Fetal Bovine Serum Supplementation Enhances Functional Consistency of IGRA Results in Bovine Tuberculosis Diagnostics †
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. IGRA Procedure
2.3. MTT Assay
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Use of Tuberculosis Interferon-Gamma Release Assays (IGRAs) in Low- and Middle-Income Countries: Policy Statement; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Korea Animal Health Integrated System (KAHIS). Bovine Tuberculosis Outbreak Statistics by Region and Year. Available online: https://home.kahis.go.kr/home/lkntscrinfo/selectLkntsStats.do (accessed on 10 August 2025).
- Awah-Ndukum, J.; Temwa, J.; Ngwa, V.N.; Mouiche, M.M.; Iyawa, D.; Zoli, P.A. Interpretation Criteria for Comparative Intradermal Tuberculin Test for Diagnosis of Bovine Tuberculosis in Cattle in Maroua Area of Cameroon. Vet. Med. Int. 2016, 2016, 4834851. [Google Scholar] [CrossRef]
- Stear, M.J. OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (Mammals, Birds and Bees) 5th Edn. Volumes 1 & 2. World Organization for Animal Health 2004. ISBN 92 9044 622 6.€ 140. Parasitology 2005, 130, 727. [Google Scholar] [CrossRef]
- Ameni, G.; Hewinson, G.; Aseffa, A.; Young, D.; Vordermeier, M. Appraisal of interpretation criteria for the comparative intradermal tuberculin test for diagnosis of tuberculosis in cattle in central Ethiopia. Clin. Vaccine Immunol. 2008, 15, 1272–1276. [Google Scholar] [CrossRef] [PubMed]
- De la Rua-Domenech, R.; Goodchild, A.T.; Vordermeier, H.M.; Hewinson, R.G.; Christiansen, K.H.; Clifton-Hadley, R.S. Ante mortem diagnosis of tuberculosis in cattle: A review of the tuberculin tests, gamma-interferon assay and other ancillary diagnostic techniques. Res. Vet. Sci. 2006, 81, 190–210. [Google Scholar] [CrossRef]
- Parthasarathy, S.; Veerasami, M.; Appana, G.; Chandran, D.; Das, D.; Srinivasan, V.A. Use of ESAT-6-CFP-10 fusion protein in the bovine interferon-gamma ELISPOT assay for diagnosis of Mycobacterium bovis infection in cattle. J. Microbiol. Methods 2012, 90, 298–304. [Google Scholar] [CrossRef]
- Casal, C.; Bezos, J.; Díez-Guerrier, A.; Álvarez, J.; Romero, B.; de Juan, L.; Rodriguez-Campos, S.; Vordermeier, M.; Whelan, A.; Hewinson, R.G.; et al. Evaluation of two cocktails containing ESAT-6, CFP-10 and Rv-3615c in the intradermal test and the interferon-γ assay for diagnosis of bovine tuberculosis. Prev. Vet. Med. 2012, 105, 149–154. [Google Scholar] [CrossRef]
- Goletti, D.; Delogu, G.; Matteelli, A.; Migliori, G.B. The role of IGRA in the diagnosis of tuberculosis infection, differentiating from active tuberculosis, and decision making for initiating treatment or preventive therapy of tuberculosis infection. Int. J. Infect. Dis. 2022, 124 (Suppl. 1), S12–S19. [Google Scholar] [CrossRef]
- Santos, J.A.; Duarte, R.; Nunes, C. Host factors associated to false negative and indeterminate results in an interferon-γ release assay in patients with active tuberculosis. Pulmonology 2020, 26, 353–362. [Google Scholar] [CrossRef]
- Santos, L.M.; Cardoso, P.E.S.; Diniz, E.A.; Rahhal, J.G.; Sipert, C.R. Different concentrations of fetal bovine serum affect cytokine modulation in Lipopolysaccharide-activated apical papilla cells in vitro. J. Appl. Oral Sci. 2023, 31, e20230020. [Google Scholar] [CrossRef]
- Whelan, A.O.; Clifford, D.; Upadhyay, B.; Breadon, E.L.; McNair, J.; Hewinson, G.R.; Vordermeier, M.H. Development of a skin test for bovine tuberculosis for differentiating infected from vaccinated animals. J. Clin. Microbiol. 2010, 48, 3176–3181. [Google Scholar] [CrossRef]
- Vordermeier, H.M.; Whelan, A.; Cockle, P.J.; Farrant, L.; Palmer, N.; Hewinson, R.G. Use of synthetic peptides derived from the antigens ESAT-6 and CFP-10 for differential diagnosis of bovine tuberculosis in cattle. Clin. Vaccine Immunol. 2001, 8, 571–578. [Google Scholar] [CrossRef]
- Schiller, I.; Oesch, B.; Vordermeier, H.M.; Palmer, M.V.; Harris, B.N.; Orloski, K.A.; Buddle, B.M.; Thacker, T.C.; Lyashchenko, K.P.; Waters, W.R. Bovine tuberculosis: A review of current and emerging diagnostic techniques in view of their relevance for disease control and eradication. Transbound. Emerg. Dis. 2010, 57, 205–220. [Google Scholar] [CrossRef] [PubMed]
- Lewinsohn, D.M.; Leonard, M.K.; LoBue, P.A.; Cohn, D.L.; Daley, C.L.; Desmond, E.; Keane, J.; Lewinsohn, D.A.; Loeffler, A.M.; Mazurek, G.H.; et al. Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: Diagnosis of Tuberculosis in Adults and Children. Clin. Infect. Dis. 2017, 64, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Lalvani, A.; Pareek, M. Interferon gamma release assays: Principles and practice. Enfermedades Infecc. Microbiol. Clin. 2010, 28, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Rumi, T.B.; Islam, S.S.; Islam, R.; Faisal, M.M.H.; Kabir, S.M.L.; Rahman, A.; Rahim, Z. Gamma-interferon assay for the ancillary diagnosis of bovine tuberculosis in dairy cattle in urban and adjacent areas of Dhaka city, Bangladesh. Vet. World 2023, 16, 2120–2127. [Google Scholar] [CrossRef]
- Pucken, V.B.; Knubben-Schweizer, G.; Döpfer, D.; Groll, A.; Hafner-Marx, A.; Hörmansdorfer, S.; Sauter-Louis, C.; Straubinger, R.K.; Zimmermann, P.; Hartnack, S. Evaluating diagnostic tests for bovine tuberculosis in the southern part of Germany: A latent class analysis. PLoS ONE 2017, 12, e0179847. [Google Scholar] [CrossRef]
- Mafi, S.; Alain, S.; Hantz, S. Evaluation of the fully automated LIAISON®XL chemiluminescence analyzer for QuantiFERON®-CMV testing in transplant recipients. J. Clin. Virol. 2023, 166, 105550. [Google Scholar] [CrossRef]
- Waters, W.R.; Nonnecke, B.J.; Olsen, S.C.; Palmer, M.V. Effects of pre-culture holding time and temperature on interferon-gamma responses in whole blood cultures from Mycobacterium bovis-infected cattle. Vet. Microbiol. 2007, 119, 277–282. [Google Scholar] [CrossRef]
- Fujii, Y.; Yoshida, T.; Sato, A.; Ikehata, M.; Hatori, A.; Chikazu, D.; Ghanaati, S.; Kawase-Koga, Y. Platelet-rich fibrin-conditioned medium promotes osteogenesis of dental pulp stem cells through TGF-β and PDGF signaling. Regen. Ther. 2025, 30, 100–106. [Google Scholar] [CrossRef]
- Odeniyi, I.A.; Ahmed, B.; Anbiah, B.; Hester, G.; Abraham, P.T.; Lipke, E.A.; Greene, M.W. An improved in vitro 3T3-L1 adipocyte model of inflammation and insulin resistance. Adipocyte 2024, 13, 2414919. [Google Scholar] [CrossRef]
- Pacurari, M.; Cox, I.; Bible, A.N.; Davern, S. MIP-4 is Induced by Bleomycin and Stimulates Cell Migration Partially via Nir-1 Receptor. Biochem. Res. Int. 2024, 2024, 5527895. [Google Scholar] [CrossRef]
- Pilgrim, C.R.; McCahill, K.A.; Rops, J.G.; Dufour, J.M.; Russell, K.A.; Koch, T.G. A Review of Fetal Bovine Serum in the Culture of Mesenchymal Stromal Cells and Potential Alternatives for Veterinary Medicine. Front. Vet. Sci. 2022, 9, 859025. [Google Scholar] [CrossRef]
- Yamatoya, K.; Nagai, Y.; Teramoto, N.; Kang, W.; Miyado, K.; Nakata, K.; Yagi, T.; Miyamoto, Y. Cryopreservation of undifferentiated and differentiated human neuronal cells. Regen. Ther. 2022, 19, 58–68. [Google Scholar] [CrossRef]
- Gerace, E.; Pasquali, P.; Oesch, B.; Falduto, M.; Mandanici, F.; Fiasconaro, M.; Vitale, M.; Di Marco Lo Presti, V.; Amato, B. Stimulation of Bovine Whole-Blood Samples Cultured in Media Supplemented with Recombinant Interleukin-7 (IL-7) and IL-12 Extends the Life Span of the Gamma Interferon Assay To Detect Mycobacterium bovis-Infected Cattle. J. Clin. Microbiol. 2016, 54, 2315–2320. [Google Scholar] [CrossRef]
- Liu, S.; Yang, W.; Li, Y.; Sun, C. Fetal bovine serum, an important factor affecting the reproducibility of cell experiments. Sci. Rep. 2023, 13, 1942. [Google Scholar] [CrossRef]
- GŁaczynska, M.; Machcinska, M.; Donskow-Lysoniewska, K. Effects of Different Media on Human T Regulatory Cells Phenotype. In Vivo 2021, 35, 283–289. [Google Scholar] [CrossRef]
- Craenmehr, M.H.C.; van der Keur, C.; Anholts, J.D.H.; Kapsenberg, J.M.; van der Westerlaken, L.A.; van Kooten, C.; Claas, F.H.J.; Heidt, S.; Eikmans, M. Effect of seminal plasma on dendritic cell differentiation in vitro depends on the serum source in the culture medium. J. Reprod. Immunol. 2020, 137, 103076. [Google Scholar] [CrossRef] [PubMed]
- Lindroos, B.; Aho, K.L.; Kuokkanen, H.; Räty, S.; Huhtala, H.; Lemponen, R.; Yli-Harja, O.; Suuronen, R.; Miettinen, S. Differential gene expression in adipose stem cells cultured in allogeneic human serum versus fetal bovine serum. Tissue Eng. Part A 2010, 16, 2281–2294. [Google Scholar] [CrossRef] [PubMed]
- Mun, S.E.; Sim, B.W.; Yoon, S.B.; Jeong, P.S.; Yang, H.J.; Choi, S.A.; Park, Y.H.; Kim, Y.H.; Kang, P.; Jeong, K.J.; et al. Dual effect of fetal bovine serum on early development depends on stage-specific reactive oxygen species demands in pigs. PLoS ONE 2017, 12, e0175427. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, M.; Turnbull, T.; Sebastian, S.; Kempson, I. The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis. Int. J. Mol. Sci. 2021, 22, 12827. [Google Scholar] [CrossRef]
- Channer, B.; Daniali, M.; Sheldon, L.; Emanuel, K.; Agarwal, Y.; Kist, T.; Murphy, B.J.; Niu, M.; Dampier, W.; Fox, H.; et al. Microenvironmental conditions and serum availability alter primary human macrophage NF-κB inflammatory response and function. Vet. Med. Int. 2025, 117, qiaf071. [Google Scholar] [CrossRef]
- Sellitti, D.F.; Dennison, D.; Akamizu, T.; Doi, S.Q.; Kohn, L.D.; Koshiyama, H. Thyrotropin regulation of cyclic adenosine monophosphate production in human coronary artery smooth muscle cells. Thyroid 2000, 10, 219–225. [Google Scholar] [CrossRef]
- Lee, D.Y.; Lee, S.Y.; Yun, S.H.; Jeong, J.W.; Kim, J.H.; Kim, H.W.; Choi, J.S.; Kim, G.D.; Joo, S.T.; Choi, I.; et al. Review of the Current Research on Fetal Bovine Serum and the Development of Cultured Meat. Food Sci. Anim. Resour. 2022, 42, 775–799. [Google Scholar] [CrossRef]
- Van der Valk, J.; Bieback, K.; Buta, C.; Cochrane, B.; Dirks, W.G.; Fu, J.; Hickman, J.J.; Hohensee, C.; Kolar, R.; Liebsch, M.; et al. Fetal Bovine Serum (FBS): Past-Present-Future. Altex 2018, 35, 99–118. [Google Scholar] [CrossRef]
- Rubin, H. Microenvironmental regulation of the initiated cell. Adv. Cancer Res. 2003, 90, 1–62. [Google Scholar] [CrossRef]
- Bisschop, P.I.H.; Frankena, K.; Milne, G.M.; Ford, T.; McCallan, L.; Young, F.J.; Byrne, A.W. Relationship between ambient temperature at sampling and the interferon gamma test result for bovine tuberculosis in cattle. Vet. Microbiol. 2023, 283, 109778. [Google Scholar] [CrossRef] [PubMed]
Day 0 IGRA Result | Total Animals | Dual Recovery in FBS X | Dual Recovery in FBS O | Significance |
---|---|---|---|---|
Positive (n = 50) | 50 | 21 (42.0%) | 35 (70.0%) | FBS X: NS, FBS O: p < 0.01 |
Negative (n = 41) | 41 | 11 (26.8%) | 17 (41.5%) | FBS X: NS, FBS O: NS |
Total | 91 | 32 (35.2%) | 52 (57.1%) | FBS X: NS, FBS O: p < 0.01 |
Classification | No. of Animals | Positive by Bovis OD | Dual Recovery | Statistical Significance |
---|---|---|---|---|
Day 0 (baseline) | 50 | 50 (100%) | — | — |
FBS X (3-day w/o FBS) | 50 | 13 (26%) | 7 (53.8% of positives) | NS |
FBS O (3-day with FBS) | 50 | 26 (52%) | 23 (88.5% of positives) | p < 0.01 |
Comparison | Kappa (κ) | Interpretation |
---|---|---|
Cohen’s kappa (Day 0 vs. FBS X) | 0.234 | Fair agreement |
Cohen’s kappa (Day 0 vs. FBS O) | 0.478 | Moderate agreement |
Cohen’s kappa (FBS X vs. FBS O) | 0.593 | Moderate agreement |
Condition | Spearman’s ρ | p-Value |
---|---|---|
Day 0 | 0.109 | 0.712 |
FBS X | −0.039 | 0.899 |
FBS O | 0.134 | 0.663 |
Sample ID | Bovis FBS X | Bovis FBS O | Mitogen FBS X | Mitogen FBS O |
---|---|---|---|---|
1 | 0.0004 | - | 2.6891 | 2.8212 |
2 | 0.0174 | 0.0164 | 3.0240 | 3.1263 |
3 | - | - | 2.0524 | 2.2593 |
4 | - | - | 2.6553 | 2.9188 |
5 | 0.0047 | - | 2.6596 | 2.7924 |
6 | 0.0029 | 0.0140 | 2.4655 | 2.7038 |
7 | - | 0.0038 | 2.4600 | 2.6867 |
8 | - | 0.0023 | 3.1172 | 3.2793 |
9 | - | 0.0148 | 2.1481 | 2.5934 |
10 | - | 0.0150 | 1.5613 | 2.4027 |
11 | 0.0042 | 0.0159 | 3.0158 | 3.2982 |
12 | - | 0.0087 | 3.0264 | 2.4819 |
13 | - | 0.0038 | 3.0198 | 3.1529 |
14 | 0.0115 | 0.0288 | 3.1078 | 3.1986 |
15 | 0.0011 | 0.0003 | 1.5327 | 2.2602 |
16 | 0.0035 | 0.0052 | 2.3069 | 2.8167 |
17 | 0.0031 | 0.0039 | 2.3638 | 3.0506 |
18 | 0.0111 | 0.0367 | 3.1129 | 3.3138 |
19 | - | 0.0032 | 1.9733 | 2.4887 |
20 | - | 0.0023 | 3.0247 | 3.0598 |
21 | 0.0030 | 0.0088 | 2.5658 | 2.8353 |
22 | 0.0049 | 0.0102 | 0.5112 | 0.3446 |
Comparison | Spearman ρ | p-Value |
---|---|---|
ΔOD (Bovis) vs. MTT (FBSX) | 0.137 | 0.655 |
ΔOD (Bovis) vs. MTT (FBSO) | −0.06 | 0.845 |
ΔOD (Mitogen) vs. MTT (FBSX) | 0.137 | 0.655 |
ΔOD (Mitogen) vs. MTT (FBSO) | 0.11 | 0.721 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, J.-K.; Lim, M.-N.; Kim, K.-J. Fetal Bovine Serum Supplementation Enhances Functional Consistency of IGRA Results in Bovine Tuberculosis Diagnostics. Animals 2025, 15, 2580. https://doi.org/10.3390/ani15172580
Jeong J-K, Lim M-N, Kim K-J. Fetal Bovine Serum Supplementation Enhances Functional Consistency of IGRA Results in Bovine Tuberculosis Diagnostics. Animals. 2025; 15(17):2580. https://doi.org/10.3390/ani15172580
Chicago/Turabian StyleJeong, Jae-Kyo, Mi-Na Lim, and Ki-Joo Kim. 2025. "Fetal Bovine Serum Supplementation Enhances Functional Consistency of IGRA Results in Bovine Tuberculosis Diagnostics" Animals 15, no. 17: 2580. https://doi.org/10.3390/ani15172580
APA StyleJeong, J.-K., Lim, M.-N., & Kim, K.-J. (2025). Fetal Bovine Serum Supplementation Enhances Functional Consistency of IGRA Results in Bovine Tuberculosis Diagnostics. Animals, 15(17), 2580. https://doi.org/10.3390/ani15172580