Effect of Freezing for up to 120 Days on the Physicochemical Characteristics of Hamburgers Made from Botucatu Rabbit Does Slaughtered at Different Ages
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Experimental Procedure
2.2. Physicochemical Analysis
2.2.1. Meat Color
2.2.2. pH, Cooking Loss (CL), Storage Weight Loss (SWL), and Shear Force (SF)
2.2.3. Chemical Composition and Lipid Oxidation
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siddiqui, S.A.; Gerini, F.; Ikram, A.; Saeed, F.; Feng, X.; Chen, Y. Rabbit meat—Production, consumption and consumers’ attitudes and behavior. Sustainability 2023, 15, 2008. [Google Scholar] [CrossRef]
- Zamaratskaia, G.; Havrysh, O.; Korzeniowska, M.; Getya, A. Potential and limitations of rabbit meat in maintaining food security in Ukraine. Meat Sci. 2023, 204, 109293. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.A.; Bhowmik, S.; Afreen, M.; Ucak, I.; Ikram, A.; Gerini, F.; Mehdizadeh, M.; Ayivi, R.D.; Castro-Munoz, R. Bodybuilders and high-level meat consumers’ behavior towards rabbit, beef, chicken, turkey, and lamb meat: A comparative review. Nutrition 2024, 119, 112305. [Google Scholar] [CrossRef]
- Herrera-Stanziola, J.; Chacón-Villalobos, A.; Pineda-Castro, M.L. Physicochemical and microbiological characterization of “New Zealand” rabbit meat and effect of marinating with CaCl2. Agron. Mesoam. 2023, 34, 51204. [Google Scholar] [CrossRef]
- Siudak, Z.; Pałka, S. Rabbit meat as functional food. Rocz. Nauk. Zootech. 2022, 49, 127–139. [Google Scholar]
- Hernández, P.; Zotte, A.D. Influence of diet on rabbit meat quality. In Nutrition of the Rabbit; de Blas, C., Wiseman, J., Eds.; CABI: Wallingford, UK, 2010; pp. 163–178. [Google Scholar]
- Bianospino, E.; Wechsler, F.S.; Fernandes, S.; Roça, R.D.O.; Moura, A.S.A.M.T. Growth, carcass and meat quality traits of straightbred and crossbred Botucatu rabbits. World Rabbit Sci. 2006, 14, 237–246. [Google Scholar] [CrossRef]
- Alekseeva, L.V.; Lukyanov, A.A.; Bogdanova, O.V. Biologically active substance application efficiency for meat rabbit breeding. Eurasia J. Biosci. 2018, 12, 431–435. [Google Scholar]
- Petracci, M.; Soglia, F.; Leroy, F. Rabbit meat in need of a hat-trick: From tradition to innovation (and back). Meat Sci. 2018, 146, 93–100. [Google Scholar] [CrossRef]
- Polak, T.; Gašperlin, L.; Rajar, A.; Žlender, B. Influence of genotype lines, age at slaughter and sexes on the composition of rabbit meat. Food Technol. Biotechnol. 2006, 44, 65–73. [Google Scholar]
- Hoa, V.B.; Cho, S.H.; Seong, P.N.; Kang, S.M.; Kim, Y.S.; Moon, S.S.; Choi, Y.M.; Kim, J.H.; Seol, K.H. Quality characteristics, fatty acid profiles, flavor compounds and eating quality of cull sow meat in comparison with commercial pork. AJAS 2020, 33, 640–650. [Google Scholar] [CrossRef]
- Marai, I.F.; Askar, A.A.; McKroskey, R.A.; Tena, E. Replacement in rabbit herds. Trop. Subtrop. Agroecosyst. 2010, 12, 431–444. [Google Scholar]
- United States Department of Agriculture (USDA). Food Safety for Hambúrguers and Tailgating. Available online: https://www.usda.gov/about-usda/news/blog/food-safety-hamburgers-and-tailgating (accessed on 15 November 2024).
- Wang, Z.; He, Z.; Zhang, D.; Chen, X.; Li, H. Effect of multiple freeze-thaw cycles on protein and lipid oxidation in rabbit meat. Int. J. Food Sci. Technol. 2021, 56, 3004–3015. [Google Scholar] [CrossRef]
- Montalvo-Navarro, C.; Cumplido-Barbeitia, G.; González-Ríos, H.; Montoya-Ballesteros, L.D.C.; Pérez-Báez, A.J.; Zamorano-García, L.; Valenzuela-Melendres, M. Uso de un diseño de mezclas para el desarrollo de hamburguesas de carne de bovino, con un perfil nutricional mejorado con harina de linaza, pulpa de mango y ciruela deshidratada. Biotecnia 2022, 24, 97–106. [Google Scholar] [CrossRef]
- Ministério de Agricultura, Pecuária e Abastecimento. Regulamento da inspeção industrial e sanitária de produtos de origem animal (RIISPOA)–Decreto n. 10.469, de 18 de agosto de 2020. Altera o Decreto nº 9.013, de 29 de março de 2017, que regulamenta a Lei nº 1.283, de 18 de dezembro de 1950, e a Lei nº 7.889, de 23 de novembro de 1989, que dispõem sobre o regulamento da inspeção industrial e sanitária de produtos de origem animal. In Diário Oficial da União Diário Oficial da União; MAPA: Brasília, Brazil, 2020. [Google Scholar]
- Council Regulation (EC). No 1099/2009 of 24 September 2009 on the protection of animals at the time of killing. In Official Journal of the European Union; EC, UE: Luxembourg, 2009. [Google Scholar]
- Commission Internationale de l’Eclairage (CIE). Colorimetry—Part 4: CIE 1976 L*a*b* Colour Spaces; Publication CIE: Vienna, Austria, 2008. [Google Scholar]
- Mello, J.L.M.; Souza, R.A.; Ferrari, F.B.; Giampietro-Ganeco, A.; Souza, P.A.; Borba, H. Effects of aging on characteristics of breast meat from free-range broiler hens at 12 or 70 weeks of age. Anim. Prod. Sci. 2017, 58, 1726–1734. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 18th ed.; AOAC International: Washington, DC, USA, 2011. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Vyncke, B.W. Direct determination of the thiobarbituric acid value in trichloracetic acid extracts of fish as a measure of oxidative rancidity. Fette Seifen Anstrichm. 1970, 72, 1084–1087. [Google Scholar] [CrossRef]
- Karslıoğlu, B.; Soncu, E.D.; Nekoyu, B.; Karakuş, E.; Bekdemir, G.; Şahin, B. From Waste to Consumption: Tomato Peel Flour in Hamburger Patty Production. Foods 2024, 13, 2218. [Google Scholar] [CrossRef]
- Park, S.-Y.; Byeon, D.-S.; Kim, G.-W.; Kim, H.-Y. Carcass and retail meat cuts quality properties of broiler chicken meat based on the slaughter age. J. Anim. Sci. Technol. 2021, 63, 180–190. [Google Scholar] [CrossRef]
- Ramos, E.M.; Gomide, L.A.M. Avaliação da Qualidade de Carnes: Fundamentos e Metodologias, 2nd ed.; Editora UFV: Viçosa, Brazil, 2017. [Google Scholar]
- Song, D.H.; Hwang, Y.J.; Ham, Y.K.; Ha, J.H.; Kim, Y.R.; Kim, H.W. Meat quality attributes and oxidation stability of loin chops from finishing gilts and cull sows. J. Food Sci. Technol. 2020, 57, 3142–3150. [Google Scholar] [CrossRef]
- Hashemi Gahruie, H.; Hosseini, S.M.H.; Taghavifard, M.H.; Eskandari, M.H.; Golmakani, M.T.; Shad, E. Lipid oxidation, color changes, and microbiological quality of frozen beef burgers incorporated with shirazi thyme, cinnamon, and rosemary extracts. J. Food Qual. 2017, 2017, 6350156. [Google Scholar] [CrossRef]
- Özer, C.O.; Secen, S.M. Effects of quinoa flour on lipid and protein oxidation in raw and cooked beef burger during long term frozen storage. Food Sci. Technol. 2018, 38, 221–227. [Google Scholar] [CrossRef]
- Abhijith, A.; Warner, R.D.; Ha, M.; Dunshea, F.R.; Leury, B.J.; Zhang, M.; Joy, A.; Osei-Amponsah, R.; Chauhan, S.S. Effect of slaughter age and post-mortem days on meat quality of longissimus and semimembranosus muscles of Boer goats. Meat Sci. 2021, 175, 108466. [Google Scholar] [CrossRef] [PubMed]
- Medic, H.; Djurkin Kusec, I.; Pleadin, J.; Kozacinski, L.; Njari, B.; Hengl, B.; Kusec, G. The impact of frozen storage duration on physical, chemical and microbiological properties of pork. Meat Sci. 2018, 140, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Moghtadaei, M.; Soltanizadeh, N.; Goli, S.A.H. Production of sesame oil oleogels based on beeswax and application as partial substitutes of animal fat in beef burger. Food Res. Int. 2018, 108, 368–377. [Google Scholar] [CrossRef]
- Heydari, F.; Varidi, M.J.; Varidi, M.; Mohebbi, M. Study on quality characteristics of camel burger and evaluating its stability during frozen storage. J. Food Meas. Charact. 2016, 10, 148–155. [Google Scholar] [CrossRef]
- Bainy, E.M.; Bertan, L.C.; Corazza, M.L.; Lenzi, M.K. Physical changes of tilapia fish burger during frozen storage. Bol. Cent. Pesqui. Process. Aliment. 2015, 33, 113–120. [Google Scholar]
- Cavani, C.; Bianchi, M.; Lazzaroni, C.; Luzi, F.; Minelli, G.; Petracci, M. Influence of type of rearing, slaughter age and sex on fattening rabbit: II. Meat quality. World Rabbit Sci. 2000, 8, 567–572. [Google Scholar]
- Borella, T.G.; Peccin, M.M.; Mazon, J.M.; Roman, S.S.; Cansian, R.L.; Soares, M.B.A. Effect of rosemary (Rosmarinus officinalis) antioxidant in industrial processing of frozen-mixed hambúrguer during shelf life. J. Food Process Preserv. 2019, 43, e14092. [Google Scholar] [CrossRef]
- Kumar, S.A.; Kim, H.J.; Jayasena, D.D.; Jo, C. On-Farm and Processing Factors Affecting Rabbit Carcass and Meat Quality Attributes. Food Sci. Anim. Resour. 2023, 43, 197–219. [Google Scholar] [CrossRef]
- Fernández, P.P.; Sanz, P.D.; Molina-García, A.D.; Otero, L.; Guignon, B.; Vaudagna, S.R. Conventional freezing plus high pressure-low temperature treatment: Physical properties, microbial quality, and storage stability of beef meat. Meat Sci. 2007, 77, 616–625. [Google Scholar] [CrossRef]
- Ministério de Agricultura, Pecuária e Abastecimento. SDA Nº 724, de 23 de dezembro de 2022. Regulamento Técnico de Identidade e Qualidade do hambúrguer. In Diário Oficial da União Diário Oficial da União; MAPA: Brasília, Brazil, 2022. [Google Scholar]
- Li, S.; He, Z.; Hu, Y.; Li, H. Shotgun proteomic analysis of protein profile changes in female rabbit meat: The effect of breed and age. Ital. J. Anim. Sci. 2019, 18, 1335–1344. [Google Scholar] [CrossRef]
- Petrescu, D.C.; Petrescu-Mag, R.M. Consumer Behaviour Related to Rabbit Meat as Functional Food. World Rabbit Sci. 2018, 26, 321–333. [Google Scholar] [CrossRef]
- Gašperlin, L.; Polak, T.; Rajar, A.; Skvarèa, M.; Zlender, B. Effect of genotype, age at slaughter and sex on chemical composition and sensory profile of rabbit meat. World Rabbit Sci. 2006, 14, 157–166. [Google Scholar] [CrossRef]
- Chan, J.T.; Omana, D.A.; Betti, M. Effect of ultimate pH and freezing on the biochemical properties of proteins in turkey breast meat. Food Chem. 2011, 127, 109–117. [Google Scholar] [CrossRef]
- Zhang, R.; Realini, C.E.; Kim, Y.H.B.; Farouk, M.M. Challenges and processing strategies to produce high quality frozen meat. Meat Sci. 2023, 205, 109311. [Google Scholar] [CrossRef]
- Leygonie, C.; Britz, T.J.; Hoffman, L.C. Impact of freezing and thawing on the quality of meat: Review. Meat Sci. 2012, 91, 93–98. [Google Scholar] [CrossRef]
- Campo, M.M.; Nute, G.R.; Hughes, S.I.; Enser, M.; Wood, J.D.; Richardson, R.I. Flavour perception of oxidation in beef. Meat Sci. 2006, 72, 303–311. [Google Scholar] [CrossRef]
- Wang, D.; Xiao, H.; Lyu, X.; Chen, H.; Wei, F. Lipid oxidation in food science and nutritional health: A comprehensive review. Oil Crop. Sci. 2023, 8, 35–44. [Google Scholar] [CrossRef]
Hamburger (%) | |
---|---|
Rabbit meat | 81.55 |
Chicken skin | 10.00 |
Soy protein | 3.55 |
Water | 2.00 |
Salt | 1.50 |
Antioxidant | 1.00 |
Garlic paste | 0.30 |
Ground black pepper | 0.10 |
Total | 100.00 |
Variable | Animal Age (A) | Storage Time (T) | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
3 Months | 12 Months | 24 Months | Beginning | 60 Days | 120 Days | p (A) | p (T) | p (A × T) | |
L* | 71.7 ± 0.2 A | 70.9 ± 0.2 AB | 70.8 ± 0.2 B | 71.6 ± 0.2 | 71.0 ± 0.2 | 70.8 ± 0.2 | 0.021 | 0.053 | 0.801 |
a* | 5.5 ± 0.1 B | 5.8 ± 0.1 A | 5.8 ± 0.1 A | 5.8 ± 0.1 A | 5.5 ± 0.1 B | 5.7 ± 0.1 AB | 0.007 | 0.049 | 0.379 |
b* | 10.8 ± 0.3 | 10.8 ± 0.3 | 11.1 ± 0.3 | 10.0 ± 0.3 B | 11.7 ± 0.3 A | 11.0 ± 0.3 A | 0.691 | <0.001 | 0.126 |
Variable | Animal Age (A) | Storage Time (T) | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
3 Months | 12 Months | 24 Months | Beginning | 60 Days | 120 Days | p (A) | p (T) | p (A × T) | |
CL (%) | 43.70 ± 0.35 A | 42.02 ± 0.32 B | 42.05 ± 0.34 B | 43.10 ± 0.35 | 42.37 ± 0.34 | 42.35 ± 0.32 | 0.001 | 0.233 | 0.103 |
SP (%) | 34.48 ± 0.87 | 34.78 ± 0.81 | 36.16 ± 0.81 | 36.10 ± 0.84 | 34.49 ± 0.81 | 34.83 ± 0.84 | 0.322 | 0.368 | 0.151 |
SWL (%) | 10.42 ± 0.22 A | 9.34 ± 0.24 B | 10.40 ± 0.24 A | - | 10.27 ± 0.18 | 9.84 ± 0.18 | 0.001 | 0.114 | 0.103 |
Storage Time (T) | Animal Age (A) | p-Value | |||
---|---|---|---|---|---|
3 Months | 12 Months | 24 Months | |||
pH | |||||
Beginning | 4.68 ± 0.01 Bab | 4.66 ± 0.01 Bb | 4.69 ± 0.01 a | p (A) | <0.001 |
60 days | 4.73 ± 0.01 Aa | 4.70 ± 0.01 Ab | 4.70 ± 0.01 b | p (T) | 0.008 |
120 days | 4.68 ± 0.01 B | 4.68 ± 0.01 B | 4.69 ± 0.01 | p (A × T) | 0.008 |
Shear Force (N) | |||||
Beginning | 8.11 ± 0.77 | 9.95 ± 0.74 | 9.71 ± 0.79 B | p (A) | 0.294 |
60 days | 9.44 ± 0.79 | 8.53 ± 0.74 | 10.35 ± 0.82 AB | p (T) | 0.001 |
120 days | 8.24 ± 0.79 b | 9.46 ± 0.76 b | 12.92 ± 0.82 Aa | p (A × T) | 0.044 |
Variable | Animal Age (A) | Storage Time (T) | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
3 Months | 12 Months | 24 Months | Beginning | 60 Days | 120 Days | p (A) | p (T) | p (A × T) | |
Protein (%) | 21.72 ± 0.36 B | 24.04 ± 0.35 A | 22.92 ± 0.36 AB | 23.41 ± 0.36 | 22.84 ± 0.35 | 22.43 ± 0.36 | <0.001 | 0.163 | 0.747 |
MM (%) | 2.21 ± 0.03 A | 2.22 ± 0.03 AB | 2.14 ± 0.03 B | 2.18 ± 0.03 | 2.24 ± 0.03 | 2.21 ± 0.03 | 0.04 | 0.486 | 0.524 |
Lipids (%) | 10.81 ± 0.29 | 10.78 ± 0.28 | 11.09 ± 0.28 | 9.98 ± 0.28 B | 11.73 ± 0.29 A | 10.98 ± 0.28 A | 0.691 | <0.001 | 0.126 |
Storage Time (T) | Age Animal (A) | p-Value | |||
---|---|---|---|---|---|
3 Months | 12 Months | 24 Months | |||
Moisture (%) | |||||
Beginning | 64.52 ± 0.15 a | 62.97 ± 0.17 b | 63.36 ± 0.20 Bb | p (A) | <0.001 |
60 days | 64.41 ± 0.15 a | 63.29 ± 0.15 b | 64.24 ± 0.15 Aa | p (T) | 0.029 |
120 days | 64.13 ± 0.15 a | 63.38 ± 0.15 b | 64.19 ± 0.15 Aa | p (A × T) | 0.010 |
TBARS (mg MDA/kg) | |||||
Beginning | 1.06 ± 0.05 Ba | 0.73 ± 0.05 Cb | 0.91 ± 0.05 Bab | p (A) | <0.001 |
60 days | 1.55 ± 0.05 Aa | 0.99 ± 0.05 Bb | 1.05 ± 0.05 ABb | p (T) | <0.001 |
120 days | 1.49 ± 0.05 Aa | 1.31 ± 0.05 Aab | 1.18 ± 0.05 Ab | p (A × T) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villegas-Cayllahua, E.A.; Dutra, D.R.; Dias, A.V.L.; Domenici, T.D.; Castilha, L.D.; Borba, H. Effect of Freezing for up to 120 Days on the Physicochemical Characteristics of Hamburgers Made from Botucatu Rabbit Does Slaughtered at Different Ages. Animals 2025, 15, 1805. https://doi.org/10.3390/ani15121805
Villegas-Cayllahua EA, Dutra DR, Dias AVL, Domenici TD, Castilha LD, Borba H. Effect of Freezing for up to 120 Days on the Physicochemical Characteristics of Hamburgers Made from Botucatu Rabbit Does Slaughtered at Different Ages. Animals. 2025; 15(12):1805. https://doi.org/10.3390/ani15121805
Chicago/Turabian StyleVillegas-Cayllahua, Erick Alonso, Daniel Rodrigues Dutra, Ana Veronica Lino Dias, Thamiris Daiane Domenici, Leandro Dalcin Castilha, and Hirasilva Borba. 2025. "Effect of Freezing for up to 120 Days on the Physicochemical Characteristics of Hamburgers Made from Botucatu Rabbit Does Slaughtered at Different Ages" Animals 15, no. 12: 1805. https://doi.org/10.3390/ani15121805
APA StyleVillegas-Cayllahua, E. A., Dutra, D. R., Dias, A. V. L., Domenici, T. D., Castilha, L. D., & Borba, H. (2025). Effect of Freezing for up to 120 Days on the Physicochemical Characteristics of Hamburgers Made from Botucatu Rabbit Does Slaughtered at Different Ages. Animals, 15(12), 1805. https://doi.org/10.3390/ani15121805