037–2049. [Google Scholar] [CrossRef]
- Nijman, V. An Overview of International Wildlife Trade from Southeast Asia. Biodivers. Conserv. 2010, 19, 1101–1114. [Google Scholar] [CrossRef]
- Tong, D.; Zhu, W.; Ning, D.; Liu, L.; Tian, X. Textual Research on Gecko and Skink. Chin. J. Exp. Tradit. Med. Formulae 2021, 27, 144–151. [Google Scholar] [CrossRef]
- Nam, H.H.; Lee, J.H.; Ryu, S.M.; Lee, S.; Yang, S.; Noh, P.; Moon, B.C.; Kim, J.S.; Seo, Y.-S. Gekko gecko Extract Attenuates Airway Inflammation and Mucus Hypersecretion in a Murine Model of Ovalbumin-Induced Asthma. J. Ethnopharmacol. 2022, 282, 114574. [Google Scholar] [CrossRef]
- Sun, B.-J.; Du, W.-G.; Shu, L.; Chen, Y.; Wang, Y. The Influence of Thermal Environment and Food Availability on Testosterone and Gonadal Recrudescence in Male Chinese Skinks [Plestiodon (Eumeces) chinensis]. Gen. Comp. Endocrinol. 2011, 170, 449–454. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Huang, Y.; Xu, Y.; Zhao, C.; Gu, Y.; Li, L. Progress in Artificial Breeding Techniques for the Tokay Gecko (Gekko gecko). J. Chin. Med. Mater. 2012, 35, 1350–1354. [Google Scholar] [CrossRef]
- Lu, H.; Wang, J.; Kang, C.; Du, W. Maternal Egg Care Enhances Hatching Success and Offspring Quality in an Oviparous Skink. Integr. Zool. 2022, 17, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Pei, J.; Lin, L.; Ji, X. Effects of Constant versus Fluctuating Incubation Temperatures on Hatching Success, Incubation Length, and Hatchling Morphology in the Chinese Skink (Plestiodon chinensis). Asian Herpetol. Res. 2017, 8, 262–268. [Google Scholar] [CrossRef]
- Ma, L.; Guo, K.; Su, S.; Ji, X. Embryonic Growth and Yolk Depletion during Incubation in the Chinese Skink, Plestiodon chinensis. Asian Herpetol. Res. 2019, 10, 56–61. [Google Scholar] [CrossRef]
- Ippen, R.; Zwart, P. Infectious and Parasitic Disease of Captive Reptiles and Amphibians, with Special Emphasis on Husbandry Practices Which Prevent or Promote Diseases. Rev. Sci. Tech. 1996, 15, 43–54. [Google Scholar] [CrossRef]
- Wolf, D.; Vrhovec, M.G.; Failing, K.; Rossier, C.; Hermosilla, C.; Pantchev, N. Diagnosis of Gastrointestinal Parasites in Reptiles: Comparison of Two Coprological Methods. Acta Vet. Scand. 2014, 56, 44. [Google Scholar] [CrossRef]
- Dantas, D.; Batista, C.L.; Castro, M.J.; Alvura, N.; Mateus, T.L. Gastrointestinal Parasites in Reptiles from a Portuguese Zoo. J. Zool. Bot. Gard. 2025, 6, 12. [Google Scholar] [CrossRef]
- Bower, D.S.; Brannelly, L.A.; McDonald, C.A.; Webb, R.J.; Greenspan, S.E.; Vickers, M.; Gardner, M.G.; Greenlees, M.J. A Review of the Role of Parasites in the Ecology of Reptiles and Amphibians. Austral Ecol. 2019, 44, 433–448. [Google Scholar] [CrossRef]
- Hallinger, M.J.; Taubert, A.; Hermosilla, C.; Mutschmann, F. Occurrence of Health-Compromising Protozoan and Helminth Infections in Tortoises Kept as Pet Animals in Germany. Parasites Vectors 2018, 11, 352. [Google Scholar] [CrossRef]
- Amaral, C.B.; Alves, A.C.C.; Peroba, S.C.; Martins, I.V.F. Coproparasitologic Survey of Gastrointestinal Parasites in a Captive Leopard Geckos Collection (Eublepharis macularius). Vet. Parasitol. Reg. Stud. Rep. 2021, 26, 100617. [Google Scholar] [CrossRef]
- Bricarello, P.A.; Longo, C.; da Rocha, R.A.; Hötzel, M.J. Understanding Animal-Plant-Parasite Interactions to Improve the Management of Gastrointestinal Nematodes in Grazing Ruminants. Pathogens 2023, 12, 531. [Google Scholar] [CrossRef]
- Charlier, J.; Williams, D.J.; Ravinet, N.; Claerebout, E. To Treat or Not to Treat: Diagnostic Thresholds in Subclinical Helminth Infections of Cattle. Trends Parasitol. 2023, 39, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Nadler, S.A.; De León, G.P.-P. Integrating Molecular and Morphological Approaches for Characterizing Parasite Cryptic Species: Implications for Parasitology. Parasitology 2011, 138, 1688–1709. [Google Scholar] [CrossRef] [PubMed]
- Titcomb, G.C.; Jerde, C.L.; Young, H.S. High-Throughput Sequencing for Understanding the Ecology of Emerging Infectious Diseases at the Wildlife-Human Interface. Front. Ecol. Evol. 2019, 7, 126. [Google Scholar] [CrossRef]
- Lane, M.; Kashani, M.; Barratt, J.L.N.; Qvarnstrom, Y.; Yabsley, M.J.; Garrett, K.B.; Bradbury, R.S. Application of a Universal Parasite Diagnostic Test to Biological Specimens Collected from Animals. Int. J. Parasitol. Parasites Wildl. 2023, 20, 20–30. [Google Scholar] [CrossRef]
- Wu, S.; Zhong, Y.; Li, H.; Tang, C.; Zhang, B.; Zhang, R. 18S rDNA Next-Generation Sequencing Uncovers the Biodiversity of Gastrointestinal Parasites in Tibetan Grazing Ruminants in China. BMC Vet. Res. 2025, 21, 429. [Google Scholar] [CrossRef]
- Kang, D.; Choi, J.H.; Kim, M.; Yun, S.; Oh, S.; Yi, M.; Yong, T.-S.; Lee, Y.A.; Shin, M.H.; Kim, J.Y. Optimization of 18 S rRNA Metabarcoding for the Simultaneous Diagnosis of Intestinal Parasites. Sci. Rep. 2024, 14, 25049. [Google Scholar] [CrossRef]
- Kim, S.L.; Choi, J.H.; Yi, M.; Lee, S.; Kim, M.; Oh, S.; Lee, I.-Y.; Jeon, B.-Y.; Yong, T.-S.; Kim, J.Y. Metabarcoding of Bacteria and Parasites in the Gut of Apodemus Agrarius. Parasites Vectors 2022, 15, 486. [Google Scholar] [CrossRef]
- Woo, C.; Bhuiyan, M.I.U.; Eo, K.Y.; Lee, W.-S.; Kimura, J.; Yamamoto, N. Diversity of Fecal Parasitomes of Wild Carnivores Inhabiting Korea, Including Zoonotic Parasites and Parasites of Their Prey Animals, as Revealed by 18S rRNA Gene Sequencing. Int. J. Parasitol. Parasites Wildl. 2023, 21, 179–184. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, S.L.; Yoo, D.K.; Yi, M.; Oh, S.; Kim, M.; Yun, S.; Yong, T.-S.; Choe, S.; Lee, J.K.; et al. Metabarcoding of Pathogenic Parasites Based on Copro-DNA Analysis of Wild Animals in South Korea. Heliyon 2024, 10, e30059. [Google Scholar] [CrossRef]
- Lee, S.; Alkathiri, B.; Lee, C.H.; Lee, H.W.; Jeong, D.-H.; Kim, J.Y.; Choe, S.; Lee, S.-H. 18S rRNA Gene Metabarcoding for Investigation of Gastrointestinal Parasite Diversity in Great Cormorants. Sci. Rep. 2025, 15, 16954. [Google Scholar] [CrossRef]
- Suminda, G.G.D.; Bhandari, S.; Won, Y.; Goutam, U.; Kanth Pulicherla, K.; Son, Y.-O.; Ghosh, M. High-Throughput Sequencing Technologies in the Detection of Livestock Pathogens, Diagnosis, and Zoonotic Surveillance. Comput. Struct. Biotechnol. J. 2022, 20, 5378–5392. [Google Scholar] [CrossRef]
- Wang, C.; Masoudi, A.; Wang, M.; Yang, J.; Yu, Z.; Liu, J. Land-Use Types Shape Soil Microbial Compositions under Rapid Urbanization in the Xiong’an New Area, China. Sci. Total Environ. 2021, 777, 145976. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast Length Adjustment of Short Reads to Improve Genome Assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.X.; Colwell, R.K.; Chang, J. Estimating the Species Accumulation Curve Using Mixtures. Biometrics 2005, 61, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Colwell, R.K.; Mao, C.X.; Chang, J. Interpolating, Extrapolating, and Comparing Incidence-Based Species Accumulation Curves. Ecology 2004, 85, 2717–2727. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing Mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Legendre, P.; Gallagher, E.D. Ecologically Meaningful Transformations for Ordination of Species Data. Oecologia 2001, 129, 271–280. [Google Scholar] [CrossRef]
- Hotelling, H. The Generalization of Student’s Ratio. Ann. Math. Stat. 1931, 2, 360–378. [Google Scholar] [CrossRef]
- Anderson, M.J. A New Method for Non-Parametric Multivariate Analysis of Variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Anderson, M.J. Distance-Based Tests for Homogeneity of Multivariate Dispersions. Biometrics 2006, 62, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Newcombe, R.G. Two-Sided Confidence Intervals for the Single Proportion: Comparison of Seven Methods. Stat. Med. 1998, 17, 857–872. [Google Scholar] [CrossRef]
- Wilson, E.B. Probable Inference, the Law of Succession, and Statistical Inference. J. Am. Stat. Assoc. 1927, 22, 209–212. [Google Scholar] [CrossRef]
- Shephard, R.W.; Hancock, A.S.; Playford, M.; Oswin, S. A Systematic Review and Meta-Analysis of Impact of Strongyle Parasitism on Growth Rates in Young Cattle. Vet. Parasitol. 2022, 309, 109760. [Google Scholar] [CrossRef]
- Rizwan, H.M.; Zohaib, H.M.; Sajid, M.S.; Abbas, H.; Younus, M.; Farid, M.U.; Iftakhar, T.; Muzaffar, H.A.; Hassan, S.S.; Kamran, M.; et al. Inflicting Significant Losses in Slaughtered Animals: Exposing the Hidden Effects of Parasitic Infections. Pathogens 2023, 12, 1291. [Google Scholar] [CrossRef]
- Strydom, T.; Lavan, R.P.; Torres, S.; Heaney, K. The Economic Impact of Parasitism from Nematodes, Trematodes and Ticks on Beef Cattle Production. Animals 2023, 13, 1599. [Google Scholar] [CrossRef]
- Smith, L.A.; Fox, N.J.; Marion, G.; Booth, N.J.; Morris, A.M.M.; Athanasiadou, S.; Hutchings, M.R. Animal Behaviour Packs a Punch: From Parasitism to Production, Pollution and Prevention in Grazing Livestock. Animals 2024, 14, 1876. [Google Scholar] [CrossRef]
- Rashid, M.; Rashid, M.I.; Akbar, H.; Ahmad, L.; Hassan, M.A.; Ashraf, K.; Saeed, K.; Gharbi, M. A Systematic Review on Modelling Approaches for Economic Losses Studies Caused by Parasites and Their Associated Diseases in Cattle. Parasitology 2019, 146, 129–141. [Google Scholar] [CrossRef]
- Madsen, H.; Stauffer, J.R. Aquaculture of Animal Species: Their Eukaryotic Parasites and the Control of Parasitic Infections. Biology 2024, 13, 41. [Google Scholar] [CrossRef]
- Maezono, M.; Nielsen, R.; Buchmann, K.; Nielsen, M. The Current State of Knowledge of the Economic Impact of Diseases in Global Aquaculture. Rev. Aquac. 2025, 17, e70039. [Google Scholar] [CrossRef]
- Mennerat, A.; Nilsen, F.; Ebert, D.; Skorping, A. Intensive Farming: Evolutionary Implications for Parasites and Pathogens. Evol. Biol. 2010, 37, 59–67. [Google Scholar] [CrossRef]
- Pasmans, F.; Blahak, S.; Martel, A.; Pantchev, N. Introducing Reptiles into a Captive Collection: The Role of the Veterinarian. Vet. J. 2008, 175, 53–68. [Google Scholar] [CrossRef] [PubMed]
- Scullion, F.T.; Scullion, M.G. Gastrointestinal Protozoal Diseases in Reptiles. J. Exot. Pet Med. 2009, 18, 266–278. [Google Scholar] [CrossRef]
- Rataj, A.V.; Lindtner-Knific, R.; Vlahović, K.; Mavri, U.; Dovč, A. Parasites in Pet Reptiles. Acta Vet. Scand. 2011, 53, 33. [Google Scholar] [CrossRef] [PubMed]
- Hallinger, M.J.; Taubert, A.; Hermosilla, C. Endoparasites Infecting Exotic Captive Amphibian Pet and Zoo Animals (Anura, Caudata) in Germany. Parasitol. Res. 2020, 119, 3659–3673. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Roldan, J.A.; Modry, D.; Otranto, D. Zoonotic Parasites of Reptiles: A Crawling Threat. Trends Parasitol. 2020, 36, 677–687. [Google Scholar] [CrossRef]
- Xiao, L.; Ryan, U.M.; Graczyk, T.K.; Limor, J.; Li, L.; Kombert, M.; Junge, R.; Sulaiman, I.M.; Zhou, L.; Arrowood, M.J.; et al. Genetic Diversity of Cryptosporidium spp. in Captive Reptiles. Appl. Environ. Microbiol. 2004, 70, 891–899. [Google Scholar] [CrossRef]
- Louro, M.; Hernandez, L.; Antunes, J.; Madeira de Carvalho, L.; Pereira da Fonseca, I.; Gomes, J. Cryptosporidium spp. in Reptiles: Detection Challenges, Molecular Characterization and Zoonotic Risk. Food Waterborne Parasitol. 2025, 40, e00272. [Google Scholar] [CrossRef]
- Berhanu, K.; Ayana, D.; Megersa, B.; Ashenafi, H.; Waktole, H. Cryptosporidium in Human-Animal-Environment Interphase at Adama and Asella Areas of Oromia Regional State, Ethiopia. BMC Vet. Res. 2022, 18, 402. [Google Scholar] [CrossRef]
- Brener, B.; Burgarelli, E.; Suarez, M.; Keidel, L. Cryptosporidiosis in Reptiles from Brazil: An Update for Veterinary Medicine. Parasitologia 2022, 2, 228–236. [Google Scholar] [CrossRef]
- Couso-Pérez, S.; Ares-Mazás, E.; Gómez-Couso, H. A Review of the Current Status of Cryptosporidium in Fish. Parasitology 2022, 149, 444–456. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.C.A.; Smith, A. Zoonotic Enteric Protozoa. Vet. Parasitol. 2011, 182, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wang, X.; Xiao, L.; Feng, Y.; Guo, Y. High Prevalence and Pathogenicity of Cryptosporidium serpentis in Snakes in Southern China. Curr. Res. Parasitol. Vector-Borne Dis. 2025, 8, 100287. [Google Scholar] [CrossRef] [PubMed]
- Dellarupe, A.; Unzaga, J.M.; Moré, G.; Kienast, M.; Larsen, A.; Stiebel, C.; Rambeaud, M.; Venturini, M.C. Cryptosporidium varanii Infection in Leopard Geckos (Eublepharis macularius) in Argentina. Open Vet. J. 2016, 6, 98–101. [Google Scholar] [CrossRef]
- Gerace, E.; Presti, V.D.M.L.; Biondo, C. Cryptosporidium Infection: Epidemiology, Pathogenesis, and Differential Diagnosis. Eur. J. Microbiol. Immunol. 2019, 9, 119–123. [Google Scholar] [CrossRef]
- Helmy, Y.A.; Hafez, H.M. Cryptosporidiosis: From Prevention to Treatment, a Narrative Review. Microorganisms 2022, 10, 2456. [Google Scholar] [CrossRef]
- Garcia-R, J.C.; Pita, A.B.; Velathanthiri, N.; Pas, A.; Hayman, D.T.S. Mammal-Related Cryptosporidium Infections in Endemic Reptiles of New Zealand. Parasitol. Res. 2023, 122, 1239–1244. [Google Scholar] [CrossRef]
- Voogdt, C.G.P.; Bouwman, L.I.; Kik, M.J.L.; Wagenaar, J.A.; van Putten, J.P.M. Reptile Toll-like Receptor 5 Unveils Adaptive Evolution of Bacterial Flagellin Recognition. Sci. Rep. 2016, 6, 19046. [Google Scholar] [CrossRef]
- Shang, S.; Zhong, H.; Wu, X.; Wei, Q.; Zhang, H.; Chen, J.; Chen, Y.; Tang, X.; Zhang, H. Genomic Evidence of Gene Duplication and Adaptive Evolution of Toll like Receptors (TLR2 and TLR4) in Reptiles. Int. J. Biol. Macromol. 2018, 109, 698–703. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Shang, S.; Wu, X.; Zhong, H.; Zhao, C.; Wei, Q.; Zhang, H.; Xia, T.; Chen, Y.; Zhang, H.; et al. Genomic Analysis and Adaptive Evolution of the RIG-I-like and NOD-like Receptors in Reptiles. Int. J. Biol. Macromol. 2019, 134, 1045–1051. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, L.M. The Reptilian Perspective on Vertebrate Immunity: 10 Years of Progress. J. Exp. Biol. 2020, 223, jeb214171. [Google Scholar] [CrossRef] [PubMed]
- Sandmeier, F.C.; Tracy, C.R.; Dupré, S.; Hunter, K. A Trade-off between Natural and Acquired Antibody Production in a Reptile: Implications for Long-Term Resistance to Disease. Biol. Open 2012, 1, 1078–1082. [Google Scholar] [CrossRef]
- Zimmerman, L.M.; Bowden, R.M.; Vogel, L.A. Red-Eared Slider Turtles Lack Response to Immunization with Keyhole Limpet Hemocyanin but Have High Levels of Natural Antibodies. Int. Sch. Res. Not. 2013, 2013, 858941. [Google Scholar] [CrossRef]
- Hananeh, W.M.; Radhi, A.; Mukbel, R.M.; Ismail, Z.B. Effects of Parasites Coinfection with Other Pathogens on Animal Host: A Literature Review. Vet. World 2022, 15, 2414–2424. [Google Scholar] [CrossRef]
- Dipineto, L.; Capasso, M.; Maurelli, M.P.; Russo, T.P.; Pepe, P.; Capone, G.; Fioretti, A.; Cringoli, G.; Rinaldi, L. Survey of Co-Infection by Salmonellaand Oxyurids in Tortoises. BMC Vet. Res. 2012, 8, 69. [Google Scholar] [CrossRef]
- Graczyk, T.K.; Cranfield, M.R. Cryptosporidium serpentis Oocysts and Microsporidian Spores in Feces of Captive Snakes. J. Parasitol. 2000, 86, 413–414. [Google Scholar] [CrossRef]
- Vaumourin, E.; Vourc’h, G.; Gasqui, P.; Vayssier-Taussat, M. The Importance of Multiparasitism: Examining the Consequences of Co-Infections for Human and Animal Health. Parasites Vectors 2015, 8, 545. [Google Scholar] [CrossRef]
- Guardone, L.; Marigliano, A.; Mancianti, F.; Perrucci, S. Endoparasite Infections in Captive Inland Bearded Dragons (Pogona vitticeps) in Italy. Pathogens 2024, 13, 443. [Google Scholar] [CrossRef]
- Taha, S.; Nguyen-Ho-Bao, T.; Berberich, L.M.; Gawlowska, S.; Daugschies, A.; Rentería-Solís, Z. Interplay between Eimeria acervulina and Cryptosporidium parvum during In Vitro Infection of a Chicken Macrophage Cell Line (HD11). Life 2023, 13, 1267. [Google Scholar] [CrossRef]
- Coroian, M.; Fábián-Ravasz, T.-Z.; Dobrin, P.R.; Györke, A. Occurrence of Eimeria spp. and Intestinal Helminths in Free-Range Chickens from Northwest and Central Romania. Animals 2024, 14, 563. [Google Scholar] [CrossRef]
- Cooper, G.L.; Charlton, B.R.; Bickford, A.A.; Nordhausen, R. Hexamita Meleagridis (Spironucleus meleagridis) Infection in Chukar Partridges Associated with High Mortality and Intracellular Trophozoites. Avian Dis. 2004, 48, 706–710. [Google Scholar] [CrossRef]
- Park, H.C.; Han, B.J.; Park, I.S. Dual Infection with Entamoeba Invadens and Aeromonas hydrophila in a Captive Anaconda (Eunectes murinus) Leading to Necrotising Gastroenteritis and Hepatocyte Death. Vet. Med. 2019, 64, 144–148. [Google Scholar] [CrossRef]
- Juniantito, V.; Izawa, T.; Kuwamura, M.; Yonezawa, M.; Ito, S.; Yamate, J. Gastrointestinal Candidiasis in an Aldabra Giant Tortoise (Geochelone gigantea). J. Vet. Med. Sci. 2009, 71, 1269–1272. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, L.; Wang, Z.; Zhu, P.; Chen, Y.; Yu, C.; Chen, S.; Xie, Y. Impacts of Eimeria Coinfection on Growth Performance, Intestinal Health and Immune Responses of Broiler Chickens. Vet. Parasitol. 2023, 322, 110019. [Google Scholar] [CrossRef]
- Daş, G.; Wachter, L.; Stehr, M.; Bilic, I.; Grafl, B.; Wernsdorf, P.; Metges, C.C.; Hess, M.; Liebhart, D. Excretion of Histomonas Meleagridis Following Experimental Co-Infection of Distinct Chicken Lines with Heterakis gallinarum and Ascaridia galli. Parasites Vectors 2021, 14, 323. [Google Scholar] [CrossRef] [PubMed]
- Mackerras, M.J. Lizard Filaria: Transmission by Mosquitoes of Oswaldofilaria chlamydosauri (Breinl) (Nematoda: Filarioidea). Parasitology 1953, 43, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Kataki, A.S.; Baldini, F.; Naorem, A.S. Evaluation of Synergistic Effect of Entomopathogenic Fungi Beauveria Bassiana and Lecanicillium lecacii on the Mosquito Culex Quinquefaciatus. PLoS ONE 2024, 19, e0308707. [Google Scholar] [CrossRef] [PubMed]
- Scheelings, T.; Dobson, E.; Hooper, C.; Eden, P. Cutaneous and Systemic Mycoses from Infection with Lecanicillium spp. in Captive Guthega Skinks (Liopholis guthega). Aust. Vet. J. 2015, 93, 248–251. [Google Scholar] [CrossRef]
- Patterson Kane, J.C.; Eckerlin, R.P.; Lyons, E.T.; Jewell, M.A. Strongyloidiasis in a Cope’s Grey Tree Frog (Hyla chrysoscelis). J. Zoo Wildl. Med. 2001, 32, 106–110. [Google Scholar] [CrossRef]
- Leishangthem, G.D.; Mir, A.Q.; Singh, N.D. A Case of an Incidental Strongyloides stercoralis Infection in the Intestine of an Indian Monitor Lizard (Varanus bengalensis). J. Parasit. Dis. 2018, 42, 467–469. [Google Scholar] [CrossRef] [PubMed]
- Orós, J.; Arencibia, A.; Fernández, L.; Jensen, H.E. Intestinal Candidiasis in a Loggerhead Sea Turtle (Caretta caretta): An Immunohistochemical Study. Vet. J. 2004, 167, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Iannaccone, M.; Basso, P.R.; Congiu, T.; Cavicchio, P.; Ulivi, V.; Campolo, M. Multiple Organ Dysfunction Syndrome (MODS) Induced by Candida Krusei in an Aldabra Giant Tortoise (Aldabrachelys gigantea) and Confirmed by Electron Microscopy Analysis. Med. Mycol. Case Rep. 2018, 21, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-L.; Sun, P.-L.; Kao, C.-F.; Li, W.-T.; Cheng, I.-J.; Yu, P.-H. Disseminated Candidiasis and Candidemia Caused by Candida palmioleophila in a Green Sea Turtle (Chelonia mydas). Animals 2021, 11, 3480. [Google Scholar] [CrossRef]
- Page, W.; Judd, J.A.; Bradbury, R.S. The Unique Life Cycle of Strongyloides stercoralis and Implications for Public Health Action. Trop. Med. Infect. Dis. 2018, 3, 53. [Google Scholar] [CrossRef]
- White, M.A.F.; Whiley, H.; Ross, K.E. A Review of Strongyloides spp. Environmental Sources Worldwide. Pathogens 2019, 8, 91. [Google Scholar] [CrossRef]
- Schumacher, J. Fungal Diseases of Reptiles. Vet. Clin. N. Am. Exot. Anim. Pract. 2003, 6, 327–335. [Google Scholar] [CrossRef]
- Schilliger, L.; Paillusseau, C.; François, C.; Bonwitt, J. Major Emerging Fungal Diseases of Reptiles and Amphibians. Pathogens 2023, 12, 429. [Google Scholar] [CrossRef]
- Cargill, B.; Benato, L.; Rooney, N. A Survey Exploring the Impact of Housing and Husbandry on Pet Snake Welfare. Anim. Welf. 2022, 31, 193–208. [Google Scholar] [CrossRef]
- Jensen, M.; Jensen, U.; Bertelsen, M. Assessing the Effects of Biosecurity Measures in Terrarium Management. J. Zoo Aquar. Res. 2021, 9, 157–160. [Google Scholar] [CrossRef]
- Kiebler, C.A.; Bottichio, L.; Simmons, L.; Basler, C.; Klos, R.; Gurfield, N.; Roberts, E.; Kimura, A.; Lewis, L.S.; Bird, K.; et al. Outbreak of Human Infections with Uncommon Salmonella Serotypes Linked to Pet Bearded Dragons, 2012–2014. Zoonoses Public Health 2020, 67, 425–434. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Kurup, S.P.; Banerjee, P.S. Endoparasitism in Captive Wild-Caught Snakes Indigenous to Kerala, India. Zoo Biol. 2009, 28, 253–258. [Google Scholar] [CrossRef]
- Gary, C. Merck Veterinary Manual: Parasitology in Veterinary Practice; Atlantic Veterinary College, Department of Pathology and Microbiology: Charlottetown, PE, Canada, 2025. [Google Scholar]
- Esteban-Sánchez, L.; García-Rodríguez, J.J.; García-García, J.; Martínez-Nevado, E.; de la Riva-Fraga, M.A.; Ponce-Gordo, F. Wild Animals in Captivity: An Analysis of Parasite Biodiversity and Transmission among Animals at Two Zoological Institutions with Different Typologies. Animals 2024, 14, 813. [Google Scholar] [CrossRef]
- Murray, S.; Cunningham, L.J.; Rowley, P.; Crittenden, E.; Casewell, N.R.; LaCourse, E.J.; Stothard, J.R.; Juhász, A. A Preliminary Microscopic and Molecular Epidemiological Survey of Endoparasites within Wild-Caught and UK Captive-Bred Reptiles: Assessing a Potential Parasitic Disease Public Health Risk? Int. J. Parasitol. Parasites Wildl. 2025, 26, 101039. [Google Scholar] [CrossRef]





| Host | Infection Proportion(s) (%) | Parasite Infection Proportion(s) (%) | |||||
|---|---|---|---|---|---|---|---|
| Cryptosporidium 1 | Eimeria | Oswaldofilaria | Strongyloides | Spauligodon | Spironucleus | ||
| Gekko gecko | 42.9% (9/21) | - | - | 4.8% (1/21) | 19.1% (4/21) | 14.3% (3/21) | 9.5% (2/21) |
| Plestiodon chinensis | 57.1% (12/21) | 57.1% (12/21) | 14.3% (3/21) | - | 14.3% (3/21) | - | 14.3% (3/21) |
| Host | Parasite Genus | Infection Proportion(s) (%) | Infection Proportion(s) in Female (%) | Infection Proportion(s) in Male (%) |
|---|---|---|---|---|
| Gekko gecko | Oswaldofilaria | 4.8% (1/21) | 0.00% | 9.1% (1/11) |
| Strongyloides | 19.1% (4/21) | 20.0% (2/10) | 18.2% (2/11) | |
| Spauligodon | 14.3% (3/21) | 0.00% | 27.3% (3/11) | |
| Spironucleus | 9.5% (2/21) | 10.0% (1/10) | 9.1% (1/11) | |
| Plestiodon chinensis | Cryptosporidium | 57.1% (12/21) | 55.6% (5/9) | 58.3% (7/12) |
| Eimeria | 14.3% (3/21) | 11.1% (1/9) | 16.7% (2/12) | |
| Strongyloides | 14.3% (3/21) | 11.1% (1/9) | 16.7% (2/12) | |
| Spironucleus | 14.3% (3/21) | 11.1% (1/9) | 16.7% (2/12) |
| Host | Parasite Genus | Associated Taxon/Parasite | Spearman ρ | p-Value |
|---|---|---|---|---|
| Gekko gecko | Oswaldofilaria | Nyssopsora | 0.65211 | 1.36 × 10−3 |
| Stenophora | 0.65211 | 1.36 × 10−3 | ||
| Lecanicillium | 0.72457 | 2.03 × 10−4 | ||
| Mortierella | 0.72457 | 2.03 × 10−4 | ||
| Spironucleus | Homocognata | 0.65211 | 1.36 × 10−3 | |
| family Thelypteridaceae | 0.65211 | 1.36 × 10−3 | ||
| Rhogostoma | 0.65211 | 1.36 × 10−3 | ||
| Plestiodon chinensis | Cryptosporidium | unclassified Eukaryota | 0.6138 | 3.08 × 10−3 |
| Eimeria | Oxytropis | 0.60645 | 3.56 × 10−3 | |
| Bodomorpha | 0.60645 | 3.56 × 10−3 | ||
| Spironucleus | Candida | 0.83279 | 2.81 × 10−6 | |
| Tritrichomonas | 0.62481 | 2.46 × 10−3 | ||
| Rhogostoma | 0.60645 | 3.56 × 10−3 | ||
| Massjukichlorella | 0.60645 | 3.56 × 10−3 | ||
| family Thelypteridaceae | 0.60645 | 3.56 × 10−3 | ||
| Telaepolella | 0.60645 | 3.56 × 10−3 | ||
| Strongyloides | Tritrichomonas | 0.62725 | 2.34 × 10−3 | |
| Spironucleus | 0.9965 | 6.06 × 10−22 | ||
| Candida | 0.83697 | 2.24 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Xiong, Y.; Xie, G.; Wu, Z. High-Throughput Sequencing-Based Assessment of Intestinal Parasitic Infections in Economically and Medicinally Valuable Captive Tokay Gecko (Gekko gecko) and Chinese Blue-Tailed Skink (Plestiodon chinensis). Animals 2025, 15, 3298. https://doi.org/10.3390/ani15223298
Yu Z, Xiong Y, Xie G, Wu Z. High-Throughput Sequencing-Based Assessment of Intestinal Parasitic Infections in Economically and Medicinally Valuable Captive Tokay Gecko (Gekko gecko) and Chinese Blue-Tailed Skink (Plestiodon chinensis). Animals. 2025; 15(22):3298. https://doi.org/10.3390/ani15223298
Chicago/Turabian StyleYu, Zichao, Yi Xiong, Guanping Xie, and Zhengjun Wu. 2025. "High-Throughput Sequencing-Based Assessment of Intestinal Parasitic Infections in Economically and Medicinally Valuable Captive Tokay Gecko (Gekko gecko) and Chinese Blue-Tailed Skink (Plestiodon chinensis)" Animals 15, no. 22: 3298. https://doi.org/10.3390/ani15223298
APA StyleYu, Z., Xiong, Y., Xie, G., & Wu, Z. (2025). High-Throughput Sequencing-Based Assessment of Intestinal Parasitic Infections in Economically and Medicinally Valuable Captive Tokay Gecko (Gekko gecko) and Chinese Blue-Tailed Skink (Plestiodon chinensis). Animals, 15(22), 3298. https://doi.org/10.3390/ani15223298

