Non-Specific Effects of Prepartum Vaccination on Uterine Health and Fertility: A Retrospective Study on Periparturient Dairy Cows
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Pre-Processing and Variable Definition
2.3. Statistical Analyses
3. Results
3.1. Vaccine Type and Timing of Vaccination
3.2. Production Metrics in Vaccinated and Non-Vaccinated Cows
3.3. Milk Yield, Performance, and Herd Management Are Most Relevant for Uterine Health and Fertility
3.4. Prepartum Non-Live Vaccination Affects Uterine Health and Fertility
3.5. Timing of Vaccination Affects Fertility in Cows Vaccinated with a Non-Live Vaccine
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Bree, L.C.J.; Koeken, V.; Joosten, L.A.B.; Aaby, P.; Benn, C.S.; van Crevel, R.; Netea, M.G. Non-specific effects of vaccines: Current evidence and potential implications. Semin. Immunol. 2018, 39, 35–43. [Google Scholar] [CrossRef]
- Arega, S.M.; Knobel, D.L.; Toka, F.N.; Conan, A. Non-specific effects of veterinary vaccines: A systematic review. Vaccine 2022, 40, 1655–1664. [Google Scholar] [CrossRef]
- Benn, C.S.; Fisker, A.B.; Rieckmann, A.; Sørup, S.; Aaby, P. Vaccinology: Time to change the paradigm? Lancet Infect. Dis. 2020, 20, e274–e283. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Casillas, A.; Rodriguez-Quintero, C.M.; Redwan, E.M.; Gupta, M.N.; Uversky, V.N.; Raszek, M. Do vaccines increase or decrease susceptibility to diseases other than those they protect against? Vaccine 2024, 42, 426–440. [Google Scholar] [CrossRef]
- Guerra-Maupome, M.; Vang, D.X.; McGill, J.L. Aerosol vaccination with Bacille Calmette-Guerin induces a trained innate immune phenotype in calves. PLoS ONE 2019, 14, e0212751. [Google Scholar] [CrossRef]
- Weikard, R.; Demasius, W.; Hadlich, F.; Kühn, C. Different Blood Cell-Derived Transcriptome Signatures in Cows Exposed to Vaccination Pre- or Postpartum. PLoS ONE 2015, 10, e0136927. [Google Scholar] [CrossRef]
- Demasius, W.; Weikard, R.; Hadlich, F.; Müller, K.E.; Kühn, C. Monitoring the immune response to vaccination with an inactivated vaccine associated to bovine neonatal pancytopenia by deep sequencing transcriptome analysis in cattle. Vet. Res. 2013, 44, 93. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, C.; Zerbe, H.; Schuberth, H.-J.; Römer, A.; Kraatz-Van Egmond, D.; Wesenauer, C.; Resch, M.; Stoll, A.; Zablotski, Y. Prepartum Vaccination Against Neonatal Calf Diarrhea and Its Effect on Mammary Health and Milk Yield of Dairy Cows: A Retrospective Study Addressing Non-Specific Effects of Vaccination. Animals 2025, 15, 203. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.I.; Rieger, R.H.; Dickens, C.M.; Schultz, R.D.; Aceto, H. Anti-bovine herpesvirus and anti-bovine viral diarrhea virus antibody responses in pregnant Holstein dairy cattle following administration of a multivalent killed virus vaccine. Am. J. Vet. Res. 2015, 76, 913–920. [Google Scholar] [CrossRef]
- Vidlund, J.; Gelalcha, B.D.; Gillespie, B.E.; Agga, G.E.; Schneider, L.; Swanson, S.M.; Frady, K.D.; Kerro Dego, O. Efficacy of novel staphylococcal surface associated protein vaccines against Staphylococcus aureus and non-aureus staphylococcal mastitis in dairy cows. Vaccine 2024, 42, 1247–1258. [Google Scholar] [CrossRef]
- Juliá-Burchés, C.; Martínez-Varea, A. An Update on COVID-19 Vaccination and Pregnancy. J. Pers. Med. 2023, 13, 797. [Google Scholar] [CrossRef]
- Aaby, P.; Martins, C.L.; Ravn, H.; Rodrigues, A.; Whittle, H.C.; Benn, C.S. Is early measles vaccination better than later measles vaccination? Trans. R. Soc. Trop. Med. Hyg. 2015, 109, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, M.L.T.; Smits, J.; Netea, M.G.; Van Der Ven, A. Non-specific Effects of Vaccines and Stunting: Timing May Be Essential. EBioMedicine 2016, 8, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Menichetti, B.T.; Garcia-Guerra, A.; Lakritz, J.; Weiss, W.P.; Velez, J.S.; Bothe, H.; Merchan, D.; Schuenemann, G.M. Effects of prepartum vaccination timing relative to pen change with an acidogenic diet on serum and colostrum immunoglobulins in Holstein dairy cows. J. Dairy Sci. 2021, 104, 11072–11081. [Google Scholar] [CrossRef]
- Menichetti, B.T.; Garcia-Guerra, A.; Lakritz, J.; Weiss, W.P.; Velez, J.S.; Bothe, H.; Merchan, D.; Schuenemann, G.M. Effect of timing of prepartum vaccination relative to pen change with an acidogenic diet on lying time and metabolic profile in Holstein dairy cows. J. Dairy Sci. 2021, 104, 11059–11071. [Google Scholar] [CrossRef]
- Drackley, J.K. Biology of dairy cows during the transition period: The final frontier? J. Dairy Sci. 1999, 82, 2259–2273. [Google Scholar] [CrossRef] [PubMed]
- Lopreiato, V.; Mezzetti, M.; Cattaneo, L.; Ferronato, G.; Minuti, A.; Trevisi, E. Role of nutraceuticals during the transition period of dairy cows: A review. J. Anim. Sci. Biotechnol. 2020, 11, 96. [Google Scholar] [CrossRef]
- Horst, E.A.; Kvidera, S.K.; Baumgard, L.H. Invited review: The influence of immune activation on transition cow health and performance-A critical evaluation of traditional dogmas. J. Dairy Sci. 2021, 104, 8380–8410. [Google Scholar] [CrossRef]
- LeBlanc, S.J. Postpartum uterine disease and dairy herd reproductive performance: A review. Vet. J. 2008, 176, 102–114. [Google Scholar] [CrossRef]
- Pascottini, O.B.; LeBlanc, S.J. Modulation of immune function in the bovine uterus peripartum. Theriogenology 2020, 150, 193–200. [Google Scholar] [CrossRef]
- Sheldon, I.M.; Molinari, P.C.C.; Ormsby, T.J.R.; Bromfield, J.J. Preventing postpartum uterine disease in dairy cattle depends on avoiding, tolerating and resisting pathogenic bacteria. Theriogenology 2020, 150, 158–165. [Google Scholar] [CrossRef]
- Williams, E. Drivers of Post-partum Uterine Disease in Dairy Cattle. Reprod. Domest. Anim. 2013, 48, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Machado, V.S.; Silva, T.H. Adaptive immunity in the postpartum uterus: Potential use of vaccines to control metritis. Theriogenology 2020, 150, 201–209. [Google Scholar] [CrossRef]
- Sheldon, I.M.; Lewis, G.S.; LeBlanc, S.; Gilbert, R.O. Defining postpartum uterine disease in cattle. Theriogenology 2006, 65, 1516–1530. [Google Scholar] [CrossRef]
- LeBlanc, S.J. Review: Postpartum reproductive disease and fertility in dairy cows. Animal 2023, 17 (Suppl. 1), 100781. [Google Scholar] [CrossRef]
- LeBlanc, S. Assessing the association of the level of milk production with reproductive performance in dairy cattle. J. Reprod. Dev. 2010, 56, S1–S7. [Google Scholar] [CrossRef] [PubMed]
- Ghavi Hossein-Zadeh, N.; Ardalan, M. Cow-specific risk factors for retained placenta, metritis and clinical mastitis in Holstein cows. Vet. Res. Commun. 2011, 35, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Cook, N.; Reinemann, D. A Tool Box for Assessing Cow, Udder and Teat Hygiene. In Proceedings of the National Mastitis Council, Madison, WI, USA, 21–24 January 2007; pp. 31–43. [Google Scholar]
- Potter, T.J.; Guitian, J.; Fishwick, J.; Gordon, P.J.; Sheldon, I.M. Risk factors for clinical endometritis in postpartum dairy cattle. Theriogenology 2010, 74, 127–134. [Google Scholar] [CrossRef]
- Fourichon, C.; Seegers, H.; Malher, X. Effect of disease on reproduction in the dairy cow: A meta-analysis. Theriogenology 2000, 53, 1729–1759. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Good, I.J. The Interface Between Statistics and Philosophy of Science. Stat. Sci. 1988, 3, 386–397. [Google Scholar] [CrossRef]
- Chen, H.; Cohen, P.; Chen, S. How Big is a Big Odds Ratio? Interpreting the Magnitudes of Odds Ratios in Epidemiological Studies. Commun. Stat.—Simul. Comput. 2010, 39, 860–864. [Google Scholar] [CrossRef]
- BfArM. Bovigen Scour. Available online: https://portal.dimdi.de/amguifree/am/docoutput/jpadocdisplay.xhtml?globalDocId=D177C92C25144319A39E604576AF1AF1&directdisplay=true&docid=1 (accessed on 19 May 2025).
- BfArM. Zusammenfassung der Merkmale des Tierarzneimittels. Available online: https://portal.dimdi.de/amispb/doc/pei/Web/2603670-spcde-20131101.pdf (accessed on 19 May 2025).
- BfArM. Gebrauchsinformation: Rotavec Corona. Available online: https://portal.dimdi.de/amispb/doc/pei/Web/2603419-palde-20100501.pdf (accessed on 19 May 2025).
- Kreienbrock, L.; Pigeot, I.; Ahrens, W. Epidemiologische Methoden, 5th ed.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Garzon, A.; Basbas, C.; Schlesener, C.; Silva-Del-Rio, N.; Karle, B.M.; Lima, F.S.; Weimer, B.C.; Pereira, R.V. WGS of intrauterine E. coli from cows with early postpartum uterine infection reveals a non-uterine specific genotype and virulence factors. mBio 2024, 15, e0102724. [Google Scholar] [CrossRef] [PubMed]
- Hammon, D.S.; Evjen, I.M.; Dhiman, T.R.; Goff, J.P.; Walters, J.L. Neutrophil function and energy status in Holstein cows with uterine health disorders. Vet. Immunol. Immunopathol. 2006, 113, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, E.S.; Gomes, G.; Greco, L.F.; Cerri, R.L.A.; Vieira-Neto, A.; Monteiro, P.L.J.; Lima, F.S.; Bisinotto, R.S.; Thatcher, W.W.; Santos, J.E.P. Carryover effect of postpartum inflammatory diseases on developmental biology and fertility in lactating dairy cows. J. Dairy Sci. 2016, 99, 2201–2220. [Google Scholar] [CrossRef] [PubMed]
- Pascottini, O.B.; Leroy, J.; Opsomer, G. Maladaptation to the transition period and consequences on fertility of dairy cows. Reprod. Domest. Anim. 2022, 57, 21–32. [Google Scholar] [CrossRef]
- Emanuelson, U.; Oltenacu, P.A.; Gröhn, Y.T. Nonlinear mixed model analyses of five production disorders of dairy cattle. J. Dairy Sci. 1993, 76, 2765–2772. [Google Scholar] [CrossRef]
- Praeger, W. Untersuchungen zur Auswirkungen von prophylaktischen Maßnahmen zum Mutterschutz bei Milchkühen auf die Gesundheit der Kälber und der Mütter in der Folgelaktation. Master’s Thesis, University of Rostock, Rostock, Germany, 2020. [Google Scholar]
- Kelton, D.F.; Lissemore, K.D.; Martin, R.E. Recommendations for recording and calculating the incidence of selected clinical diseases of dairy cattle. J. Dairy Sci. 1998, 81, 2502–2509. [Google Scholar] [CrossRef]
- Wenz, J.R.; Giebel, S.K. Retrospective evaluation of health event data recording on 50 dairies using Dairy Comp 305. J. Dairy Sci. 2012, 95, 4699–4706. [Google Scholar] [CrossRef]
- Sanchez, L.; Campos-Chillon, F.; Sargolzaei, M.; Peterson, D.G.; Sprayberry, K.A.; McArthur, G.; Anderson, P.; Golden, B.; Pokharel, S.; Abo-Ismail, M.K. Molecular Mechanisms Associated with the Development of the Metritis Complex in Dairy Cattle. Genes 2024, 15, 439. [Google Scholar] [CrossRef]
- Grunert, E. Buiatrik: Euterkrankheiten, Geburtshilfe und Gynäkologie, Andrologie und Besamung; Schaper: Hannover, Germany, 1996; p. 320. [Google Scholar]
- Prunner, I.; Wagener, K.; Pothmann, H.; Ehling-Schulz, M.; Drillich, M. Risk factors for uterine diseases on small- and medium-sized dairy farms determined by clinical, bacteriological, and cytological examinations. Theriogenology 2014, 82, 857–865. [Google Scholar] [CrossRef] [PubMed]
- Niozas, G.; Tsousis, G.; Malesios, C.; Steinhöfel, I.; Boscos, C.; Bollwein, H.; Kaske, M. Extended lactation in high-yielding dairy cows. II. Effects on milk production, udder health, and body measurements. J. Dairy Sci. 2019, 102, 811–823. [Google Scholar] [CrossRef]
- Niozas, G.; Tsousis, G.; Steinhöfel, I.; Brozos, C.; Römer, A.; Wiedemann, S.; Bollwein, H.; Kaske, M. Extended lactation in high-yielding dairy cows. I. Effects on reproductive measurements. J. Dairy Sci. 2019, 102, 799–810. [Google Scholar] [CrossRef]
- Lawson, L.G.; Bruun, J.; Coelli, T.; Agger, J.F.; Lund, M. Relationships of efficiency to reproductive disorders in Danish milk production: A stochastic frontier analysis. J. Dairy Sci. 2004, 87, 212–224. [Google Scholar] [CrossRef]
- Rearte, R.; LeBlanc, S.J.; Corva, S.G.; de la Sota, R.L.; Lacau-Mengido, I.M.; Giuliodori, M.J. Effect of milk production on reproductive performance in dairy herds. J. Dairy Sci. 2018, 101, 7575–7584. [Google Scholar] [CrossRef]
- Cook, J.G.; Green, M.J. Use of early lactation milk recording data to predict the calving to conception interval in dairy herds. J. Dairy Sci. 2016, 99, 4699–4706. [Google Scholar] [CrossRef] [PubMed]
- Madouasse, A.; Huxley, J.N.; Browne, W.J.; Bradley, A.J.; Dryden, I.L.; Green, M.J. Use of individual cow milk recording data at the start of lactation to predict the calving to conception interval. J. Dairy Sci. 2010, 93, 4677–4690. [Google Scholar] [CrossRef] [PubMed]
Timing of Prepartum Vaccination | ||||||
---|---|---|---|---|---|---|
NON-VACC a | EARLY b | LATE c | EARLY or LATE d | Total | ||
Type of vaccine | NON-VACC a | 57,166 | 0 | 0 | 0 | 57,166 |
VACC h (n = 63,228) | ||||||
NON-LIVE e | 0 | 11,238 | 6336 | 18,199 | 35,773 | |
MIXED f | 0 | 519 | 7833 | 0 | 8352 | |
UNKNOWN g | 0 | 18,876 | 0 | 227 | 19,103 | |
Total | 57,166 | 30,633 | 14,169 | 18,426 | 120,394 |
Primiparous Cows | Multiparous Cows | |||
---|---|---|---|---|
n: | NON-VACC a 27,081 | VACC b 19,028 | NON-VACC a 30,085 | VACC b 44,200 |
ECM 305 c | 8683 | 8683 | 10,968 | 10,371 |
Time to first service d | 73 | 72 | 75 | 75 |
Postpartum Time Interval | Day 1–21 | Day 22–56 | Appr. > Day 100 | |||
---|---|---|---|---|---|---|
RMC a | Endometritis b | NRR 56 c | ||||
OR d (95% CI e) | p-Value f | OR d (95% CI e) | p-Value f | OR d (95% CI e) | p-Value f | |
Type of vaccine | ||||||
NON-LIVE g/NON-VACC h | 1.73 (1.21 to 2.46) | <0.001 | 3.04 (1.86 to 4.96) | <0.001 | 0.76 (0.65 to 0.88) | <0.001 |
MIXED i/NON-VACC h | 1.17 (0.34 to 4.05) | 0.955 | 0.14 (0.01 to 2.06) | 0.203 | 0.97 (0.65 to 1.46) | 0.988 |
MIXED i/NON-LIVE g | 0.67 (0.20 to 2.28) | 0.729 | 0.05 (0.00 to 0.67) | 0.019 | 1.28 (0.86 to 1.91) | 0.305 |
Stillbirth | 1.88 (1.70 to 2.09) | <0.001 | 1.18 (1.02 to 1.35) | 0.024 | ||
Dystocia | 1.61 (1.50 to 1.72) | <0.001 | 1.54 (1.40 to 1.70) | <0.001 | ||
Multiples | 3.90 (2.88 to 5.29) | <0.001 | 1.38 (0.92 to 2.06) | 0.114 | ||
ECM (FTD) j | 0.96 (0.95 to 0.96) | <0.001 | 0.98 (0.98 to 0.99) | <0.001 | ||
Risk of ketosis (FTD) k | 1.33 (1.23 to 1.44) | <0.001 | 1.10 (0.99 to 1.22) | 0.083 | ||
SCC (FTD) l | 1.02 (1.00 to 1.04) | 0.074 | ||||
Calf sex | 1.24 (1.16 to 1.32) | <0.001 | ||||
RMC a | 3.88 (3.52 to 4.28) | <0.001 | 0.94 (0.88 to 1.01) | 0.075 | ||
Endometritis b | 0.94 (0.86 to 1.03) | 0.205 | ||||
Calving season m | ||||||
spring/autumn | 1.09 (0.97 to 1.23) | 0.258 | 0.97 (0.88 to 1.07) | 0.854 | ||
summer/autumn | 1.04 (0.93 to 1.18) | 0.783 | 0.94 (0.85 to 1.04) | 0.357 | ||
summer/spring | 0.96 (0.85 to 1.08) | 0.792 | 0.97 (0.88 to 1.07) | 0.842 | ||
winter/autumn | 1.15 (1.02 to 1.29) | 0.018 | 1.07 (0.97 to 1.17) | 0.319 | ||
winter/spring | 1.05 (0.93 to 1.18) | 0.692 | 1.10 (1.00 to 1.21) | 0.057 | ||
winter/summer | 1.10 (0.98 to 1.23) | 0.181 | 1.13 (1.03 to 1.25) | 0.004 |
Postpartum Time Interval | Day 1–21 | Day 22–56 | Appr. > Day 100 | |||
---|---|---|---|---|---|---|
RMC a | Endometritis b | NRR56 c | ||||
OR d (95% CI e) | p-Value f | OR d (95% CI e) | p-Value f | OR d (95% CI e) | p-Value f | |
Type of vaccine | ||||||
NON-LIVE g/NON-VACC h | 1.45 (1.09 to 1.93) | 0.007 | 5.61 (3.47 to 9.09) | <0.001 | 0.80 (0.71 to 0.91) | <0.001 |
MIXED i/NON-VACC h | 1.45 (0.70 to 3.01) | 0.449 | 1.43 (0.35 to 5.78) | 0.822 | 1.50 (1.02 to 2.22) | 0.036 |
MIXED i/NON-LIVE g | 1.00 (0.51 to 1.98) | >0.999 | 0.25 (0.07 to 0.96) | 0.041 | 1.87 (1.29 to 2.72) | <0.001 |
Stillbirth | 2.37 (2.08 to 2.70) | <0.001 | 1.15 (0.96 to 1.37) | 0.142 | ||
Dystocia | 1.37 (1.27 to 1.47) | <0.001 | 1.39 (1.26 to 1.53) | <0.001 | 0.91 (0.85 to 0.97) | 0.003 |
Multiples | 6.40 (5.69 to 7.22) | <0.001 | 1.31 (1.11 to 1.54) | 0.001 | ||
ECM (FTD) j | 0.95 (0.95 to 0.95) | <0.001 | 1.00 (0.99 to 1.00) | 0.275 | 1.00 (0.99 to 1.00) | 0.061 |
Risk of ketosis (FTD) k | 1.16 (1.09 to 1.24) | <0.001 | 1.13 (1.04 to 1.23) | 0.004 | ||
SCC (FTD) l | 1.01 (0.99 to 1.02) | 0.358 | ||||
Calf sex | 1.18 (1.12 to 1.26) | <0.001 | ||||
RMC a | 4.28 (3.92 to 4.67) | <0.001 | 0.90 (0.84 to 0.96) | 0.003 | ||
ECM 305 m | 1.00 (1.00 to 1.00) | <0.001 | 1.00 (1.00 to 1.00) | <0.001 | 1.00 (1.00 to 1.00) | <0.001 |
Calving interval | 1.00 (1.00 to 1.00) | <0.001 | ||||
Time to first service | 1.00 (1.00 to 1.00) | <0.001 | ||||
Calving season n | ||||||
spring/autumn | 1.17 (1.05 to 1.31) | 0.002 | 0.89 (0.80 to 0.97) | 0.006 | ||
summer/autumn | 1.10 (0.99 to 1.22) | 0.087 | 0.85 (0.78 to 0.93) | <0.001 | ||
summer/spring | 0.94 (0.84 to 1.05) | 0.452 | 0.96 (0.87 to 1.06) | 0.736 | ||
winter/autumn | 1.04 (0.93 to 1.15) | 0.819 | 1.05 (0.96 to 1.14) | 0.511 | ||
winter/spring | 1.05 (0.93 to 1.18) | 0.692 | 1.10 (1.00 to 1.21) | 0.057 | ||
winter/summer | 1.10 (0.98 to 1.23) | 0.181 | 1.13 (1.03 to 1.25) | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuhn, C.; Zerbe, H.; Schuberth, H.-J.; Römer, A.; Kraatz-van Egmond, D.; Wesenauer, C.; Resch, M.; Stoll, A.; Zablotski, Y. Non-Specific Effects of Prepartum Vaccination on Uterine Health and Fertility: A Retrospective Study on Periparturient Dairy Cows. Animals 2025, 15, 2589. https://doi.org/10.3390/ani15172589
Kuhn C, Zerbe H, Schuberth H-J, Römer A, Kraatz-van Egmond D, Wesenauer C, Resch M, Stoll A, Zablotski Y. Non-Specific Effects of Prepartum Vaccination on Uterine Health and Fertility: A Retrospective Study on Periparturient Dairy Cows. Animals. 2025; 15(17):2589. https://doi.org/10.3390/ani15172589
Chicago/Turabian StyleKuhn, Caroline, Holm Zerbe, Hans-Joachim Schuberth, Anke Römer, Debby Kraatz-van Egmond, Claudia Wesenauer, Martina Resch, Alexander Stoll, and Yury Zablotski. 2025. "Non-Specific Effects of Prepartum Vaccination on Uterine Health and Fertility: A Retrospective Study on Periparturient Dairy Cows" Animals 15, no. 17: 2589. https://doi.org/10.3390/ani15172589
APA StyleKuhn, C., Zerbe, H., Schuberth, H.-J., Römer, A., Kraatz-van Egmond, D., Wesenauer, C., Resch, M., Stoll, A., & Zablotski, Y. (2025). Non-Specific Effects of Prepartum Vaccination on Uterine Health and Fertility: A Retrospective Study on Periparturient Dairy Cows. Animals, 15(17), 2589. https://doi.org/10.3390/ani15172589