Effects of Mannan Oligosaccharides on Growth, Antioxidant and Immune Performance, and mTOR Signaling Pathway in Juvenile Tilapia (Oreochromis niloticus)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Diets
2.2. Experimental Fish and Culture
2.3. Fish Sampling
2.4. Growth Performance
2.5. Serum Biochemical Parameter Determination
2.6. Muscle Composition Determination
2.7. Digestive Enzyme Activities Determination
2.8. Gene Expression Determination
2.9. Data Statistics and Analysis
3. Results
3.1. Growth Performance
3.2. Serum Biochemical Parameters
3.3. Muscle Composition
3.4. Digestive Enzyme Activity
3.5. Antioxidant Gene Expression
3.6. Immune Gene Expression
3.7. mTOR Pathway Gene Expression
4. Discussion
4.1. MOS Supplementation Enhances Growth Performance
4.2. MOS Supplementation Affects Serum Biochemical Indices
4.3. MOS Supplementation Affects Muscle Composition
4.4. MOS Supplementation Enhances Digestive Enzyme Activity
4.5. MOS Supplementation Enhances Antioxidant and Immune Performance
4.6. MOS Supplementation Affects mTOR Signaling Pathway
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The Food and Agriculture Organization (FAO). FAO Report: Global Fisheries and Aquaculture Production Reaches a New Record High; Newsroom: Philadelphia, PA, USA, 2024. [Google Scholar]
- Eissa, E.S.H.; El-Sayed, A.F.M.; Ghanem, S.F.; Dighiesh, H.S.; Abd Elnabi, H.E.; Hendam, B.M.; Elleithy, A.A.; Eissa, M.E.H.; Abd El-Aziz, Y.M. Dietary Mannan-Oligosaccharides Enhance Hematological and Biochemical Parameters, Reproductive Physiology, and Gene Expression of Hybrid Red Tilapia (Oreochromis niloticus × O. mossambicus). Aquaculture 2024, 581, 740453. [Google Scholar] [CrossRef]
- Wei, Y.C.; Cheng, S.; Wang, D.; Chi, M.L.; Zheng, J.B.; Jia, J.; Li, F.; Liu, S.L.; Liu, Y.N.; Gu, Z.M. The Effect of Ammonia Nitrogen, Nitrite and pH on Artificial Incubation of Red Claw Crayfish Cherax quadricarinatus Eggs and Growth of Juveniles. Aquac. Res. 2022, 53, 3788–3796. [Google Scholar] [CrossRef]
- Park, M.; Shin, S.K.; Do, Y.H.; Yarish, C.; Kim, J.K. Application of Open Water Integrated Multi-Trophic Aquaculture to Intensive Monoculture: A Review of the Current Status and Challenges in Korea. Aquaculture 2018, 497, 174–183. [Google Scholar] [CrossRef]
- Holm, R.; Söderhäll, K.; Söderhäll, I. Accumulation of Antibiotics and Antibiotic Resistance Genes in Freshwater Crayfish—Effects of Antibiotics as a Pollutant. Fish Shellfish Immunol. 2023, 138, 108836. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Q.; Zhao, W.; Xie, S.W.; Xie, J.J.; Zhang, Z.H.; Tian, L.X.; Liu, Y.J.; Niu, J. Effects of Dietary Hydrolyzed Yeast (Rhodotorula mucilaginosa) on Growth Performance, Immune Response, Antioxidant Capacity and Histomorphology of Juvenile Nile Tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2019, 90, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, S.; Yilmaz, E.; Dawood, M.A.O.; Ringø, E.; Ahmadifar, E.; Abdel-Latif, H.M.R. Probiotics, Prebiotics, and Synbiotics Used to Control Vibriosis in Fish: A Review. Aquaculture 2022, 547, 737514. [Google Scholar] [CrossRef]
- Sharma, N. Exploring the Potential of Mannan Oligosaccharides in Enhancing Animal Growth, Immunity, and Overall Health: A Review. Carbohydr. Polym. Technol. Appl. 2025, 9, 100603. [Google Scholar] [CrossRef]
- Torrecillas, S.; Montero, D.; Izquierdo, M. Improved Health and Growth of Fish Fed Mannan Oligosaccharides: Potential Mode of Action. Fish Shellfish Immunol. 2014, 36, 525–544. [Google Scholar] [CrossRef]
- Táati, R.; Soltani, M.; Bahmani, M.; Zamini, A. Growth Performance, Carcass Composition, and Immunophysiological Indices in Juvenile Great Sturgeon (Huso huso) Fed on Commercial Prebiotic, Immunoster. Iran. J. Fish. Sci. 2011, 10, 324–335. [Google Scholar] [CrossRef]
- Xue, S.; Xia, B.; Zhang, B.; Li, L.; Zou, Y.; Shen, Z.; Xiang, Y.; Han, Y.; Chen, W. Mannan Oligosaccharide (MOS) on Growth Performance, Immunity, Inflammatory and Antioxidant Responses of the Common Carp (Cyprinus carpio) under Ammonia Stress. Front. Mar. Sci. 2022, 9, 1062597. [Google Scholar] [CrossRef]
- Torrecillas, S.; Montero, D.; Caballero, M.J.; Robaina, L.; Zamorano, M.J.; Sweetman, J.; Izquierdo, M. Effects of Dietary Concentrated Mannan Oligosaccharides Supplementation on Growth, Gut Mucosal Immune System and Liver Lipid Metabolism of European Sea Bass (Dicentrarchus labrax) Juveniles. Fish Shellfish Immunol. 2015, 42, 508–516. [Google Scholar] [CrossRef]
- Gao, X.; Zhai, H.; Wei, L.; Shi, L.; Yan, L.; Peng, Z.; Wang, W.; Ren, T.; Han, Y. Effects of Dietary Mannan Oligosaccharides on Growth, Non-Specific Immunity, and Intestinal Health in Juveniles of the Japanese Sea Cucumber (Apostichopus japonicus). Aquacult Int. 2023, 31, 1705–1727. [Google Scholar] [CrossRef]
- Gonçalves, A.T.; Gallardo-Escárate, C. Microbiome Dynamic Modulation through Functional Diets Based on Pre- and Probiotics (Mannan-oligosaccharides and Saccharomyces Cerevisiae) in Juvenile Rainbow Trout (Oncorhynchus mykiss). J. Appl. Microbiol. 2017, 122, 1333–1347. [Google Scholar] [CrossRef]
- Saxton, R.A.; Sabatini, D.M. mTOR Signaling in Growth, Metabolism, and Disease. Cell 2017, 168, 960–976. [Google Scholar] [CrossRef] [PubMed]
- Ben-Sahra, I.; Manning, B.D. mTORC1 Signaling and the Metabolic Control of Cell Growth. Curr. Opin. Cell Biol. 2017, 45, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Dai, L.; Peng, F.; Tang, L.; Wang, X.; Chen, J.; Liu, J.; Fu, W.; Peng, L.; Liu, W.; et al. mTOR Signaling Pathway Regulates Embryonic Development and Rapid Growth of Triploid Crucian Carp. Aquac. Rep. 2023, 33, 101860. [Google Scholar] [CrossRef]
- Liu, J.; Yao, B.; Sun, J.; Bi, C.; Lu, Y.; Yan, Z.; Li, Y.; Lv, W. Bacillus subtilis and Xylo-Oligosaccharide Ameliorates NaHCO3-Induced Intestinal Barrier Dysfunction and Autophagy by Regulating Intestinal Microflora and PI3K/Akt Pathway of Crucian Carp (Carassius auratus). Aquac. Rep. 2024, 36, 102048. [Google Scholar] [CrossRef]
- Parsa, A.; Mehrgan, M.S.; Islami, H.R. Effects of Dietary Red Algae (Hypnea flagelliformis, Cystocloniaceae) Extract on the Growth, Digestive Enzyme Activity, and mTOR Signaling-Related Gene Expression of White Shrimp (Litopenaeus vannamei). J. Appl. Phycol. 2025, 1–11. [Google Scholar] [CrossRef]
- Forsatkar, M.N.; Nematollahi, M.A.; Rafiee, G.; Farahmand, H.; Martínez-Rodríguez, G. Effects of Prebiotic Mannan Oligosaccharide on the Growth, Survival, and Anxiety-like Behaviors of Zebrafish (Danio rerio). J. Appl. Aquac. 2017, 29, 183–196. [Google Scholar] [CrossRef]
- Rungrassamee, W.; Kingcha, Y.; Srimarut, Y.; Maibunkaew, S.; Karoonuthaisiri, N.; Visessanguan, W. Mannooligosaccharides from Copra Meal Improves Survival of the Pacific White Shrimp (Litopenaeus vannamei) after Exposure to Vibrio Harveyi. Aquaculture 2014, 434, 403–410. [Google Scholar] [CrossRef]
- Atom, A.; Singh; Monsang, S.J.; Singh, J.; Monsang, S.; Nanda, S. Effect of Aqua-Mos on Growth Performance and Survivability of Climbing Perch (Anabas testudineus) during Larval Rearing. J. Entomol. Zool. Stud. 2018, 6, 83–90. [Google Scholar]
- Liu, Y.; Huang, E.; Xie, Y.; Meng, L.; Liu, D.; Zhang, Z.; Zhou, J.; Zhang, Q.; Tong, T. The Effect of Dietary Lipid Supplementation on the Serum Biochemistry, Antioxidant Responses, Initial Immunity, and mTOR Pathway of Juvenile Tilapia (Oreochromis niloticus). Fishes 2023, 8, 535. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, E.; Li, X.; Xie, Y.; Tong, T.; Wang, J.; Zhang, Q. Effects of Dietary Marine Red Yeast Supplementation on Growth Performance, Antioxidant, Immunity, Lipid Metabolism and mTOR Signaling Pathway in Juvenile Tilapia (Oreochromis niloticus). Aquac. Rep. 2024, 37, 102196. [Google Scholar] [CrossRef]
- Zhang, Q.; Xie, Y.; Qin, R.; Huang, E.; Zhang, Z.; Zhou, J.; Liu, D.; Meng, L.; Liu, Y.; Tong, T. Effects of Cadmium on the Growth, Muscle Composition, Digestion, Gene Expression of Antioxidant and Lipid Metabolism in Juvenile Tilapia (Oreochromis niloticus). Front. Mar. Sci. 2024, 11, 1443484. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, E.; Li, X.; Xie, Y.; Meng, L.; Liu, D.; Tong, T.; Wang, J.; Zhang, Q. Serum Biochemistry, Fatty Acids, Lipid Metabolism, Antioxidants, and Inflammation Response Were Significantly Affected by Feeding Different Marine Red Yeast Supplementation in Juvenile Tilapia (GIFT Strain, Oreochromis niloticus). Front. Mar. Sci. 2024, 11, 1426848. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing Real-Time PCR Data by the Comparative CT Method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Azziza, A.; Zahran, E.; Elseady, Y. Dietary Supplementation of Nile Tilapia (Oreochromis niloticus) with Betaine, Chromium Picolinate and a Combination: Effects on Growth Performance, Hematological and Biochemical Parameters. Ann. Vet. Anim. Sci. 2015, 2, 98–108. [Google Scholar]
- Pallaya-Baleta, L.J.; Nuestro Baleta, F.; Magistrado-Candelaria, P.; Cezar Plantado, L.; Bondad Baldo, D.E.; Concina Navarro, M.; Lara Encinas, J. Growth Performance and Economic Viability of Dietary Inclusion of Ipomoea batatas L. Shoot Powder and Extracts in the Practical Diets of Oreochromis niloticus L. Egypt. J. Aquat. Res. 2022, 48, 273–279. [Google Scholar] [CrossRef]
- Al-Wakeel, A. Impacts of Mannan Oligosaccharides (MOS) on Growth Performance Andgastrointestinal Health of Nile Tilapia (Oreochromis niloticus). Mansoura Vet. Med. J. 2019, 20, 7. [Google Scholar] [CrossRef]
- Do-Huu, H.; Nguyen, H.T.N.; Vo, H.T. Effects of Dietary Mannan Oligosaccharides on Growth, Nonspecific Immunity and Tolerance to Salinity Stress and Streptococcus Iniae Challenge in Golden Pompano, Trachinotus Ovatus. Aquac. Nutr. 2023, 2023, 9973909. [Google Scholar] [CrossRef]
- Kishawy, A.T.Y.; Sewid, A.H.; Nada, H.S.; Kamel, M.A.; El-Mandrawy, S.A.M.; Abdelhakim, T.M.N.; El-Murr, A.E.I.; Nahhas, N.E.; Hozzein, W.N.; Ibrahim, D. Mannanoligosaccharides as a Carbon Source in Biofloc Boost Dietary Plant Protein and Water Quality, Growth, Immunity and Aeromonas Hydrophila Resistance in Nile Tilapia (Oreochromis niloticus). Animals 2020, 10, 1724. [Google Scholar] [CrossRef]
- Dossou, S.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Dawood, M.A.O.; El Basuini, M.F.; El-Hais, A.M.; Olivier, A. Effect of Partial Replacement of Fish Meal by Fermented Rapeseed Meal on Growth, Immune Response and Oxidative Condition of Red Sea Bream Juvenile, Pagrus major. Aquaculture 2018, 490, 228–235. [Google Scholar] [CrossRef]
- Casanovas, P.; Walker, S.P.; Johnston, H.; Johnston, C.; Symonds, J.E. Comparative Assessment of Blood Biochemistry and Haematology Normal Ranges between Chinook Salmon (Oncorhynchus tshawytscha) from Seawater and Freshwater Farms. Aquaculture 2021, 537, 736464. [Google Scholar] [CrossRef]
- Grant, K.R. Fish Hematology and Associated Disorders. Vet. Clin. Exot. Anim. Pract. 2015, 18, 83–103. [Google Scholar] [CrossRef] [PubMed]
- Magouz, F.I.; Bassuini, M.I.; Khalafalla, M.M.; Abbas, R.; Sewilam, H.; Aboelenin, S.M.; Soliman, M.M.; Amer, A.A.; Soliman, A.A.; Doan, H.V.; et al. Mannan Oligosaccharide Enhanced the Growth Rate, Digestive Enzyme Activity, Carcass Composition, and Blood Chemistry of Thinlip Grey Mullet (Liza ramada). Animals 2021, 11, 3559. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Koshio, S.; Fadl, S.E.; Ahmed, H.A.; El Asely, A.; Abdel-Daim, M.M.; Alkahtani, S. The Modulatory Effect of Mannanoligosaccharide on Oxidative Status, Selected Immune Parameters and Tolerance against Low Salinity Stress in Red Sea Bream (Pagrus major). Aquac. Rep. 2020, 16, 100278. [Google Scholar] [CrossRef]
- Zhu, L.; Nie, L.; Zhu, G.; Xiang, L.; Shao, J. Advances in Research of Fish Immune-Relevant Genes: A Comparative Overview of Innate and Adaptive Immunity in Teleosts. Dev. Comp. Immunol. 2013, 39, 39–62. [Google Scholar] [CrossRef]
- Hadiuzzaman, M.; Moniruzzaman, M.; Shahjahan, M.; Bai, S.C.; Min, T.; Hossain, Z. β-Glucan: Mode of Action and Its Uses in Fish Immunomodulation. Front. Mar. Sci. 2022, 9, 905986. [Google Scholar] [CrossRef]
- Lee, S.; Katya, K.; Hamidoghli, A.; Hong, J.; Kim, D.-J.; Bai, S.C. Synergistic Effects of Dietary Supplementation of Bacillus subtilis WB60 and Mannanoligosaccharide (MOS) on Growth Performance, Immunity and Disease Resistance in Japanese Eel, Anguilla japonica. Fish Shellfish Immunol. 2018, 83, 283–291. [Google Scholar] [CrossRef]
- Ettefaghdoost, M.; Haghighi, H. Impact of Different Dietary Lutein Levels on Growth Performance, Biochemical and Immuno-Physiological Parameters of Oriental River Prawn (Macrobrachium nipponense). Fish Shellfish Immunol. 2021, 115, 86–94. [Google Scholar] [CrossRef]
- Youssef, I.M.; Khalil, H.A.; Jaber, F.A.; Alhazzaa, R.A.; Alkholy, S.O.; Almehmadi, A.M.; Alhassani, W.E.; Al-Shehri, M.; Hassan, H.; Hassan, M.S.; et al. Influence of Dietary Mannan-Oligosaccharides Supplementation on Hematological Characteristics, Blood Biochemical Parameters, Immune Response and Histological State of Laying Hens. Poult. Sci. 2023, 102, 103071. [Google Scholar] [CrossRef]
- Borén, J.; Taskinen, M.-R.; Björnson, E.; Packard, C.J. Metabolism of Triglyceride-Rich Lipoproteins in Health and Dyslipidaemia. Nat. Rev. Cardiol. 2022, 19, 577–592. [Google Scholar] [CrossRef] [PubMed]
- Yun, B.; Mai, K.; Zhang, W.; Xu, W. Effects of Dietary Cholesterol on Growth Performance, Feed Intake and Cholesterol Metabolism in Juvenile Turbot (Scophthalmus maximus L.) Fed High Plant Protein Diets. Aquaculture 2011, 319, 105–110. [Google Scholar] [CrossRef]
- Chen, J.; Yin, J.; Xie, H.; Lu, W.; Wang, H.; Zhao, J.; Zhu, J. Mannan-Oligosaccharides Promote Gut Microecological Recovery after Antibiotic Disturbance. Food Funct. 2024, 15, 3810–3823. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ke, S.; Strappe, P.; Ning, M.; Zhou, Z. Structurally Orientated Rheological and Gut Microbiota Fermentation Property of Mannans Polysaccharides and Oligosaccharides. Foods 2023, 12, 4002. [Google Scholar] [CrossRef]
- Gelibolu, S.; Yanar, Y.; Genc, M.A.; Genc, E. The Effect of Mannan-Oligosaccharide (MOS) as a Feed Supplement on Growth and Some Blood Parameters of Gilthead Sea Bream (Sparus aurata). Turk. J. Fish. Aquat. Sci. 2018, 18, 817–823. [Google Scholar] [CrossRef]
- Galant, A.L.; Kaufman, R.C.; Wilson, J.D. Glucose: Detection and Analysis. Food Chem. 2015, 188, 149–160. [Google Scholar] [CrossRef]
- Torrecillas, S.; Makol, A.; Betancor, M.B.; Montero, D.; Caballero, M.J.; Sweetman, J.; Izquierdo, M. Enhanced Intestinal Epithelial Barrier Health Status on European Sea Bass (Dicentrarchus labrax) Fed Mannan Oligosaccharides. Fish Shellfish Immunol. 2013, 34, 1485–1495. [Google Scholar] [CrossRef]
- Ananda Kumar, B.S.; Gangadhar, B.; Hegde, G.; Hemaprasanth, K.; Samanta, A.K.; Sahoo, P.K.; Sridhar, N. Effect of Dietary Mannan Oligosaccharide (MOS) on Growth, Digestive Enzymes Activity, Innate Immunity and Disease Resistance against Virulent aeromonas Hydrophila in Peninsular Carp Barbodes carnaticus (Jerdon, 1849). Indian J. Fish 2021, 68, 40–50. [Google Scholar] [CrossRef]
- Wang, T.; Xu, R.; Qiao, F.; Du, Z.-Y.; Zhang, M.-L. Effects of Mannan Oligosaccharides (MOS) on Glucose and Lipid Metabolism of Largemouth Bass (Micropterus salmoides) Fed with High Carbohydrate Diet. Anim. Feed Sci. Technol. 2022, 292, 115449. [Google Scholar] [CrossRef]
- Ravichandr, S.; Kumaravel, K.; Florence, E.P. Nutritive Composition of Some Edible Fin Fishes. Int. J. Zool. Res. 2011, 7, 241–251. [Google Scholar] [CrossRef]
- Ahmed, I.; Jan, K.; Fatma, S.; Dawood, M.A.O. Muscle Proximate Composition of Various Food Fish Species and Their Nutritional Significance: A Review. J. Anim. Physiol. Anim. Nutr. 2022, 106, 690–719. [Google Scholar] [CrossRef] [PubMed]
- Lall, S.P.; Kaushik, S.J. Nutrition and Metabolism of Minerals in Fish. Animals 2021, 11, 2711. [Google Scholar] [CrossRef] [PubMed]
- Sunday, A.; Orjiekwe, C.; Ehiagbonare, J.; Josiah, S.J. Nutritional Composition of Three Different Fishes (Clarias gariepinus, Malapterurus electricus and Tilapia guineensis). Pak. J. Nutr. 2012, 11, 793–797. [Google Scholar] [CrossRef]
- Maqbool, A. Effects of Dietary Protein Levels on the Growth, Feed Utilization and Haemato-Biochemical Parameters of Freshwater Fish, Cyprinus Carpio Var. Specularis. Fish Aquac. J. 2016, 8, 1000187. [Google Scholar] [CrossRef]
- Razeghi Mansour, M.; Akrami, R.; Ghobadi, S.H.; Amani Denji, K.; Ezatrahimi, N.; Gharaei, A. Effect of Dietary Mannan Oligosaccharide (MOS) on Growth Performance, Survival, Body Composition, and Some Hematological Parameters in Giant Sturgeon Juvenile (Huso huso Linnaeus, 1754). Fish Physiol. Biochem. 2012, 38, 829–835. [Google Scholar] [CrossRef]
- de Macêdo, É.S.; de Almeida, O.C.; Lucena, J.E.C.; de Medeiros Torres, M.B.A.; de Almeida Bicudo, Á.J. Combined Effects of Dietary Starch:Protein Ratios and Short Cycles of Fasting/Refeeding on Nile Tilapia Growth and Liver Health. Aquac. Res. 2021, 52, 1139–1149. [Google Scholar] [CrossRef]
- Sriphuttha, C.; Limkul, S.; Pongsetkul, J.; Phiwthong, T.; Massu, A.; Sumniangyen, N.; Boontawan, P.; Ketudat-Cairns, M.; Boontawan, A.; Boonchuen, P. Effect of Fed Dietary Yeast (Rhodotorula paludigena CM33) on Shrimp Growth, Gene Expression, Intestinal Microbial, Disease Resistance, and Meat Composition of Litopenaeus vannamei. Dev. Comp. Immunol. 2023, 147, 104896. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Jiang, J.; Wu, P.; Chen, G.; Jiang, W.; Li, S.; Tang, L.; Kuang, S.; Feng, L.; et al. Effects of Dietary Isoleucine on Growth, the Digestion and Absorption Capacity and Gene Expression in Hepatopancreas and Intestine of Juvenile Jian Carp (Cyprinus carpio Var. Jian). Aquaculture 2012, 368–369, 117–128. [Google Scholar] [CrossRef]
- Dimitroglou, A.; Merrifield, D.L.; Carnevali, O.; Picchietti, S.; Avella, M.; Daniels, C.; Güroy, D.; Davies, S.J. Microbial Manipulations to Improve Fish Health and Production—A Mediterranean Perspective. Fish Shellfish Immunol. 2011, 30, 1–16. [Google Scholar] [CrossRef]
- Torrecillas, S.; Makol, A.; Benítez-Santana, T.; Caballero, M.J.; Montero, D.; Sweetman, J.; Izquierdo, M. Reduced Gut Bacterial Translocation in European Sea Bass (Dicentrarchus labrax) Fed Mannan Oligosaccharides (MOS). Fish Shellfish Immunol. 2011, 30, 674–681. [Google Scholar] [CrossRef]
- Yang, P.; Yang, W.; He, M.; Li, X.; Leng, X.-J. Dietary Synbiotics Improved the Growth, Feed Utilization and Intestinal Structure of Largemouth Bass (Micropterus salmoides) Juvenile. Aquac. Nutr. 2020, 26, 590–600. [Google Scholar] [CrossRef]
- Safari, O.; Shahsavani, D.; Paolucci, M.; Atash, M.M.S. Single or Combined Effects of Fructo- and Mannan Oligosaccharide Supplements on the Growth Performance, Nutrient Digestibility, Immune Responses and Stress Resistance of Juvenile Narrow Clawed Crayfish, Astacus leptodactylus leptodactylus Eschscholtz, 1823. Aquaculture 2014, 432, 192–203. [Google Scholar] [CrossRef]
- Akte, M.N.; Sutriana, A.; Talpur, A.D.; Hashim, R. Dietary Supplementation with Mannan Oligosaccharide Influences Growth, Digestive Enzymes, Gut Morphology, and Microbiota in Juvenile Striped Catfish, Pangasianodon hypophthalmus. Aquacult Int. 2016, 24, 127–144. [Google Scholar] [CrossRef]
- Wu, Z.; Yu, Y.; Chen, X.; Liu, H.; Yuan, J.; Shi, Y.; Chen, X. Effect of Prebiotic Konjac Mannanoligosaccharide on Growth Performances, Intestinal Microflora, and Digestive Enzyme Activities in Yellow Catfish, Pelteobagrus fulvidraco. Fish Physiol. Biochem. 2014, 40, 763–771. [Google Scholar] [CrossRef]
- Jones, R.M.; Desai, C.; Darby, T.M.; Luo, L.; Wolfarth, A.A.; Scharer, C.D.; Ardita, C.S.; Reedy, A.R.; Keebaugh, E.S.; Neish, A.S. Lactobacilli Modulate Epithelial Cytoprotection through the Nrf2 Pathway. Cell Rep. 2015, 12, 1217–1225. [Google Scholar] [CrossRef]
- Giuliani, M.E.; Regoli, F. Identification of the Nrf2–Keap1 Pathway in the European Eel Anguilla anguilla: Role for a Transcriptional Regulation of Antioxidant Genes in Aquatic Organisms. Aquat. Toxicol. 2014, 150, 117–123. [Google Scholar] [CrossRef]
- Chen, F.; Huang, G.; Yang, Z.; Hou, Y. Antioxidant Activity of Momordica charantia Polysaccharide and Its Derivatives. Int. J. Biol. Macromol. 2019, 138, 673–680. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, G. The Derivatization and Antioxidant Activities of Yeast Mannan. Int. J. Biol. Macromol. 2018, 107, 755–761. [Google Scholar] [CrossRef]
- Lu, Z.; Feng, L.; Jiang, W.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.; Tang, L.; Li, S.; Zhong, C.; et al. Mannan Oligosaccharides Alleviate Oxidative Injury in the Head Kidney and Spleen in Grass Carp (Ctenopharyngodon idella) via the Nrf2 Signaling Pathway after Aeromonas Hydrophila Infection. J. Anim. Sci. Biotechnol. 2023, 14, 58. [Google Scholar] [CrossRef]
- Moustafa, E.M.; Farrag, F.A.; Shukry, M.; Salah El-Din, H.M.; Omar, A.A. Ameliorative Effect of BIO-MOS® as a Dietary Supplementation on Growth Performance, Physiological Response, Oxidative Status, and Immunity-Linked Gene Expression in Nile Tilapia (Oreochromis niloticus) Fingerlings Challenged with Aeromonas Hydrophila. Open Vet. J. 2024, 14, 116–135. [Google Scholar] [CrossRef]
- Balabanova, L.; Bondarev, G.; Seitkalieva, A.; Son, O.; Tekutyeva, L. Insights into Alkaline Phosphatase Anti-Inflammatory Mechanisms. Biomedicines 2024, 12, 2502. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Wang, S.; Jiang, H.; Nie, G.; Li, X. Responses of Acid/Alkaline Phosphatase, Lysozyme, and Catalase Activities and Lipid Peroxidation to Mercury Exposure during the Embryonic Development of Goldfish Carassius auratus. Aquat. Toxicol. 2012, 120–121, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Biller, J.D.; Polycarpo, G.D.V.; Moromizato, B.S.; Sidekerskis, A.P.D.; da Silva, T.D.; dos Reis, I.C.; Fierro-Castro, C. Lysozyme Activity as an Indicator of Innate Immunity of Tilapia (Oreochromis niloticus) When Challenged with LPS and Streptococcus agalactiae. R. Bras. Zootec. 2021, 50, e20210053. [Google Scholar] [CrossRef]
- Lan, P.P.; Giang, V.H.; Nhung, P.H.; Nghia, P.T.; Nhung, L.T.H. Gene Expression and Enzymatic Activity of Alkaline Phosphatase in Different Tissues of Penaeus Monodon. VNU J. Sci. Nat. Sci. Technol. 2024, 40. [Google Scholar] [CrossRef]
- Hoving, L.R.; van der Zande, H.J.P.; Pronk, A.; Guigas, B.; van Dijk, K.W.; Harmelen, V. van Dietary Yeast-Derived Mannan Oligosaccharides Have Immune-Modulatory Properties but Do Not Improve High Fat Diet-Induced Obesity and Glucose Intolerance. PLoS ONE 2018, 13, e0196165. [Google Scholar] [CrossRef]
- Yuan, X.Y.; Liu, W.B.; Liang, C.; Sun, C.X.; Xue, Y.F.; Wan, Z.D.; Jiang, G.Z. Effects of Partial Replacement of Fish Meal by Yeast Hydrolysate on Complement System and Stress Resistance in Juvenile Jian Carp (Cyprinus carpio Var. Jian). Fish Shellfish Immunol. 2017, 67, 312–321. [Google Scholar] [CrossRef]
- Shirani, M.; Mahboobi Soofiani, N.; Farahmand, H.; Jalali, A.H. Comparative Epigenomic Profiling and Gene Expression Patterns of Zebrafish, Danio Rerio, Administrated by Dietary Agrimos. J. Agric. Sci. Technol. 2020, 22, 1487–1500. [Google Scholar]
- Sottile, M.L.; Nadin, S.B. Heat Shock Proteins and DNA Repair Mechanisms: An Updated Overview. Cell Stress Chaperones 2018, 23, 303–315. [Google Scholar] [CrossRef]
- Liu, B.; Xu, L.; Ge, X.; Xie, J.; Xu, P.; Zhou, Q.; Pan, L.; Zhang, Y. Effects of Mannan Oligosaccharide on the Physiological Responses, HSP70 Gene Expression and Disease Resistance of Allogynogenetic Crucian Carp (Carassius auratus gibelio) under Aeromonas hydrophila Infection. Fish Shellfish Immunol. 2013, 34, 1395–1403. [Google Scholar] [CrossRef]
- Wang, T.; Secombes, C.J. The Cytokine Networks of Adaptive Immunity in Fish. Fish Shellfish Immunol. 2013, 35, 1703–1718. [Google Scholar] [CrossRef]
- Yin, M.; Zhang, Y.; Li, H. Advances in Research on Immunoregulation of Macrophages by Plant Polysaccharides. Front. Immunol. 2019, 10, 145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Geng, M.; Li, K.; Gao, H.; Jiao, X.; Ai, K.; Wei, X.; Yang, J. TGF-Β1 Suppresses the T-Cell Response in Teleost Fish by Initiating Smad3- and Foxp3-Mediated Transcriptional Networks. J. Biol. Chem. 2023, 299, 102843. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Wang, S.; Cai, Y.; Wu, Y.; Tian, L.; Wang, S.; Jiang, L.; Guo, W.; Sun, Y.; Zhou, Y. Effects of Dietary Mannan Oligosaccharide Supplementation on Growth Performance, Antioxidant Capacity, Non-Specific Immunity and Immune-Related Gene Expression of Juvenile Hybrid Grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). Aquaculture 2020, 523, 735195. [Google Scholar] [CrossRef]
- Bai, N.; Gu, M.; Xu, X.; Xu, B.; Krogdahl, Å. Protective Effects of Mannan Oligosaccharides on Turbot Scophthalmus maximus Suffering from Soy Enteropathy. Aquaculture 2017, 476, 141–151. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H. Regulation of Autophagy by mTOR Signaling Pathway. In Autophagy: Biology and Diseases: Basic Science; Qin, Z.H., Ed.; Springer: Singapore, 2019; pp. 67–83. ISBN 978-981-15-0602-4. [Google Scholar]
- Hemalatha, M.; Subathra Devi, C. A Statistical Optimization by Response Surface Methodology for the Enhanced Production of Riboflavin from Lactobacillus plantarum–HDS27: A Strain Isolated from Bovine Milk. Front. Microbiol. 2022, 13, 982260. [Google Scholar] [CrossRef]
- Chen, L.; Feng, L.; Jiang, W.D.; Jiang, J.; Wu, P.; Zhao, J.; Kuang, S.Y.; Tang, L.; Tang, W.N.; Zhang, Y.A.; et al. Intestinal Immune Function, Antioxidant Status and Tight Junction Proteins mRNA Expression in Young Grass Carp (Ctenopharyngodon idella) Fed Riboflavin Deficient Diet. Fish Shellfish Immunol. 2015, 47, 470–484. [Google Scholar] [CrossRef]
- Tang, J.; Liu, J.; Yan, Q.; Gu, Z.; August, A.; Huang, W.; Jiang, Z. Konjac Glucomannan Oligosaccharides Prevent Intestinal Inflammation Through SIGNR1-Mediated Regulation of Alternatively Activated Macrophages. Mol. Nutr. Food Res. 2021, 65, 2001010. [Google Scholar] [CrossRef]
- Lu, Z.Y.; Feng, L.; Jiang, W.D.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.Y.; Tang, L.; Li, S.W.; Zhong, C.B.; et al. Dietary Mannan Oligosaccharides Strengthens Intestinal Immune Barrier Function via Multipath Cooperation during Aeromonas hydrophila Infection in Grass Carp (Ctenopharyngodon idella). Front. Immunol. 2022, 13, 1010221. [Google Scholar] [CrossRef]
Ingredients | Mannan Oligosaccharides Levels (%) | |||||
---|---|---|---|---|---|---|
0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | |
Mannan oligosaccharides | 0.00 | 2.00 | 4.00 | 6.00 | 8.00 | 10.00 |
Soybean oil | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 |
Fish oil | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 |
Chicken meal | 80.00 | 80.00 | 80.00 | 80.00 | 80.00 | 80.00 |
Rapeseed meal | 200.00 | 200.00 | 200.00 | 200.00 | 200.00 | 200.00 |
Fermented soybean meal | 350.00 | 350.00 | 350.00 | 350.00 | 350.00 | 350.00 |
Dextrin | 243.90 | 241.90 | 239.90 | 237.90 | 235.90 | 233.90 |
Gelatin | 50.00 | 50.00 | 50.00 | 50.00 | 50.00 | 50.00 |
Vitamins mixture * | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 |
Minerals mixture ** | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 |
Choline chloride | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
Sodium chloride | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
Adhesive | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
Attractant | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Preservative | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Proximate composition (%) | ||||||
Crude protein | 34.40 | 34.40 | 34.40 | 34.40 | 34.40 | 34.40 |
Crude lipid | 7.88 | 7.88 | 7.88 | 7.88 | 7.88 | 7.88 |
Ash | 7.66 | 7.66 | 7.66 | 7.66 | 7.66 | 7.66 |
Moisture | 9.20 | 9.20 | 9.20 | 9.20 | 9.20 | 9.20 |
Crude fiber | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 |
Gross energy (Mcal/kg) | 3.90 | 3.90 | 3.90 | 3.90 | 3.90 | 3.90 |
Gene | Primer Sequence (5′-3′) | Tm (°C) | Product Size (bp) | GenBank | R2 | Slope | Efficiency (%) |
---|---|---|---|---|---|---|---|
β-actin 1 | F: AAGGACCTGTACGCCAACAC | 60 | 196 | KJ126772.1 | 0.991 | −3.30 | 100.92 |
R: ACATCTGCTGGAAGGTGGAC | |||||||
sod 2 | F: GTCTGCTGTTACGGTGGCTGTAC | 60 | 82 | XM_003449940.5 | 0.995 | −3.40 | 96.84 |
R: ATCAATGCGAAGTCTTCCACTGTCC | |||||||
cat 3 | F: TTGAAGGCTGTGCATCCAGACTATG | 60 | 129 | XM_003447521.5 | 0.993 | −3.35 | 98.84 |
R: TGAGGCGGTGATGGCTGAGG | |||||||
gsh-px 4 | F: AAAATGTGGCGTCTCTCTGAGGAAC | 60 | 85 | NM_001279711.1 | 0.997 | −3.29 | 101.35 |
R: AGACCTTCGGCGGAGTAGCG | |||||||
gst 5 | F: TTGCTGATGTGCTGCTTGTTGAATG | 60 | 125 | XM_025897213.1 | 0.992 | −3.41 | 96.45 |
R: CCTGCTGATGGCGGGGATTTG | |||||||
nrf2 6 | F: GGAAATGAAAGTGCTGCTGTGTC | 60 | 134 | XM_003447296.5 | 0.993 | −3.24 | 103.54 |
R: TCTGAGTCTGGCTGTTCTGTTATTAG | |||||||
lyz 7 | F: GCCGCTGGTGGTGCAATGAC | 60 | 148 | XM_013265574.3 | 0.998 | −3.29 | 101.35 |
R: CAGGCAACCCAGGCTGTGATG | |||||||
alp 8 | F: ATGGAGGAGAGGATGTGGCTGTG | 60 | 128 | XM_005469634.4 | 0.992 | −3.45 | 94.92 |
R: GTGTTCCCTGTTCTGCCCGATAC | |||||||
tnf-α 9 | F: TCGTCGTCGTGGCTCTTTGTTTAG | 60 | 100 | NM_001279533.1 | 0.991 | −3.38 | 97.63 |
R: AGTGCTTCTGGCTGTCCTAATTGTG | |||||||
il-1β 10 | F: ACAAGGATGACGACAAGCCAACC | 60 | 147 | XM_019365844.2 | 0.996 | −3.36 | 98.43 |
R: GGACAGACATGAGAGTGCTGATGC | |||||||
il-6 11 | F: GATGCTGGCCGCTCTGCTTC | 60 | 100 | XM_019350387.2 | 0.994 | −3.37 | 98.03 |
R: CATCTCCGCCTCCTCTGTCICC | |||||||
il-8 12 | F: CTGTGAAGGCATGGGTGTGGAG | 60 | 136 | NM_001279704.1 | 0.997 | −3.33 | 99.66 |
R: CAGTGTGGCAATGATCTCTGTCTCC | |||||||
il-10 13 | F: TGGAGAGCAGAGGTCTATACAAGGC | 60 | 117 | XM_013269189.3 | 0.992 | −3.32 | 100.09 |
R: TCAGCAGGTCTTCGAGCAGAGG | |||||||
inf-γ 14 | F: GAAACAACTGCCCACTCCGAGTC | 60 | 110 | NM_001287402.1 | 0.994 | −3.35 | 98.84 |
R: TGCCTGGTAGCGAGCCTGAG | |||||||
tgf-β 15 | F: TGCCTCCTCTCCACTGAGTGATTC | 60 | 80 | NM_001311325.1 | 0.990 | −3.44 | 95.30 |
R: CTCCTCCGACTTCCCTTTCAATGC | |||||||
hsp70 16 | F: CAAGGTGATTTCAGACGGAGGGAAG | 60 | 123 | XM_003442456.5 | 0.995 | −3.43 | 95.68 |
R: GCCTCTGCGATCTCCTTCATCTTC | |||||||
mtor 17 | F: TGACCATCCTCAACCTGCTTCC | 60 | 123 | XM_003449131.5 | 0.992 | −3.40 | 96.84 |
R: CCGTCCTCTCCTTCTCCTTCTTC | |||||||
akt 18 | F: ATGATGTGCGGTAGACTGCCTTTC | 60 | 130 | XM 003447818.5 | 0.997 | −3.38 | 97.63 |
R: TCAGAAGACCAGAGAGCAGAGAGC | |||||||
s6k1 19 | F: CGGTGTCCTCCAGTCTCCTC | 60 | 150 | NM_001287402.1 | 0.992 | −3.42 | 96.06 |
R: GGATAGGCTTGCTGCTTCATCTG | |||||||
pi3k 20 | F: GATGAAGAGGCGTCGGTGTGAAC | 60 | 110 | XM_005463451.4 | 0.993 | −3.38 | 101.78 |
R: AGAGCGGCGAAGTCCAGGATG |
Index | Mannan Oligosaccharide Levels (%) | |||||
---|---|---|---|---|---|---|
0 | 0.20 | 0.40 | 0.60 | 0.80 | 1.00 | |
TP 1 (g/L) | 11.22 ± 1.49 c | 12.64 ± 0.78 bc | 15.03 ± 1.94 ab | 15.29 ± 0.85 ab | 15.77 ± 1.32 a | 15.73 ± 2.01 a |
ALB 2 (g/L) | 6.08 ± 0.19 c | 7.59 ± 0.12 b | 8.19 ± 0.19 b | 8.09 ± 0.21 b | 7.93 ± 0.35 b | 9.56 ± 0.85 a |
GLB 3 (g/L) | 5.14 ± 1.39 a | 5.72 ± 0.43 a | 6.64 ± 1.80 a | 5.73 ± 1.68 a | 7.69 ± 1.32 a | 7.80 ± 2.27 a |
TG 4 (mmol/L) | 0.68 ± 0.03 a | 0.55 ± 0.04 bc | 0.50 ± 0.04 c | 0.23 ± 0.01 e | 0.41 ± 0.01 d | 0.57 ± 0.03 b |
GLU 5 (mmol/L) | 2.71 ± 0.55 c | 3.83 ± 0.59 bc | 4.47 ± 0.64 ab | 4.79 ± 0.52 ab | 4.96 ± 0.62 ab | 5.18 ± 0.83 a |
HDL 6 (mmol/L) | 0.57 ± 0.09 d | 0.76 ± 0.08 c | 1.01 ± 0.08 b | 1.31 ± 0.05 a | 0.95 ± 0.05 b | 0.79 ± 0.12 c |
LDL 7 (mmol/L) | 2.28 ± 0.11 a | 1.82 ± 0.20 b | 1.63 ± 0.20 b | 1.11 ± 0.30 c | 1.56 ± 0.11 b | 1.76 ± 0.11 b |
AST 8 (U/L) | 81.62 ± 1.47 a | 75.41 ± 1.02 b | 72.58 ± 1.87 bc | 70.20 ± 2.41 c | 71.75 ± 2.18 c | 71.72 ± 0.92 c |
ALT 9 (U/L) | 72.72 ± 0.97 a | 67.60 ± 1.09 b | 63.62 ± 1.71 c | 62.70 ± 1.75 c | 63.60 ± 1.09 c | 63.09 ± 1.63 c |
LYZ 10 (μg/mL) | 2.66 ± 0.15 e | 3.60 ± 0.15 c | 4.16 ± 0.10 b | 4.87 ± 0.15 a | 4.09 ± 0.12 b | 3.25 ± 0.34 d |
ALP 11 (King Unit/100 mL) | 6.08 ± 0.28 b | 6.69 ± 0.14 ab | 7.21 ± 0.33 a | 7.26 ± 0.38 a | 7.30 ± 0.62 a | 7.24 ± 0.26 a |
ACP 12 (King Unit/100 mL) | 6.02 ± 0.35 b | 6.49 ± 0.31 ab | 7.15 ± 0.64 ab | 7.31 ± 0.38 a | 7.68 ± 1.21 a | 7.51 ± 0.26 a |
LDH 13 (U/L) | 1038.46 ± 140.85 a | 945.59 ± 66.77 ab | 825.92 ± 96.30 b | 807.19 ± 104.13 b | 793.27 ± 84.85 b | 844.78 ± 82.03 b |
Index | Mannan Oligosaccharide Levels (%) | |||||
---|---|---|---|---|---|---|
0 | 0.20 | 0.40 | 0.60 | 0.80 | 1.00 | |
Crude protein (%) | 17.85 ± 1.23 | 17.44 ± 1.25 | 17.59 ± 0.26 | 18.52 ± 0.89 | 18.08 ± 2.30 | 18.37 ± 0.77 |
Crude lipid (%) | 1.47 ± 0.11 b | 1.62 ± 0.13 b | 1.65 ± 0.20 b | 1.88 ± 0.42 a | 1.54 ± 0.17 b | 1.45 ± 0.07 b |
Ash (%) | 1.42 ± 0.23 | 1.40 ± 0.14 | 1.42 ± 0.16 | 1.38 ± 0.13 | 1.41 ± 0.04 | 1.44 ± 0.12 |
Moisture (%) | 79.48 ± 0.28 | 79.58 ± 1.27 | 79.39 ± 1.12 | 78.18 ± 0.44 | 79.20 ± 2.72 | 79.05 ± 1.54 |
Index | Mannan Oligosaccharide Levels (%) | |||||
---|---|---|---|---|---|---|
0 | 0.20 | 0.40 | 0.60 | 0.80 | 1.00 | |
Lipase (U/mg prot) | 683.22 ± 26.96 d | 732.72 ± 10.06 bc | 774.01 ± 17.09 b | 827.88 ± 33.56 a | 740.61 ± 11.89 bc | 727.15 ± 29.30 c |
α-Amylase (U/mg prot) | 257.91 ± 48.27 c | 317.32 ± 5.22 b | 347.33 ± 6.43 b | 442.85 ± 16.78 a | 352.86 ± 4.70 b | 324.08 ± 36.19 b |
Trypsin (U/mg prot) | 1580.82 ± 53.95 c | 1642.47 ± 13.84 b | 1667.67 ± 23.37 b | 1747.49 ± 21.68 a | 1652.49 ± 19.56 b | 1633.07 ± 18.84 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Li, L.; Ma, Z.; He, W.; Huang, E.; Meng, L.; Li, L.; Tong, T.; Yang, H.; Liu, Y.; et al. Effects of Mannan Oligosaccharides on Growth, Antioxidant and Immune Performance, and mTOR Signaling Pathway in Juvenile Tilapia (Oreochromis niloticus). Animals 2025, 15, 2459. https://doi.org/10.3390/ani15162459
Zhang Q, Li L, Ma Z, He W, Huang E, Meng L, Li L, Tong T, Yang H, Liu Y, et al. Effects of Mannan Oligosaccharides on Growth, Antioxidant and Immune Performance, and mTOR Signaling Pathway in Juvenile Tilapia (Oreochromis niloticus). Animals. 2025; 15(16):2459. https://doi.org/10.3390/ani15162459
Chicago/Turabian StyleZhang, Qin, Luoqing Li, Ziyi Ma, Wenyan He, Enhao Huang, Liuqing Meng, Lan Li, Tong Tong, Huizan Yang, Yongqiang Liu, and et al. 2025. "Effects of Mannan Oligosaccharides on Growth, Antioxidant and Immune Performance, and mTOR Signaling Pathway in Juvenile Tilapia (Oreochromis niloticus)" Animals 15, no. 16: 2459. https://doi.org/10.3390/ani15162459
APA StyleZhang, Q., Li, L., Ma, Z., He, W., Huang, E., Meng, L., Li, L., Tong, T., Yang, H., Liu, Y., & Liu, H. (2025). Effects of Mannan Oligosaccharides on Growth, Antioxidant and Immune Performance, and mTOR Signaling Pathway in Juvenile Tilapia (Oreochromis niloticus). Animals, 15(16), 2459. https://doi.org/10.3390/ani15162459