Increased Temporal Overlap in Diel Activity Patterns Potentially Intensifies Interspecific Competition Among Sympatric Large Carnivores in the Sanjiangyuan Region of China
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Camera Trapping and Data Pre-Processing
2.3. Daily Activity Pattern Analysis
2.4. Activity Time Overlap Analysis
3. Results
3.1. The Degree of Daily Activity Rhythm Overlap Throughout the Year
3.2. The Degree of Daily Activity Rhythm Overlap During the Cold Season
3.3. The Degree of Daily Activity Rhythm Overlap During the Warm Season
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ripple, W.J.; Estes, J.A.; Beschta, R.L.; Wilmers, C.C.; Ritchie, E.G.; Hebblewhite, M.; Berger, J.; Elmhagen, B.; Letnic, M.; Nelson, M.P.; et al. Status and ecological effects of the world’s largest carnivores. Science 2014, 343, 1241484. [Google Scholar] [CrossRef]
- Clucas, B.; Mchugh, K.; Caro, T. Flagship species on covers of US conservation and nature magazines. Biodivers. Conserv. 2008, 17, 1517–1528. [Google Scholar] [CrossRef]
- Suraci, J.P.; Clinchy, M.; Dill, L.M.; Roberts, D.; Zanette, L.Y. Fear of large carnivores causes a trophic cascade. Nat. Commun. 2016, 7, 10698. [Google Scholar] [CrossRef] [PubMed]
- Ford, A.T.; Goheen, J.R.; Augustine, D.J.; Kinnaird, M.F.; O’Brien, T.G.; Palmer, T.M.; Pringle, R.M.; Woodroffe, R. Recovery of African wild dogs suppresses prey but does not trigger a trophic cascade. Ecology 2015, 96, 2705–2714. [Google Scholar] [CrossRef]
- Kuijper, D.P.J.; Churski, M.; Trouwborst, A.; Heurich, M.; Cromsigt, J.P.G.M. Keep the wolf from the door: How to conserve wolves in Europe’s human-dominated landscapes? Biol. Conserv. 2019, 235, 102–111. [Google Scholar] [CrossRef]
- Karanth, K.U.; Gopalaswamy, A.M.; Kumar, N.S.; Vaidyanathan, S.; Nichols, J.D.; Mackenzie, D.I. Monitoring carnivore populations at the landscape scale: Occupancy modelling of tigers from sign surveys. J. Appl. Ecol. 2011, 48, 1048–1056. [Google Scholar] [CrossRef]
- Suryawanshi, K.; Reddy, A.; Sharma, M.; Khanyari, M.; Bijoor, A.; Rathore, D.; Jaggi, H.; Khara, A.; Malgaonkar, A.; Ghoshal, A. Estimating snow leopard and prey populations at large spatial scales. Ecol. Solut. Evid. 2021, 2, e12115. [Google Scholar] [CrossRef]
- Cong, W.; Li, J.; Hacker, C.E.; Li, Y.; Zhang, Y.; Jin, L.X.; Zhang, Y.; Li, D.Q.; Xue, Y.D.; Zhang, Y.G. Different coexistence patterns between apex carnivores and mesocarnivores based on temporal, spatial, and dietary niche partitioning analysis in Qilian Mountain National Park, China. eLife 2024, 13, RP90559. [Google Scholar] [CrossRef]
- Wang, D.; Li, Q.B.; Hou, L.Y.; Su, X.; Lian, X.M. Spatiotemporal overlap among snow leopard, bharal, and free-ranging livestock: Suggestions on mitigating human-snow leopard conflict. Glob. Ecol. Conserv. 2024, 53, e03029. [Google Scholar] [CrossRef]
- Rowcliffe, J.M.; Kays, R.; Kranstauber, B.; Carbone, C.; Jansen, P.A.; Fisher, D. Quantifying levels of animal activity using camera trap data. Methods Ecol. Evol. 2014, 5, 1170–1179. [Google Scholar] [CrossRef]
- Kronfeld-Schor, N.; Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 153–181. [Google Scholar] [CrossRef]
- Bennie, J.J.; Duffy, J.P.; Inger, R.; Gaston, K.J. Biogeography of time partitioning in mammals. Proc. Natl. Acad. Sci. USA 2014, 111, 13727–13732. [Google Scholar] [CrossRef]
- Valeix, M.; Simon, C.J.; Hervé, F. Interference competition and temporal niche shifts: Elephants and herbivore communities at waterholes. Oecologia 2007, 153, 739–748. [Google Scholar] [CrossRef]
- Marinho, P.H.; Fonseca, C.R.; Sarmento, P.; Fonseca, C.; Venticinque, E.M. Temporal niche overlap among mesocarnivores in a Caatinga dry forest. Eur. J. Wildl. Res. 2020, 66, 34. [Google Scholar] [CrossRef]
- Marneweck, C.; Marneweck, D.G.; Schalkwyk, O.L.V.; Beverley, G.; Parker, D.M. Spatial partitioning by a subordinate carnivore is mediated by conspecific overlap. Oecologia 2019, 191, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Mondal, K.; Gupta, S.; Bhattacharjee, S.; Qureshi, Q.; Sankar, K. Response of leopards to re-introduced tigers in Sariska Tiger Reserve, Western India. Int. J. Biodivers. Conserv. 2012, 4, 228–236. [Google Scholar] [CrossRef]
- Hayward, M.W.; Slotow, R. Temporal partitioning of activity in large African carnivores: Tests of multiple hypotheses. S Afr. J. Wildl. Res. 2009, 39, 109–125. [Google Scholar] [CrossRef]
- Schoener, T.W. Resource partitioning in ecological communities. Science 1974, 185, 27–39. [Google Scholar] [CrossRef]
- Andersen, G.E.; Johnson, C.N.; Jones, M.E. Space use and temporal partitioning of sympatric Tasmanian devils and spotted-tailed quolls. Austral Ecol. 2020, 45, 355–365. [Google Scholar] [CrossRef]
- Jin, Z.N.; Zhuang, Q.L.; He, J.S.; Luo, T.X.; Shi, Y. Phenology shift from 1989 to 2008 on the Tibetan Plateau: An analysis with a process-based soil physical model and remote sensing data. Clim. Change 2013, 119, 435–449. [Google Scholar] [CrossRef]
- Ma, B.R.; Xie, Y.X.; Zhang, T.Z.; Zeng, W.H.; Hu, G.Z. Identification of conflict between wildlife living spaces and human activity spaces and adjustments in/around protected areas under climate change: A case study in the Three-River Source Region. J. Environ. Manag. 2020, 262, 110322. [Google Scholar] [CrossRef]
- Cai, Z.Y.; Qin, W.; Gao, H.M.; Wu, T.; Chi, X.W.; Yang, J.D.; Miao, Z.Y.; Zhang, J.J.; Song, P.F.; Lian, X.M.; et al. Species diversity and fauna of mammals in Sanjiangyuan National Park. Acta Theriol. Sin. 2019, 39, 410–420. [Google Scholar]
- Li, J.; Yin, H.; Wang, D.J.; Jiagong, Z.L.; Lu, Z. Human-snow leopard conflicts in the Sanjiangyuan Region of the Tibetan Plateau. Biol. Conserv. 2013, 166, 118–123. [Google Scholar] [CrossRef]
- Lu, Q.; Cheng, C.; Xiao, L.Y.; Li, J.; Li, X.Y.; Zhao, X.; Lu, Z.; Zhao, J.D.; Yao, M. Food webs reveal coexistence mechanisms and community organization in carnivores. Curr. Biol. 2023, 33, 647–659. [Google Scholar] [CrossRef]
- Chai, Y.H.; Mao, X.N.; Gama, C.L.Q.J.; Li, G.G.; Sun, N. Spatiotemporal niche relationship between leopard and its sympatric carnivores in the forest of Baizha, Qinghai Province. Acta Ecol. Sin. 2024, 44, 706–716. [Google Scholar] [CrossRef]
- Dai, Y.C.; Li, D.Q.; Hacker, C.E.; Zhang, Y.G.; Zhang, Y.; Liu, F.; Li, D.Q. Human-carnivore conflicts and mitigation options in Qinghai Province, China. J. Nat. Conserv. 2020, 53, 125776. [Google Scholar] [CrossRef]
- Chu, M.Y.; Liang, S.J.; Li, P.Y.; Jia, D.; Maierdiyali, A.; Li, X.Y.; Jiang, N.; Zhao, X.; Li, F.X.; Xiao, L.Y.; et al. Population dynamic of snow leopard (Panthera uncia) based on camera trap monitoring in Yunta, Sanjiangyuan National Nature Reserve, China. Biodiv. Sci. 2022, 30, 22157. [Google Scholar] [CrossRef]
- Karanth, K.U.; Srivathsa, A.; Vasudev, D.; Puri, M.; Parameshwaran, R.; Kumar, N.S. Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient. Proc. R. Soc. B 2017, 284, 20161806. [Google Scholar] [CrossRef]
- Dai, Y.C.; Hacker, C.E.; Cao, Y.; Cao, H.N.; Xue, Y.D.; Ma, X.D.; Liu, H.D.; Zahoor, B.; Zhang, Y.G.; Li, D.Q. Implementing a comprehensive approach to study the causes of human-bear (Ursus arctos pruinosus) conflicts in the Sanjiangyuan region, China. Sci. Total Environ. 2021, 772, 145012. [Google Scholar] [CrossRef]
- Mahmood, R.; Jia, S.F.; Lv, A.F.; Babel, M.S. An integrative analysis of hydroclimatic elements in the three-river source region for historical and future periods: Shift toward an intensified hydrological cycle. Int. Soil Water Conserv. Res. 2025, 13, 43–66. [Google Scholar] [CrossRef]
- Zheng, X.K.; Liang, S.H.; Yan, D.Z.; Kuang, X.X.; Wan, L. Mechanisms of climate-induced lake dynamics in the Source Region of Three Rivers, Tibetan Plateau. J. Hydrol. Reg. Stud. 2025, 59, 102323. [Google Scholar] [CrossRef]
- Zheng, K.; Liu, X.; Zou, X.Y.; Wang, Z.Q. Impacts of climate variations and human activities on the net primary productivity of different grassland types in the Three-River Headwaters Region. Remote Sens. 2025, 17, 471. [Google Scholar] [CrossRef]
- Liu, X.H.; Wu, P.F.; Songer, M.; Cai, Q.; He, X.B.; Zhu, Y.; Shao, X.M. Monitoring wildlife abundance and diversity with infrared camera traps in Guanyinshan Nature Reserve of Shaanxi Province, China. Ecol. Indic. 2013, 33, 121–128. [Google Scholar] [CrossRef]
- Ohashi, H.; Saito, M.; Horie, R.; Tsunoda, H.; Noba, H.; Ishii, H.; Kuwabara, T.; Hiroshige, Y.; Koike, S.; Hoshino, Y. Differences in the activity pattern of the wild boar Sus scrofa related to human disturbance. Eur. J. Wildl. Res. 2013, 59, 167–177. [Google Scholar] [CrossRef]
- Ridout, M.S.; Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agr. Biol. Environ. St. 2009, 14, 322–337. [Google Scholar] [CrossRef]
- Linkie, M.; Ridout, M.S. Assessing tiger–prey interactions in Sumatran rainforests. J. Zool. 2011, 3, 224–229. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, R.S.; Ding, Y.J.; Zhao, Q.D.; Li, H.Y.; Liu, Z.W. Variation in the hydrological cycle in the Three-River headwaters region based on multi-source data. Front. Environ. Sci. 2022, 10, 1088467. [Google Scholar] [CrossRef]
- Nouvellet, P.; Rasmussen, G.S.A.; Macdonald, D.W.; Courchamp, F. Noisy clocks and silent sunrises: Measurement methods of daily activity pattern. J. Zool. 2012, 286, 179–184. [Google Scholar] [CrossRef]
- Vazquez, C.; Rowcliffe, J.M.; Spoelstra, K.; Jansen, P.A. Comparing diel activity patterns of wildlife across latitudes and seasons: Time transformations using day length. Methods Ecol. Evol. 2019, 10, 2057–2066. [Google Scholar] [CrossRef]
- Azevedo, F.C.; Lemos, F.G.; Freitas-Junior, M.C.; Rocha, D.G.; Azevedo, F.C.C. Puma activity patterns and temporal overlap with prey in a human-modified landscape at Southeastern Brazil. J. Zool. 2018, 305, 246–255. [Google Scholar] [CrossRef]
- Franchini, M.; Atzeni, L.; Lovari, S.; Nasanbat, B.; Ravchig, S.; Herrador, F.C.; Bombieri, G.; Augugliaro, C. Spatiotemporal behavior of predators and prey in an arid environment of Central Asia. Curr. Zool. 2024, 70, 670–681. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Zhang, Y.Y.; Liu, Z.X.; Dayananda, B.; Fu, X.B.; Yuan, D.; Tu, Z.B.; Luo, C.P.; Li, J.Q. Temporal niche patterns of large mammals in Wanglang National Nature Reserve, China. Glob. Ecol. Conserv. 2020, 22, e01015. [Google Scholar] [CrossRef]
- Hong, Y.; Zhang, M.H.; Cheng, Y.H.; Bian, X.X.; Tan, Y.C.; Shi, X.G.; Zhang, J.D.; Hull, V. Spatio-temporal interactions between snow leopards, prey, and livestock implications for coexistence. Biol. Conserv. 2025, 308, 111253. [Google Scholar] [CrossRef]
- Fernández-Sepúlveda, J.; Martín, C.A. Conservation status of the world’s carnivorous mammals (order Carnivora). Mamm. Biol. 2022, 102, 1911–1925. [Google Scholar] [CrossRef]
- Xiao, L.Y.; Hua, F.; Knops, J.M.H.; Zhao, X.; Mishra, C.; Lovari, S.; Alexander, J.S.; Weckworth, B.; Lu, Z. Spatial separation of prey from livestock facilitates coexistence of a specialized large carnivore with human land use. Anim. Conserv. 2022, 25, 628–638. [Google Scholar] [CrossRef]
- Sunarto, S.; Kelly, M.J.; Parakkasi, K.; Hutajulu, M.B. Cat coexistence in central Sumatra: Ecological characteristics, spatial and temporal overlap, and implications for management. J. Zool. 2015, 296, 104–115. [Google Scholar] [CrossRef]
- Ramesh, T.; Kalle, R.; Sankar, K.; Qureshi, Q. Spatio-temporal partitioning among large carnivores in relation to major prey species in Western Ghats. J. Zool. 2012, 287, 269–275. [Google Scholar] [CrossRef]
- Li, Z.L.; Wang, T.M.; Smith, J.L.D.; Feng, R.N.; Feng, L.M.; Mou, P.; Ge, J.P. Coexistence of two sympatric flagship carnivores in the human-dominated forest landscapes of Northeast Asia. Landsc. Ecol. 2019, 34, 291–301. [Google Scholar] [CrossRef]
- Bischof, R.; Ali, H.; Kabir, M.; Hameed, S.; Nawaz, M.A. Being the underdog: An elusive small carnivore uses space with prey and time without enemies. J. Zool. 2014, 293, 40–48. [Google Scholar] [CrossRef]
- Caceres, N.C.; Machado, A.F. Spatial, dietary and temporal niche dimensions in ecological segregation of two sympatric, congeneric marsupial species. Open Ecol. J. 2013, 6, 10–23. [Google Scholar] [CrossRef]
- Farris, Z.J.; Gerber, B.D.; Karpanty, S.; Murphy, A.; Wampole, E.; Ratelolahy, F.; Kelly, M.J. Exploring and interpreting spatiotemporal interactions between native and invasive carnivores across a gradient of rainforest degradation. Biol. Invasions 2020, 22, 2033–2047. [Google Scholar] [CrossRef]
- Li, Z.L.; Duo, L.A.; Li, S.; Wang, T.M. Competition and coexistence among terrestrial mammalian carnivores. Biodiv. Sci. 2021, 29, 81–97. [Google Scholar] [CrossRef]
- Palomarest, F.; Caro, T.M. Interspecific killing among mammalian carnivores. Am. Nat. 1999, 153, 492–508. [Google Scholar] [CrossRef]
- Li, X.H.; Ma, L.M.; Hu, D.Z.; Ma, D.F.; Li, R.Q.; Sun, Y.H.; Gao, E.H. Potential range shift of snow leopard in future climate change scenarios. Sustainability 2022, 14, 1115. [Google Scholar] [CrossRef]
- Qiao, J.; Gong, X.L.; Jia, W.; Jia, G.Q.; Jiang, Y.; Zhou, H.M.; Li, J.Q.; Wen, A.X.; Wang, J. Distribution, group size and activity rhythm of wolves (Canis lupus) in the Gongga Mountains, Sichuan Province. Acta Ecol. Sin. 2023, 43, 248–257. [Google Scholar] [CrossRef]
- Dai, Y.C.; Hacker, C.E.; Zhang, Y.G.; Li, W.W.; Li, D.Q. Identifying climate refugia and its potential impact on Tibetan brown bear (Ursus arctos pruinosus) in Sanjiangyuan National Park, China. Ecol. Evol. 2019, 9, 13278–13293. [Google Scholar] [CrossRef]
- Liu, K.; Liu, Y.L.; Li, S. The current distribution and prediction of suitable habitat of Eurasian lynx (Lynx lynx) in China. Acta Theriol. Sin. 2023, 43, 652–663. [Google Scholar]
- Cong, W.; Zhang, Y.; Huang, T.F.; Li, J.; Xu, J.Q.; Zhang, S.F.; Li, H.; Xue, Y.D.; Zhang, Y.G. Dietary composition and niche partitioning of sympatric carnivores in Altun Mountain National Nature Reserve. Acta Ecol. Sin. 2024, 44, 695–705. [Google Scholar] [CrossRef]
- Pringle, R.M.; Kartzinel, T.R.; Palmer, T.M.; Thurman, T.J.; Fox-Dobbs, K.; Xu, C.C.Y.; Hutchinson, M.C.; Coverdale, T.C.; Daskin, J.H.; Evangelista, D.A.; et al. Predator-induced collapse of niche structure and species coexistence. Nature 2019, 570, 58–64. [Google Scholar] [CrossRef]
Investigated Area | Survey Duration | No. of Camera Sites | Survey Area (km2) | Elevation Range (m) | Camera Days (d) |
---|---|---|---|---|---|
Yanzhanggua Valley | June 2014–December 2015 | 57 | 300 | 4125–5874 | 10,434 |
Jianggudiru Glacier | October 2015–October 2016 | 13 | 10 | 5432–6393 | 2143 |
Bagan Town | November 2018–September 2022 | 171 | 925 | 3897–4900 | 68,163 |
Longma Village | April 2022–April 2023 | 20 | 400 | 4102–5324 | 4781 |
Dongba Township | March 2023–March 2024 | 40 | 135 | 3982–4794 | 3106 |
Tanggulashan Town (Period 1) | September 2017–December 2018 | 60 | 60 | 4478–4979 | 4288 |
Tanggulashan Town (Period 2) | November 2023–April 2024 | 61 | 750 | 4507–5070 | 9998 |
Panthera uncia- Canis lupus | Panthera uncia- Ursus arctos | Panthera uncia- Lynx lynx | Canis lupus- Ursus arctos | Canis lupus- Lynx lynx | Ursus arctos- Lynx lynx | |
---|---|---|---|---|---|---|
Annual | 0.86 (0.82–0.90) | 0.71 (0.65–0.77) | 0.88 (0.80–0.95) | 0.67 (0.60–0.74) | 0.83 (0.74–0.92) | 0.66 (0.56–0.76) |
Cold season | 0.86 (0.82–0.91) | 0.70 (0.62–0.77) | 0.86 (0.78–0.94) | 0.65 (0.55–0.74) | 0.85 (0.74–0.94) | 0.60 (0.48–0.72) |
Warm season | 0.79 (0.70–0.87) | 0.69 (0.61–0.77) | 0.73 (0.55–0.88) | 0.61 (0.50–0.72) | 0.66 (0.47–0.84) | 0.69 (0.51–0.85) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Li, Q.; Gao, J.; Su, X.; Lian, X. Increased Temporal Overlap in Diel Activity Patterns Potentially Intensifies Interspecific Competition Among Sympatric Large Carnivores in the Sanjiangyuan Region of China. Animals 2025, 15, 2059. https://doi.org/10.3390/ani15142059
Wang D, Li Q, Gao J, Su X, Lian X. Increased Temporal Overlap in Diel Activity Patterns Potentially Intensifies Interspecific Competition Among Sympatric Large Carnivores in the Sanjiangyuan Region of China. Animals. 2025; 15(14):2059. https://doi.org/10.3390/ani15142059
Chicago/Turabian StyleWang, Dong, Quanbang Li, Jingyu Gao, Xu Su, and Xinming Lian. 2025. "Increased Temporal Overlap in Diel Activity Patterns Potentially Intensifies Interspecific Competition Among Sympatric Large Carnivores in the Sanjiangyuan Region of China" Animals 15, no. 14: 2059. https://doi.org/10.3390/ani15142059
APA StyleWang, D., Li, Q., Gao, J., Su, X., & Lian, X. (2025). Increased Temporal Overlap in Diel Activity Patterns Potentially Intensifies Interspecific Competition Among Sympatric Large Carnivores in the Sanjiangyuan Region of China. Animals, 15(14), 2059. https://doi.org/10.3390/ani15142059