Effects of Fermented Soybean Meal Supplementation on Growth, Carcass Quality, and Intestinal Morphology in Ross 308 and Indian River Broilers
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Ethics and Housing Conditions
2.2. Experimental Design and Diets
2.3. Growth Performance Assessment
2.4. Digestibility Trial
2.5. Carcass and Meat Quality Measurements
2.6. Histological Analysis of Intestine
2.7. Statistical Analysis
3. Results and Discussion
3.1. Growth Performance
3.1.1. Feed Intake
3.1.2. Feed Conversion Ratio
3.1.3. Body Weight Gain
3.2. Carcass and Meat Quality Traits
3.2.1. Carcass Traits
3.2.2. Meat Quality Traits
3.3. Intestinal Morphology and Crude Protein Digestibility
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Li, D.L.; Wang, J.S.; Liu, L.J.; Li, K.; Xu, Y.B.; Ding, X.Q.; Wang, Y.Y.; Zhang, Y.F.; Xie, L.Y.; Liang, S.; et al. Effects of Early Post-Hatch Feeding on the Growth Performance, Hormone Secretion, Intestinal Morphology, and Intestinal Microbiota Structure in Broilers. Poult. Sci. 2022, 101, 102133. [Google Scholar] [CrossRef]
- Haron, A.; Shinder, D.; Ruzal, M.; Druyan, S. Post-Hatch Performance of Broilers Following Hypoxic Exposure During Incubation Under Suboptimal Environmental Temperature. Front. Physiol. 2022, 13, 934676. [Google Scholar] [CrossRef]
- Swennen, Q.; Everaert, N.; Debonne, M.; Verbaeys, I.; Careghi, C.; Tona, K.; Janssens, G.P.J.; Decuypere, E.; Bruggeman, V.; Buyse, J. Effect of Macronutrient Ratio of the Pre-Starter Diet on Broiler Performance and Intermediary Metabolism. J. Anim. Physiol. Anim. Nutr. 2010, 94, 375–384. [Google Scholar] [CrossRef]
- Alfonso-Avila, A.R.; Cirot, O.; Lambert, W.; Létourneau-Montminy, M.P. Effect of Low-Protein Corn and Soybean Meal-Based Diets on Nitrogen Utilization, Litter Quality, and Water Consumption in Broiler Chicken Production: Insight from Meta-Analysis. Animal 2022, 16, 100458. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.; Bedford, M.R.; Wu, S.B.; Morgan, N.K. Dietary Soluble Non-Starch Polysaccharide Level Influences Performance, Nutrient Utilisation and Disappearance of Non-Starch Polysaccharides in Broiler Chickens. Animals 2022, 12, 547. [Google Scholar] [CrossRef] [PubMed]
- Kuenz, S.; Thurner, S.; Hoffmann, D.; Kraft, K.; Wiltafsky-Martin, M.; Damme, K.; Windisch, W.; Brugger, D. Effects of Gradual Differences in Trypsin Inhibitor Activity on the Estimation of Digestible Amino Acids in Soybean Expellers for Broiler Chickens. Poult. Sci. 2022, 101, 101740. [Google Scholar] [CrossRef]
- Husnain, A.; Anwar, U.; Fatima, A.; Mustafa, R.; Farooq, U.; Abbas, W.; Khalid, M.F.; Ashraf, M.; Aziz ur Rahman, M. Effects of Replacement of Soybean Meal with Fermented Soybean Meal on Growth Performance, Nutrient Digestibility and Carcass Characteristics in Broiler. Livest. Sci. 2025, 299, 105779. [Google Scholar] [CrossRef]
- Sukhikh, S.; Kalashnikova, O.; Ivanova, S.; Prosekov, A.; Krol, O.; Kriger, O.; Fedovskikh, N.; Babich, O. Evaluating the Influence of Microbial Fermentation on the Nutritional Value of Soybean Meal. Fermentation 2022, 8, 458. [Google Scholar] [CrossRef]
- Qiu, K.; Li, C.L.; Wang, J.; Qi, G.H.; Gao, J.; Zhang, H.J.; Wu, S.G. Effects of Dietary Supplementation with Bacillus Subtilis, as an Alternative to Antibiotics, on Growth Performance, Serum Immunity, and Intestinal Health in Broiler Chickens. Front. Nutr. 2021, 8, 786878. [Google Scholar] [CrossRef]
- Jazi, V.; Ashayerizadeh, A.; Shabani, A.; Tellez, G.; Toghyani, M. Fermented Soybean Meal Exhibits Probiotic Properties When Included in Japanese Quail Diet in Replacement of Soybean Meal. Poult. Sci. 2018, 97, 2113–2122. [Google Scholar] [CrossRef]
- Xue, J.; Wu, J.; Ji, Y.; Sun, S.; Gao, Y.; Yang, H.; Wu, J. Effect of Microbial Fermentation on the Quality of Soybean Meal. Int. J. Food Sci. Technol. 2024, 59, 72–83. [Google Scholar] [CrossRef]
- Sugiharto, S.; Ranjitkar, S. Recent Advances in Fermented Feeds towards Improved Broiler Chicken Performance, Gastrointestinal Tract Microecology and Immune Responses: A Review. Anim. Nutr. 2019, 5, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Franco-Rosselló, R.; Navarro-Villa, A.; Polo, J.; Solà-Oriol, D.; García-Ruiz, A.I. Improving Broiler Performance at Market Age Regardless of Stocking Density by Using a Pre-Starter Diet. J. Appl. Poult. Res. 2022, 31, 100232. [Google Scholar] [CrossRef]
- Woyengo, T.A.; Beltranena, E.; Zijlstra, R.T. Effect of Anti-Nutritional Factors of Oilseed Co-Products on Feed Intake of Pigs and Poultry. Anim. Feed Sci. Technol. 2017, 233, 76–86. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Poultry, 9th Revised ed.; National Academies Press: Washington, DC, USA, 1994; ISBN 0309048923. [Google Scholar]
- Myers, W.D.; Ludden, P.A.; Nayigihugu, V.; Hess, B.W. Technical Note: A Procedure for the Preparation and Quantitative Analysis of Samples for Titanium Dioxide1. J. Anim. Sci. 2004, 82, 179–183. [Google Scholar] [CrossRef]
- Short, F.J.; Gorton, P.; Wiseman, J.; Boorman, K.N. Determination of Titanium Dioxide Added as an Inert Marker in Chicken Digestibility Studies. Anim. Feed Sci. Technol. 1996, 59, 215–221. [Google Scholar] [CrossRef]
- Galyean, M.; May, T. Laboratory Procedure in Animal Nutrition Research; Department of Animal and Life Science, Texas Tech University: Lubbock, TX, USA, 2010; p. 193. [Google Scholar]
- Obeidat, M.D.; Nusairat, B.M.; Obeidat, B.S. Growth Performance and Carcass Traits of Two Commercial Broiler Strains Fed Diet Supplemented with Essential Oils. Heliyon 2022, 8, e12094. [Google Scholar] [CrossRef]
- Hudspeth, J.P.; Lyon, C.E.; Lyon, B.G.; Mercuri, A.J. Weights of broiler parts as related to carcass weights and type of cut. J. Food Sci. 1973, 38, 145–150. [Google Scholar] [CrossRef]
- Obeidat, M.D.; Alkhateeb, M.E.M.; Jawasreh, K.I.; Riley, D.G.; Al Sukhni, I.A. Herbal Extract Dietary Supplementation Effect on Growth Performance and Meat Quality in Broiler Raised under Two Stocking Densities. Sci. Rep. 2024, 14, 18633. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Kim, T.H.; Lee, S.K.; Chang, K.H.; Cho, S.J.; Lee, K.W.; An, B.K. The Use of Fermented Soybean Meals during Early Phase Affects Subsequent Growth and Physiological Response in Broiler Chicks. Asian-Australas. J. Anim. Sci. 2016, 29, 1287–1293. [Google Scholar] [CrossRef]
- Mathivanan, R.; Selvaraj, P.; Nanjappan, K. Feeding of Fermented Soybean Meal on Broiler Performance. Int. J. Poult. Sci. 2006, 5, 868–872. [Google Scholar] [CrossRef]
- Chachaj, R.; Sembratowicz, I.; Krauze, M.; Ognik, K. The Effect of Partial Replacement of Soybean Meal with Fermented Soybean Meal on Chicken Performance and Immune Status. J. Anim. Feed Sci. 2019, 28, 263–271. [Google Scholar] [CrossRef]
- Babatunde, O.O.; Park, C.S.; Adeola, O. Nutritional Potentials of Atypical Feed Ingredients for Broiler Chickens and Pigs. Animals 2021, 11, 1196. [Google Scholar] [CrossRef]
- Irawan, A.; Ratriyanto, A.; Respati, A.N.; Ningsih, N.; Fitriastuti, R.; Suprayogi, W.P.S.; Hadi, R.F.; Setyono, W.; Akhirini, N.; Jayanegara, A. Effect of Feeding Fermented Soybean Meal on Broiler Chickens’ Performance: A Meta-Analysis. Anim. Biosci. 2022, 35, 1881–1891. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, Y.; Cheng, Q.; Xv, J.; Hou, Y.; Wu, X.; Du, E.; Ding, B. Partial Substitution of Fermented Soybean Meal for Soybean Meal Influences the Carcass Traits and Meat Quality of Broiler Chickens. Animals 2020, 10, 225. [Google Scholar] [CrossRef]
- Hameed, T.; Bajwa, M.A.; Abbas, F.; Sahota, A.W.; Tariq, M.M.; Khan, S.H.; Bokhari, F.A. Effect of Housing System on Production Performances of Different Broiler Breeder Strains. Pak. J. Zool. 2012, 44, 1683–1687. [Google Scholar]
- Liaqat, W.; Anwar, U.; Fatima, A.; Rafique, A.; Mustafa, R.; Farooq, U.; Ramzan, F.; Abbas, W.; Khalid, M.F.; Ashraf, M.; et al. Effect of Ideal Amino Acid Ratio of Arginine to Lysine on Intake, Nutrient Digestibility, Growth Performance, Antibody Titers of Newcastle Disease and Infectious Bronchitis Disease, and Carcass Characteristics of Broilers. Animals 2025, 15, 135. [Google Scholar] [CrossRef]
- Premathilaka, K.T.; Nawarathne, S.R.; Nambapana, M.N.; Macelline, S.P.; Wickramasuriya, S.S.; Ang, L.; Jayasena, D.D.; Heo, J.M. Partial or Complete Replacement of Fishmeal with Fermented Soybean Meal on Growth Performance, Fecal Composition, and Meat Quality in Broilers. J. Anim. Sci. Technol. 2021, 62, 824–839. [Google Scholar] [CrossRef]
- Abdel-Raheem, S.M.; Mohammed, E.S.Y.; Mahmoud, R.E.; El Gamal, M.F.; Nada, H.S.; El-Ghareeb, W.R.; Marzok, M.; Meligy, A.M.A.; Abdulmohsen, M.; Ismail, H.; et al. Double-Fermented Soybean Meal Totally Replaces Soybean Meal in Broiler Rations with Favorable Impact on Performance, Digestibility, Amino Acids Transporters and Meat Nutritional Value. Animals 2023, 13, 1030. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Liu, X.; Xu, Z.R.; Liu, Y.Y.; Lu, Y.P. Effects of Aspergillus Oryzae 3.042 Fermented Soybean Meal on Growth Performance and Plasma Biochemical Parameters in Broilers. Anim. Feed Sci. Technol. 2007, 134, 235–242. [Google Scholar] [CrossRef]
- Hong, K.J.; Lee, C.H.; Sung, W.K. Aspergillus Oryzae GB-107 Fermentation Improves Nutritional Quality of Food Soybeans and Feed Soybean Meals. J. Med. Food 2004, 7, 430–435. [Google Scholar] [CrossRef] [PubMed]
Chemical composition | HP Avistart |
Energy, kcal ME/kg | 2287 |
Crude protein, % | 55.50 |
Phosphorus, % | 0.80 |
Calcium, % | 0.25 |
Anti-nutritional factors | |
Trypsin inhibitor (mg/g) | 1.30 |
Beta-conglycinine (ppm) | 2.00 |
Oligosaccharides (%) | 1.00 |
- Stachyose | 0.30 |
- Raffinose | 0.40 |
Lectins | <1 |
Phytic acid | 2.0 |
Ingredient (%) | DIET | ||
---|---|---|---|
Starter (1–14 d) | Grower (15–35 d) | ||
Treatment | Control | Control | |
Corn | 55.87 | 54.2 | 55.15 |
FSBM | 7.5 | 0.00 | 0.00 |
Soybean meal 44% | 29.95 | 38.74 | 37.25 |
Oil | 2.58 | 3.04 | 4.12 |
DL-Methionine | 0.26 | 0.26 | 0.26 |
Salt | 0.50 | 0.50 | 0.50 |
L-Lysine | 0.09 | 0.108 | 0.08 |
Limestone | 1.39 | 1.4 | 1.40 |
Di-calcium phosphate | 1.65 | 1.54 | 1.56 |
Choline Chloride 60% | 0.20 | 0.20 | 0.20 |
L-Threonine | 0 | 0 | 0.008 |
Vitamin and mineral premix 1 | 0.01 | 0.01 | 0.01 |
Total | 100 | 100 | 100 |
Calculate nutrition | |||
Metabolizable energy (kcal/kg) | 3000 | 3000 | 3050 |
Crude protein | 21.97 | 21.70 | 21.00 |
Crude fat | 5.09 | 5.36 | 6.39 |
Crude fiber | 3.67 | 3.94 | 3.84 |
Calcium | 0.90 | 0.90 | 0.90 |
Available phosphate | 0.45 | 0.45 | 0.45 |
Sodium | 0.20 | 0.20 | 0.20 |
Dig Threonine | 0.83 | 0.82 | 0.80 |
Dig Lysine | 1.26 | 1.26 | 1.2 |
Dig Methionine | 0.55 | 0.55 | 0.54 |
Dig cysteine | 0.34 | 0.34 | 0.33 |
Dig Tryptophan | 0.27 | 0.26 | 0.25 |
Dig Isoleucine | 0.98 | 0.98 | 0.95 |
Dig Valine | 1.33 | 1.39 | 0.35 |
Dig TSAA | 0.89 | 0.89 | 0.87 |
Dig Arginine | 1.44 | 1.47 | 1.32 |
Feed Intake (g) | ||||
---|---|---|---|---|
1–14 | 15–35 | 1–35 | ||
Strain | Ross | 553.1 ± 3.6 | 2339.4 ± 23.2 | 2892.5 ± 23.1 |
Indian River | 561.4 ± 3.6 | 2295.9 ± 23.2 | 2857.4 ± 23.1 | |
p-value | 0.12 | 0.19 | 0.29 | |
(η2) | 0.0949 | 0.051 | 0.0414 | |
Treatment | Control | 556.9 ± 3.6 | 2290.6 ± 23.2 | 2847.5 ± 23.1 |
HP-AVI | 557.7 ± 3.6 | 2344.7 ± 23.2 | 2902.4 ± 23.1 | |
p-value | 0.88 | 0.11 | 0.12 | |
(η2) | 0.0007 | 0.101 | 0.1003 | |
Interaction | Strain × TRT | 0.79 | 0.24 | 0.38 |
(η2) | 0.0133 | 0.0140 | 0.0146 |
FCR (g:g) | ||||
---|---|---|---|---|
1–14 | 15–35 | 1–35 | ||
Strain | Ross | 1.15 ± 0.01 | 1.55 ± 0.02 | 1.5 ± 0.01 |
Indian River | 1.14 ± 0.01 | 1.54 ± 0.02 | 1.5 ± 0.01 | |
p-value | 0.27 | 0.69 | 0.67 | |
(η2) | 0.0343 | 0.023 | 0.0067 | |
Treatment | Control | 1.13 ± 0.01 b | 1.53 ± 0.02 | 1.14 ± 0.01 |
HP-AVI | 1.16 ± 0.01 a | 1.56 ± 0.02 | 1.15 ± 0.01 | |
p-value | 0.002 | 0.19 | 0.11 | |
(η2) | 0.3085 | 0.112 | 0.1021 | |
Interaction | Strain × TRT | 0.76 | 0.19 | 0.57 |
(η2) | 0.0191 | 0.0292 | 0.0138 |
BWG (g) | ||||||
---|---|---|---|---|---|---|
Initial BW (g) | 1–14 | 15–35 | 1–35 | Final BW (g) | ||
Strain | Ross | 38.7 ± 0.27 b | 477.6 ± 4.4 | 1510.5 ± 11.8 | 1988.0 ± 12.9 | 2026.8 ± 12.9 |
Indian River | 40.3 ± 0.27 a | 487.8 ± 4.4 | 1491.2 ± 11.8 | 1979.1 ± 12.9 | 2019.9 ± 12.9 | |
p-value | 0.001 | 0.1 | 0.24 | 0.63 | 0.69 | |
(η2) | 0.490 | 0.0896 | 0.071 | 0.0494 | 0.006 | |
Treatment | Control | 39.3 ± 0.20 | 487.9 ± 4.4 | 1499.3 ± 11.8 | 1987.2 ± 12.9 | 2026.5 ± 12.9 |
HP-AVI | 39.8 ± 0.20 | 477.5 ± 4.4 | 1502.4 ± 11.8 | 1979.9 ± 12.9 | 2019.6 ± 12.9 | |
p-value | 0.12 | 0.12 | 0.86 | 0.69 | 0.71 | |
(η2) | 0.0518 | 0.0911 | 0.042 | 0.0012 | 0.0052 | |
Interaction | Strain× TRT | - | 0.31 | 0.84 | 0.69 | 0.35 |
(η2) | - | 0.226 | 0.121 | 0.1097 | 0.1003 |
Trait | ||||||||
---|---|---|---|---|---|---|---|---|
Dressing% | Breast% | Leg% | Wings% | Neck% | Fat Pad% | Offal% | ||
Strain | Ross | 79.8 ± 0.6 a | 37.4 ± 0.33 | 26.6 ± 0.2 | 9.4 ± 0.1 | 7.0 ± 0.2 | 0.74 ± 0.1 b | 5.8 ± 0.1 |
Indian River | 78.1 ± 0.6 b | 36.9 ± 0.33 | 26.8 ± 0.2 | 9.5 ± 0.1 | 6.9 ± 0.2 | 0.93 ± 0.1 a | 5.8 ± 0.1 | |
p-value | 0.04 | 0.41 | 0.4 | 0.35 | 0.37 | 0.04 | 0.77 | |
(η2) | 0.110 | 0.015 | 0.017 | 0.022 | 0.021 | 0.330 | 0.002 | |
Treatment | Control | 78.9 ± 0.6 | 37.8 ± 0.31 a | 26.4 ± 0.2 | 9.4 ± 0.1 | 7.0 ± 0.2 | 0.81 ± 0.1 | 5.9 ± 0.1 |
HP-AVI | 78.9 ± 0.6 | 36.5 ± 0.31 b | 26.9 ± 0.2 | 9.5 ± 0.1 | 6.9 ± 0.2 | 0.85 ± 0.1 | 5.8 ± 0.1 | |
p-value | 0.97 | 0.01 | 0.08 | 0.29 | 0.71 | 0.64 | 0.21 | |
(η2) | 0.006 | 0.158 | 0.075 | 0.029 | 0.004 | 0.005 | 0.007 | |
Interaction | Strain× TRT | 0.53 | 0.09 | 0.41 | 0.64 | 0.29 | 0.81 | 0.97 |
(η2) | 0.106 | 0.071 | 0.095 | 0.071 | 0.029 | 0.122 | 0.029 |
Trait | |||||||||
---|---|---|---|---|---|---|---|---|---|
Quality Measures 1 | Color Coordinates 2 | ||||||||
Breast Fillet % | pH | CL% | WHC% | SF | L* | a* | b* | ||
Strain | Ross | 75.0 ± 0.6 | 5.9 ± 0.06 | 36.7 ± 0.4 a | 32.0 ± 0.6 | 3.1 ± 0.1 b | 38.4 ± 0.2 | 3.4 ± 0.03 | 21.0 ± 0.2 |
Indian River | 74.8 ± 0.6 | 5.9 ± 0.06 | 32.2 ± 0.4 b | 33.3 ± 0.6 | 3.8 ± 0.1 a | 38.5 ± 0.2 | 3.4 ± 0.03 | 20.7 ± 0.2 | |
p-value | 0.86 | 0.82 | 0.01 | 0.05 | 0.003 | 0.78 | 0.17 | 0.12 | |
(η2) | 0.001 | 0.002 | 0.617 | 0.099 | 0.147 | 0.002 | 0.045 | 0.045 | |
Treatment | Control | 75.7 ± 0.6 a | 5.9 ± 0.06 | 34.3 ± 0.4 | 32.9 ± 0.5 | 3.8 ± 0.1 a | 38.5 ± 0.2 | 3.4 ± 0.03 | 21.0 ± 0.2 |
HP-AVI | 74.1 ± 0.6 b | 5.9 ± 0.06 | 34.8 ± 0.4 | 32.6 ± 0.5 | 3.1 ± 0.1 b | 38.4 ± 0.2 | 3.4 ± 0.03 | 20.7 ± 0.2 | |
p-value | 0.05 | 0.27 | 0.31 | 0.5 | 0.04 | 0.76 | 0.54 | 0.07 | |
(η2) | 0.093 | 0.033 | 0.011 | 0.001 | 0.328 | 0.004 | 0.009 | 0.062 | |
Interaction | Strain × TRT | 0.47 | 0.10 | 0.54 | 0.38 | 0.71 | 0.33 | 0.52 | 0.08 |
(η2) | 0.016 | 0.036 | 0.063 | 0.047 | 0.052 | 0.025 | 0.015 | 0.019 |
Villi Length, µm | Villi Width, µm | Crypt Depth, µm | CPD, % 1 | ||
---|---|---|---|---|---|
Strain | Ross | 391.11 ± 10.220 | 45.67 ± 1.866 | 68.78 ± 2.176 | 84.59 ± 0.435 |
Indian River | 368.34 ± 9.662 | 42.72 ± 1.721 | 69.32 ± 2.217 | 84.46 ± 0.314 | |
p-value | 0.096 | 0.185 | 0.865 | 0.737 | |
(η2) | 0.0217 | 0.0114 | 0.0003 | 0.0027 | |
Treatment | Control | 359.23 ± 11.499 b | 37.41 ± 1.261 b | 69.89 ± 2.503 | 84.77 ± 0.375 |
HP-AVI | 400.22 ± 7.464 a | 50.98 ± 1.835 a | 68.22 ± 1.834 | 84.29 ± 0.371 | |
p-value | 0.003 | <0.001 | 0.595 | 0.228 | |
(η2) | 0.704 | 0.239 | 0.0024 | 0.0363 | |
Interactions 2 | Control × R | 379.32 ± 17.824 | 37.74 ± 1.698 | 69.77 ± 3.305 | 85.11 ± 0.185 a |
Control × I | 339.14 ± 13.876 | 37.07 ± 1.892 | 70.01 ± 3.816 | 83.47 ± 0.551 b | |
HP-AVI × R | 402.89 ± 9.885 | 53.60 ± 2.636 | 67.80 ± 2.877 | 83.82 ± 0.483 b | |
HP-AVI × I | 397.55 ± 11.335 | 48.36 ± 2.504 | 68.63 ± 2.324 | 85.72 ± 0.159 a | |
p-value | 0.55 | 0.12 | 0.91 | <0.001 | |
(η2) | 0.105 | 0.0257 | 0.003 | 0.531 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obeidat, M.D.; Alzoubi, S.Q.; Nusairat, B.M.; Obeidat, B.S.; Riley, D.G. Effects of Fermented Soybean Meal Supplementation on Growth, Carcass Quality, and Intestinal Morphology in Ross 308 and Indian River Broilers. Animals 2025, 15, 2659. https://doi.org/10.3390/ani15182659
Obeidat MD, Alzoubi SQ, Nusairat BM, Obeidat BS, Riley DG. Effects of Fermented Soybean Meal Supplementation on Growth, Carcass Quality, and Intestinal Morphology in Ross 308 and Indian River Broilers. Animals. 2025; 15(18):2659. https://doi.org/10.3390/ani15182659
Chicago/Turabian StyleObeidat, Mohammad D., Sadeh Q. Alzoubi, Basheer M. Nusairat, Belal S. Obeidat, and David G. Riley. 2025. "Effects of Fermented Soybean Meal Supplementation on Growth, Carcass Quality, and Intestinal Morphology in Ross 308 and Indian River Broilers" Animals 15, no. 18: 2659. https://doi.org/10.3390/ani15182659
APA StyleObeidat, M. D., Alzoubi, S. Q., Nusairat, B. M., Obeidat, B. S., & Riley, D. G. (2025). Effects of Fermented Soybean Meal Supplementation on Growth, Carcass Quality, and Intestinal Morphology in Ross 308 and Indian River Broilers. Animals, 15(18), 2659. https://doi.org/10.3390/ani15182659