Genetic Polymorphism Reveals FAT3 Gene Associations with Wool Traits in Subo Merino Sheep
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Wool Phenotype Determination
2.2. SNP Genotyping of the FAT3 Gene
2.3. Population Polymorphism Analysis
2.4. Correlation Analysis Between SNPs of the FAT3 Gene and Wool Phenotypic Traits
2.5. Quantitative Expression Analysis and Protein Structure Prediction
3. Results
3.1. Descriptive Statistics of Traits
3.2. Determine the SNPs and Genetic Polymorphism Analysis of FAT3 Gene
3.3. Linkage Disequilibrium Analysis
3.4. The Association Analysis of the FAT3 Gene with Wool Traits
3.5. Comparative Analysis of FAT3 Gene Expression in Ultrafine Wool and Fine Wool Fibers
3.6. Protein Transmembrane Structure Analysis
4. Discussion
4.1. Effects of Missense Mutation and Expression Difference of the FAT3 Gene on Wool Traits
4.2. Population Genetics Analysis of the FAT3 Gene
4.3. Association Analysis Between SNPs of the FAT3 Gene and Wool Traits
4.4. The Effect of the FAT3 Protein on Wool Traits
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MFD | Mean Fiber Diameter |
FDSD | Fiber Diameter Standard Deviation |
CVFD | Fiber Diameter Coefficient of Variation |
SL | Staple Length |
FC | Fineness Count |
HL | Hair Length |
CN | Crimp Number |
GFW | Greasy Fleece Weight |
LWBS | Live Weight Before Shearing |
LWAS | Live Weight After Shearing |
MAF | Minor Allele Frequencies |
FW | Fine Wool Fiber |
UFW | Ultrafine Wool Fiber |
References
- Wu, C.; Xu, Q.; Li, J.; Qin, C.; Tulafu, H.; Liu, W.; Lu, Q.; Zheng, W.; Fu, X. Regulation of cashmere fineness traits by noncoding RNA in Jiangnan cashmere goats. BMC Genom. 2023, 24, 604. [Google Scholar] [CrossRef]
- Camilli, F.; Focacci, M.; Prà, A.D.; Bortolu, S.; Ugolini, F.; Vagnoni, E.; Duce, P. Turning Waste Wool into a Circular Resource: A Review of Eco-Innovative Applications in Agriculture. Agronomy 2025, 15, 446. [Google Scholar] [CrossRef]
- Ma, S.; Long, L.; Huang, X.; Tian, K.; Tian, Y.; Wu, C.; Zhao, Z. Transcriptome analysis reveals genes associated with wool fineness in merinos. PeerJ 2023, 11, e15327. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Liu, Q.; Li, X.; Wang, H. Research Progress and Applications of genes Associated with Economic Traits in Sheep. Acta Vet. Et Zootech. Sin. 2022, 53, 2417–2434. [Google Scholar]
- Wang, Z.; Zhang, H.; Yang, H.; Wang, S.; Rong, E.; Pei, W.; Li, H.; Wang, N.; Zhang, Q. Genome-wide association study for wool production traits in a Chinese Merino sheep population. PLoS ONE 2014, 9, e107101. [Google Scholar] [CrossRef]
- Yao, R.; Li, F.; Dong, X.; Xu, Y.; Hu, R.; Wang, L.; Cai, K.; Liu, X.; Ni, W.; Zhou, P.; et al. Microbial Community Structure and Metabolism of Xinjiang Fine-Wool Sheep based on High-Throughput Sequencing Technology. Curr. Microbiol. 2024, 81, 324. [Google Scholar] [CrossRef]
- Bai, L.; Zhou, H.; Li, W.; Tao, J.; Hickford, J.G.H. Exploring Variation in Ovine KRTAP19-5 and Its Effect on Fine Wool Fibre Curvature in Chinese Tan Sheep. Animals 2024, 14, 2155. [Google Scholar] [CrossRef]
- Zhao, H.; Zhu, S.; Guo, T.; Han, M.; Chen, B.; Qiao, G.; Wu, Y.; Yuan, C.; Liu, J.; Lu, Z.; et al. Whole-genome re-sequencing association study on yearling wool traits in Chinese fine-wool sheep. J. Anim. Sci. 2021, 99, skab210. [Google Scholar] [CrossRef]
- Zhao, H.; Hu, R.; Li, F.; Yue, X. Five SNPs Within the FGF5 gene Significantly Affect Both Wool Traits and Growth Performance in Fine-Wool Sheep (Ovis aries). Front. Genet. 2021, 12, 732097. [Google Scholar] [CrossRef]
- Wang, C.; Yuan, Z.; Hu, R.; Li, F.; Yue, X. Association of SNPs within PTPN3 gene with wool production and growth traits in a dual-purpose sheep population. Anim. Biotechnol. 2023, 34, 1429–1435. [Google Scholar] [CrossRef]
- Gravel, S.P.; Ben Khalifa, Y.; McGuirk, S.; St-Louis, C.; Laurin, K.M.; Lavallée, É.; Benas, D.; Desbouis, S.; Amaral, F.; D’aMours, D.; et al. PGC-1s shape epidermal physiology by modulating keratinocyte proliferation and terminal differentiation. iScience 2023, 26, 106314. [Google Scholar] [CrossRef]
- Jiang, Y.; Xie, M.; Chen, W.; Talbot, R.; Maddox, J.F.; Faraut, T.; Wu, C.; Muzny, D.M.; Li, Y.; Zhang, W.; et al. The sheep genome illuminates biology of the rumen and lipid metabolism. Science 2014, 344, 1168–1173. [Google Scholar] [CrossRef] [PubMed]
- Fulford, A.D.; Mcneill, H. Fat/dachsous family cadherins in cell and tissue organisation. Curr. Opin. Cell Biol. 2020, 62, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Avilés, E.C.; Krol, A.; Henle, S.J.; Burroughs-Garcia, J.; Deans, M.R.; Goodrich, L.V. Fat3 acts through independent cytoskeletal effectors to coordinate asymmetric cell behaviors during polarized circuit assembly. Cell Rep. 2022, 38, 110307. [Google Scholar] [CrossRef]
- Stefl, S.; Nishi, H.; Petukh, M.; Panchenko, A.R.; Alexov, E. Molecular mechanisms of disease-causing missense mutations. J. Mol. Biol. 2013, 425, 3919–3936. [Google Scholar] [CrossRef]
- Bolormaa, S.; Swan, A.A.; Stothard, P.; Khansefid, M.; Moghaddar, N.; Duijvesteijn, N.; van der Werf, J.H.J.; Daetwyler, H.D.; MacLeod, I.M. A conditional multi-trait sequence GWAS discovers pleiotropic candidate genes and variants for sheep wool, skin wrinkle and breech cover traits. Genet. Sel. Evol. 2021, 53, 58. [Google Scholar] [CrossRef]
- Sulayman, A.; Tursun, M.; Sulaiman, Y.; Huang, X.; Tian, K.; Tian, Y.; Xu, X.; Fu, X.; Mamat, A.; Tulafu, H. Association analysis of polymorphisms in six keratin genes with wool traits in sheep. Asian-Australas. J. Anim. Sci. 2018, 31, 775–783. [Google Scholar] [CrossRef]
- Ansar, M.; Raza, S.I.; Lee, K.; Irfanullah; Shahi, S.; Acharya, A.; Dai, H.; Smith, J.D.; Shendure, J.; Bamshad, M.J.; et al. A homozygous missense variant in type I keratin KRT25 causes autosomal recessive woolly hair. J. Med. Genet. 2015, 52, 676–680. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, M.; Li, T.; Lu, Z.; Wang, H.; Yuan, Z.; Wei, C. Whole-Genome Resequencing Reveals Selection Signal Related to Sheep Wool Fineness. Animals 2023, 13, 2944. [Google Scholar] [CrossRef]
- Doyle, E.K.; Preston, J.W.V.; McGregor, B.A.; Hynd, P.I. The science behind the wool industry. The importance and value of wool production from sheep. Anim. Front. 2021, 11, 15–23. [Google Scholar] [CrossRef]
- Watkins, W.S.; Ricker, C.E.; Bamshad, M.J.; Carroll, M.; Nguyen, S.; Batzer, M.; Harpending, H.; Rogers, A.; Jorde, L. Patterns of ancestral human diversity: An analysis of Alu-insertion and restriction-site polymorphisms. Am. J. Hum. Genet. 2001, 68, 738–752. [Google Scholar] [CrossRef]
- Lai, W.Y.; Nolte, V.; Jakšić, A.M.; Schlötterer, C.; Lynch, M. Evolution of Phenotypic Variance Provides Insights into the genetic Basis of Adaptation. Genome Biol. Evol. 2024, 16, evae077. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.W.; Fugmann, L.A.; Yang, S.Y.; Gwo, J.C.; Fugmann, S.D. The classical MHC class I and II genes of O. m. formosanus exhibit different polymorphism levels. Dev. Comp. Immunol. 2025, 168, 105392. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Lei, W.; Zhou, X.; Chen, X.; Fang, W. Study on the characteristics and polymorphism of MHC class II B gene in Egretta garzetta. In Proceedings of the 12th National Symposium on Birds and the 10th Cross-Strait Symposium on Birds, Hangzhou, China, 7–13 November 2013. [Google Scholar]
- Dussex, N.; Jansson, I.; van der Valk, T.; Packer, C.; Norman, A.; Kissui, B.M.; Mjingo, E.E.; Spong, G. Constraints to gene flow increase the risk of genome erosion in the Ngorongoro Crater lion population. Commun. Biol. 2025, 8, 640. [Google Scholar] [CrossRef] [PubMed]
- Siljestam, M.; Rueffler, C. Heterozygote advantage can explain the extraordinary diversity of immune genes. eLife 2024, 13, e94587. [Google Scholar] [CrossRef]
- Boca, S.M.; Huang, L.; Rosenberg, N.A. On the heterozygosity of an admixed population. J. Math. Biol. 2020, 81, 1217–1250. [Google Scholar] [CrossRef]
- Stram, D.O. Multi-SNP Haplotype Analysis Methods for Association Analysis. Methods Mol. Biol. 2017, 1666, 485–504. [Google Scholar] [CrossRef]
- Wu, X.; Shi, D.; Huang, S.; Niu, X.; Li, S.; Wang, J.; Ran, X. SNPs Identification and Bioinformatics Analysis of the Hyaluronan Synthase 2 gene in Xiang Pig with Wrinkled Skin. Acta Vet. Et Zootech. Sin. 2021, 52, 3390–3402. [Google Scholar]
- Fu, J.; Wang, D.; Liu, W.; Qi, Y.; Zhang, C.; Li, H.; Cai, J.; Ji, S.; Zhang, L.; Sun, F. miR-370-3p Inhibited the Proliferation of Sheep Dermal Papilla Cells by Inhibiting the Expression of SMAD4. Cells 2025, 14, 714. [Google Scholar] [CrossRef]
- Ma, R.; Lu, Y.; Li, M.; Gao, Z.; Li, D.; Gao, Y.; Deng, W.; Wang, B. Whole-Genome Resequencing in Sheep: Applications in Breeding, Evolution, and Conservation. Genes 2025, 16, 363. [Google Scholar] [CrossRef]
- McGregor, B. Properties, Processing and Performance of Rare and Natural Fibres: A Review and Interpretation of Existing Research Results; Rural Industries Research and Development Corporation (RIRDC): Canberra, Australia, 2012. [Google Scholar]
- Bai, L.; Zhou, H.; Tao, J.; Hickford, J.G.H. Variation in Ovine KRTAP13-3 and Its Association with Wool Characteristics in Chinese Tan Sheep. Animals 2025, 15, 1069. [Google Scholar] [CrossRef]
- Yaman, Y.; Önaldi, A.T.; Doğan, Ş.; Kirbaş, M.; Behrem, S.; Kal, Y. Exploring the polygenic landscape of wool traits in Turkish Merinos through multi-locus GWAS approaches: Middle Anatolian Merino. Sci. Rep. 2025, 15, 10611. [Google Scholar] [CrossRef]
- Wu, C.; Lu, Q.; Ma, S.; Mamat, N.; Tang, S.; Liu, W.; Wang, Y.; Anwar, A.; Lu, Y.; Ma, Q.; et al. Proteomics Reveals the Role of PLIN2 in Regulating the Secondary Hair Follicle Cycle in Cashmere Goats. Int. J. Mol. Sci. 2025, 26, 2710. [Google Scholar] [CrossRef]
- Wu, C.; Qin, C.; Fu, X.; Huang, X.; Tian, K. Integrated analysis of lncRNAs and mRNAs by RNA-Seq in secondary hair follicle development and cycling (anagen, catagen and telogen) of Jiangnan cashmere goat (Capra hircus). BMC Vet. Res. 2022, 18, 167. [Google Scholar] [CrossRef]
- Horwich, A.L. Molecular chaperones in cellular protein folding: The birth of a field. Cell 2014, 157, 285–288. [Google Scholar] [CrossRef]
- Wang, R.; Li, Y.; Lin, Y.; Chen, D.; Sheng, X.; Zhao, N.; Liu, W. Cloning and expression characteristic analysis of goat ST13 gene. Chin. J. Biotechnol. 2022, 38, 2959–2973. [Google Scholar] [CrossRef]
- Hager, R.; Müller, U.; Ollinger, N.; Weghuber, J.; Lanzerstorfer, P. Subcellular Dynamic Immunopatterning of Cytosolic Protein Complexes on Microstructured Polymer Substrates. ACS Sens. 2021, 6, 4076–4088. [Google Scholar] [CrossRef]
- Cymer, F.; Schneider, D. Transmembrane helix-helix interactions involved in ErbB receptor signaling. Cell Adhes. Migr. 2010, 4, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Hubert, P.; Sawma, P.; Duneau, J.P.; Khao, J.; Hénin, J.; Bagnard, D.; Sturgis, J. Single-spanning transmembrane domains in cell growth and cell-cell interactions: More than meets the eye? Cell Adhes. Migr. 2010, 4, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhao, F.; He, Z.; Sun, H.; Xi, Q.; Yu, X.; Ding, Y.; An, Z.; Wang, J.; Liu, X.; et al. Expression Localization of the KRT32 gene and Its Association of genetic Variation with Wool Traits. Curr. Issues Mol. Biol. 2024, 46, 2961–2974. [Google Scholar] [CrossRef]
Gene | Primer (5′→3′) | |
---|---|---|
FAT3 | F: CAGTCCCTGAGTTCCTTCCA | R: CGTATGGTGGGCACTCTTCT |
GAPDH | F: GGTGATGCTGGTGCTGAGTA | R: CAGCAGAAGGTGCAGAGATG |
Traits | N | Mean ± SD | CV (%) | Range |
---|---|---|---|---|
MFD/µm | 940 | 17.71 ± 1.84 | 10.39 | 13.3~24.0 |
FDSD/µm | 933 | 4.14 ± 0.57 | 13.77 | 3.0~6.4 |
CVFD/% | 941 | 23.38 ± 2.24 | 9.58 | 17.0~30.8 |
SL/cm | 929 | 88.26 ± 11.77 | 13.34 | 65~130 |
HL/cm | 933 | 9.89 ± 0.95 | 9.61 | 7~14 |
FC | 934 | 66.82 ± 2.52 | 3.77 | 60~80 |
CN | 936 | 13.92 ± 3.04 | 21.60 | 7~25 |
LWBS/kg | 936 | 33.18 ± 5.03 | 15.16 | 22~50 |
GFW/kg | 765 | 3.33 ± 0.54 | 16.22 | 2.0~5.6 |
LWAS/kg | 668 | 34.13 ± 4.96 | 14.53 | 22~50 |
SNPs | Chr ID | Location/bp | Exon | Ref | Alt | Mutation Type |
---|---|---|---|---|---|---|
SNP 1 | 21 | 1,481,091 | 30 | A | C | missense mutations |
SNP 2 | 21 | 1,495,094 | 26 | G | A | missense mutations |
SNP 3 | 21 | 1,501,253 | 23 | T | C | missense mutations |
SNP 4 | 21 | 1,501,292 | 23 | G | C | missense mutations |
SNP 5 | 21 | 1,529,421 | 18 | T | C | missense mutations |
SNP 6 | 21 | 1,533,151 | 17 | C | T | missense mutations |
SNP 7 | 21 | 1,547,134 | 13 | C | A | missense mutations |
SNP 8 | 21 | 1,547,314 | 13 | C | T | missense mutations |
SNP 9 | 21 | 1,587,685 | 9 | C | T | missense mutations |
SNP 10 | 21 | 1,599,982 | 7 | A | G | missense mutations |
SNP 11 | 21 | 2,136,457 | 1 | T | C | missense mutations |
SNPs | Genotype | N | Freq | MAF | Ho | He | Ne | PIC | HWE |
---|---|---|---|---|---|---|---|---|---|
SNP 1 | AA/AC/CC | 68/312/424 | A/C 0.237/0.614 | 0.279 | 0.33 | 0.57 | 2.31 | 0.564 | 0.3614 |
SNP 2 | GG/GA/AA | 380/220/307 | A/G 0.441/0.519 | 0.460 | 0.23 | 0.54 | 2.15 | 0.651 | 1.2875 |
SNP 3 | TT/TC/CC | 615/42/243 | C/T 0.280/0.674 | 0.293 | 0.05 | 0.47 | 1.88 | 0.458 | 4.5577 |
SNP 4 | GG/GC/CC | 695/138/89 | C/G 0.158/0.809 | 0.170 | 0.15 | 0.32 | 1.47 | 0.390 | 7.7370 |
SNP 5 | CC/TC/TT | 603/303/34 | C/T 0.799/0.197 | 0.198 | 0.32 | 0.32 | 1.48 | 0.483 | 0.5594 |
SNP 6 | TT/CT/CC | 200/408/239 | C/T 0.469/0.428 | 0.477 | 0.43 | 0.60 | 2.48 | 0.633 | 0.3400 |
SNP 7 | TT/TC/CC | 1/3/939 | C/T 0.996/0.003 | 0.003 | 0.03 | 0.01 | 1.01 | 0.009 | 0.0107 |
SNP 8 | CC/CT/TT | 406/108/168 | C/T 0.487/0.235 | 0.326 | 0.11 | 0.71 | 3.42 | 0.343 | 1.1049 |
SNP 9 | GG/AG/AA | 505/127/8 | A/G 0.076/0.602 | 0.112 | 0.13 | 0.63 | 2.71 | 0.179 | 1.0000 |
SNP 10 | TT/TC/CC | 627/289/28 | C/T 0.183/0.817 | 0.183 | 0.31 | 0.30 | 1.43 | 0.254 | 0.5492 |
SNP 11 | GG/GA/AA | 355/409/170 | A/G 0.397/0.593 | 0.401 | 0.43 | 0.49 | 2.00 | 0.365 | 0.0057 |
SNPs | Type | MFD (µm) | FDSD (µm) | CVFD (%) | SL (cm) | HL (cm) | FC | CN | LWBS (kg) | GFW (kg) | LWAS (kg) |
---|---|---|---|---|---|---|---|---|---|---|---|
SNP 1 | AA | 18.04 a | 4.34 A | 24.03 a | 86.96 | 9.98 | 66.63 | 14.05 | 32.28 a | 3.16 | 32.65 |
AC | 17.66 b | 4.11 B | 23.28 b | 88.48 | 9.94 | 67.03 | 13.68 | 33.49 b | 3.29 | 32.98 | |
CC | 17.70 b | 4.13 B | 23.34 b | 88.61 | 9.86 | 66.76 | 13.95 | 33.06 ab | 3.27 | 32.81 | |
SNP 2 | AA | 17.54 a | 4.07 a | 23.22 | 88.49 | 9.86 ab | 66.82 ab | 14.15 a | 33.05 | 3.26 | 32.71 |
GA | 17.72 ab | 4.18 b | 23.57 | 87.44 | 9.83 a | 67.15 a | 13.64 b | 33.18 | 3.27 | 33.02 | |
GG | 17.80 b | 4.15 b | 23.35 | 89.02 | 9.98 b | 66.68 b | 13.90 ab | 33.44 | 3.28 | 33.03 | |
SNP 3 | CC | 17.46 A | 4.06 A | 23.26 | 88.25 | 9.88 | 67.06 | 13.97 | 33.27 | 3.29 | 32.79 |
TC | 17.45 AB | 4.15 AB | 23.78 | 86.44 | 9.80 | 67.16 | 13.61 | 32.47 | 3.11 | 33.29 | |
TT | 17.81 B | 4.17 B | 23.41 | 88.56 | 9.92 | 66.75 | 13.92 | 33.09 | 3.27 | 32.89 | |
SNP 4 | CC | 17.73 | 4.08 | 23.06 | 86.98 | 9.89 | 66.40 a | 13.88 | 32.73 | 3.25 | 32.72 |
GC | 17.67 | 4.12 | 23.32 | 88.11 | 9.86 | 67.41 b | 14.12 | 33.61 | 3.29 | 33.25 | |
GG | 17.69 | 4.14 | 23.43 | 88.18 | 9.88 | 66.74 a | 13.86 | 33.07 | 3.26 | 32.82 | |
SNP 5 | CC | 17.66 | 4.12 | 23.35 | 87.99 | 9.86 | 66.85 | 13.90 | 33.18 a | 3.25 | 32.84 |
TC | 17.80 | 4.18 | 23.47 | 88.94 | 9.96 | 66.77 | 13.95 | 33.31 a | 3.33 | 33.18 | |
TT | 17.56 | 4.08 | 23.25 | 86.58 | 9.75 | 66.56 | 13.58 | 31.75 b | 3.13 | 32.00 | |
SNP 6 | CC | 17.79 A | 4.15 | 23.32 | 89.07 a | 9.97 | 66.63 a | 13.69 | 33.44 | 3.29 | 33.12 |
CT | 17.72 A | 4.15 | 23.42 | 88.68 a | 9.91 | 66.88 ab | 13.90 | 33.47 | 3.27 | 32.89 | |
TT | 17.41 B | 4.07 | 23.43 | 86.65 b | 9.88 | 67.13 b | 13.93 | 32.93 | 3.24 | 32.63 | |
SNP 7 | CC | 17.71 | 4.14 | 23.38 | 88.28 | 9.89 | 66.83 | 13.90 | 33.17 | 3.27 | 32.91 |
CT | 17.38 | 4.27 | 24.64 | 88.86 | 9.75 | 65.84 | 14.29 | 34.27 | 3.95 | / | |
TT | 17.05 | 4.51 | 26.44 | 80.52 | 8.41 | 66.51 | 12.96 | 26.94 | / | / | |
SNP 8 | CC | 17.82 A | 4.17 | 23.41 | 88.47 | 9.91 | 66.82 | 13.93 | 33.14 | 3.28 | 33.07 |
CT | 17.69 AB | 4.12 | 23.33 | 88.15 | 9.97 | 67.17 | 13.91 | 33.25 | 3.34 | 33.18 | |
TT | 17.44 B | 4.10 | 23.53 | 87.49 | 9.88 | 67.09 | 14.10 | 33.01 | 3.21 | 32.41 | |
SNP 9 | AA | 17.82 | 4.22 | 23.70 | 94.84 | 10.67 a | 66.61 | 14.71 | 34.82 | 3.53 | 34.34 |
AG | 17.73 | 4.11 | 23.19 | 90.05 | 10.09 a | 67.33 | 13.75 | 33.46 | 3.30 | 32.61 | |
GG | 17.68 | 4.15 | 23.49 | 88.19 | 9.90 b | 66.98 | 13.88 | 32.93 | 3.23 | 32.56 | |
SNP 10 | CC | 17.63 | 4.03 | 22.83 | 88.74 | 9.79 ab | 66.54 | 13.56 | 31.58 a | 3.19 | 34.46 |
TC | 17.62 | 4.13 | 23.43 | 87.34 | 9.79 a | 66.88 | 14.01 | 33.20 b | 3.30 | 33.18 | |
TT | 17.75 | 4.15 | 23.39 | 88.67 | 9.94 b | 66.81 | 13.87 | 33.21 b | 3.26 | 32.74 | |
SNP 11 | AA | 17.75 ab | 4.16 | 23.46 | 89.02 | 10.00 a | 66.52 | 13.99 | 33.29 | 3.28 | 32.76 |
GA | 17.82 a | 4.15 | 23.30 | 88.42 | 9.88 ab | 66.84 | 13.88 | 33.00 | 3.25 | 32.86 | |
GG | 17.57 b | 4.12 | 23.45 | 87.63 | 9.83 b | 66.96 | 13.91 | 33.20 | 3.28 | 32.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anwar, A.; Amar, G.; Zhao, W.; Liu, W.; Ma, S.; Tang, S.; Wu, C.; Fu, X. Genetic Polymorphism Reveals FAT3 Gene Associations with Wool Traits in Subo Merino Sheep. Animals 2025, 15, 2534. https://doi.org/10.3390/ani15172534
Anwar A, Amar G, Zhao W, Liu W, Ma S, Tang S, Wu C, Fu X. Genetic Polymorphism Reveals FAT3 Gene Associations with Wool Traits in Subo Merino Sheep. Animals. 2025; 15(17):2534. https://doi.org/10.3390/ani15172534
Chicago/Turabian StyleAnwar, Asma, Gvlnigar Amar, Wangsheng Zhao, Wenna Liu, Shengchao Ma, Sen Tang, Cuiling Wu, and Xuefeng Fu. 2025. "Genetic Polymorphism Reveals FAT3 Gene Associations with Wool Traits in Subo Merino Sheep" Animals 15, no. 17: 2534. https://doi.org/10.3390/ani15172534
APA StyleAnwar, A., Amar, G., Zhao, W., Liu, W., Ma, S., Tang, S., Wu, C., & Fu, X. (2025). Genetic Polymorphism Reveals FAT3 Gene Associations with Wool Traits in Subo Merino Sheep. Animals, 15(17), 2534. https://doi.org/10.3390/ani15172534