Study of the Milkability of the Mediterranean Italian Buffalo and the Tunisian Maghrebi Camel According to Parity and Lactation Stage
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Milking Routine
2.2. Milk Flow Measurement
2.3. Statistical Analysis
3. Results
3.1. Milkability Traits of Mediterranean Italian Buffaloes and Maghrebi She-Camels
3.2. Effect of Parity on Milkability Traits
3.3. Effect of Lactation Stage on Milkability Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faye, B. Chapter 1—Food security and the role of local communities in non-cow milk production. In Non-Bovine Milk and Milk Products; Tsakalidou, E., Papadimitriou, K., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 1–13. ISBN 978-0-12-803361-6. [Google Scholar]
- Boselli, C.; De Marchi, M.; Costa, A.; Borghese, A. Study of milkability and its relation with milk yield and somatic cell in Mediterranean Italian water buffalo. Front. Vet. Sci. 2020, 7, 432. [Google Scholar] [CrossRef] [PubMed]
- Sboui, A.; Atig, C.; Khabir, A.; Hammadi, M.; Khorchani, T. Camel milk used as an adjuvant therapy to treat type 2 diabetic patients: Effects on blood glucose, HbA1c, cholesterol, and TG Levels. J. Chem. 2022, 2022, 5860162. [Google Scholar] [CrossRef]
- Gammoh, S.; Alu’datt, M.H.; Tranchant, C.C.; Al-U’datt, D.G.; Alhamad, M.N.; Rababah, T.; Kubow, S.; Haddadin, M.S.Y.; Ammari, Z.; Maghaydah, S.; et al. Modification of the functional and bioactive properties of camel milk casein and whey proteins by ultrasonication and fermentation with Lactobacillus delbrueckii subsp. Lactis. LWT 2020, 129, 109501. [Google Scholar] [CrossRef]
- Mudgil, P.; Redha, A.A.; Nirmal, N.P.; Maqsood, S. In vitro antidiabetic and antihypercholesterolemic activities of camel milk protein hydrolysates derived upon simulated gastrointestinal digestion of milk from different camel breeds. J. Dairy Sci. 2023, 106, 3098–3108. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, H.R.; Isono, H.; Miyata, T. Potential antioxidant bioactive peptides from camel milk proteins. Anim. Nutr. 2018, 4, 273–280. [Google Scholar] [CrossRef] [PubMed]
- El-Agamy, E.I.; Nawar, M.; Shamsia, S.M.; Awad, S.; Haenlein, G.F. Are camel milk proteins convenient to the nutrition of cow milk allergic children? Small Rum. Res. 2009, 82, 1–6. [Google Scholar] [CrossRef]
- Thomas, C.S.; Svennersten-Sjaunja, K.; Bhosrekar, M.R.; Bruckmaier, R.M. Mammary cisternal size, cisternal milk and milk ejection in Murrah buffaloes. J. Dairy Res. 2004, 71, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Ayadi, M.; Aljumaah, R.S.; Musaad, A.A.; Samara, E.M.; Abelrahman, M.M.; Alshaikh, M.A.; Saleh, S.K.; Faye, B. Relationship between udder morphology traits, alveolar and cisternal milk compartments and machine milking performances of dairy camels (Camelus dromedarius). Spanish J. Agric. Res. 2013, 1, 790–797. [Google Scholar] [CrossRef]
- Alshaikh, M.A.; Salah, M.S. Effect of milking interval on secretion rate and composition of camel milk in late lactation. J. Dairy Res. 1994, 61, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, A.; Napolitano, F.; Mota-Rojas, D.; Sabia, E.; Álvarez-Macías, A.; Mora-Medina, P.; Morales-Canela, A.; Berdugo-Gutiérrez, J.; Legarreta, I.G.; Agrarie, F.S.D.S. Similarities and Differencesbetween River Buffaloes and Cattle: Health, physiological, behavioral and productivity aspects. J. Buffalo Sci. 2020, 9, 92–109. [Google Scholar] [CrossRef]
- Thomas, C.S.; Bruckmaier, R.M.; Ostensson, K.; Svennersten-Sjaunja, K. Effect of different milking routines on milking-related release of the hormones oxytocin, prolactin and cortisol, and on milk yield and milking performance in Murrah buffaloes. J. Dairy Res. 2005, 72, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Atigui, M.; Marnet, P.G.; Ayeb, N.; Khorchani, T.; Hammadi, M. Effect of changes in milking routine on milking related behavior and milk removal in Tunisian dairy dromedary camels. J. Dairy Res. 2014, 81, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Kaskous, S. Physiology of lactation and machine milking in dromedary she-camel. Emir. J. Food Agric. 2018, 30, 295–303. [Google Scholar] [CrossRef]
- Caria, M.; Murgia, L.; Pazzona, A. Effects of the working vacuum level on mechanical milking of buffalo. J. Dairy Sci. 2011, 94, 1755–1761. [Google Scholar] [CrossRef] [PubMed]
- Atigui, M.; Marnet, P.G.; Barmat, A.; Khorchani, T.; Hammadi, M. Effects of vacuum level and pulsation rate on milk ejection and milk flow traits in Tunisian dairy camels. Trop. Anim. Health Prod. 2015, 47, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; De Marchi, M.; Visentin, G.; Campagna, M.G.; Borghese, A.; Boselli, C. The effect of pre-milking stimulation on teat morphological parameters and milk traits in the Italian water buffalo. Front. Vet. Sci. 2020, 7, 572422. [Google Scholar] [CrossRef] [PubMed]
- Atigui, M.; Brahmi, M.; Hammadi, I.; Marnet, P.-G.; Hammadi, M. Machine milkability of dromedary camels: Correlation between udder morphology and milk flow traits. Animals 2021, 11, 2014. [Google Scholar] [CrossRef] [PubMed]
- Sannino, M.; Faugno, S.; Crimaldi, M.; Di Francia, A.; Ardito, L.; Serrapica, F.; Masucci, F. Effects of an automatic milking system on milk yield and quality of Mediterranean buffaloes. J. Dairy Sci. 2018, 101, 8308–8312. [Google Scholar] [CrossRef] [PubMed]
- Antalik, P.; Strapak, P. Effect of parity and lactation stage on milk flow characteristics of Slovak Simmental dairy cows. Veterinarija ir Zootechnika 2011, 54, 8–13. [Google Scholar]
- Bobic, T.; Mijić, P.; Gantner, V.; Bunevski, G.; Gregić, M. Milkability evaluation of jersey dairy cows by lactocorder. Mac. Vet. Rev. 2020, 43, 5–12. [Google Scholar] [CrossRef]
- Dzidic, A.; Macuhova, J.; Bruckmaier, R.M. Effects of cleaning duration and water temperature on oxytocin release and milk removal in an automatic milking system. J. Dairy Sci. 2004, 87, 4163–4169. [Google Scholar] [CrossRef] [PubMed]
- Dzidic, A.; Rovai, M.; Poulet, J.L.; Leclerc, M.; Marnet, P.G. Milking routines and cluster detachment levels in small ruminants. Animal 2019, 13, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; Boselli, C.; De Marchi, M.; Todde, G.; Caria, M. Milkability traits across milk flow curve types in Sarda sheep. Small Rum. Res. 2022, 206, 106584. [Google Scholar] [CrossRef]
- Romero, G.; Panzalis, R.; Ruegg, P. Relationship of goat milk flow emission variables with milking routine, milking parameters, milking machine characteristics and goat physiology. Animal 2017, 11, 2070. [Google Scholar] [CrossRef] [PubMed]
- Boselli, C.; Campagna, M.C.; Amatiste, S.; Rosati, R.; Borghese, A. Pre-stimulation effect on teat anatomy and milk flow curves in Mediterranean Italian buffalo cows. J. Anim. Vet. Adv. 2014, 13, 912–916. [Google Scholar]
- Atigui, M.; Hammadi, M.; Barmat, A.; Farhat, M.; Khorchani, T.; Marnet, P.G. First description of milk flow traits in Tunisian dairy dromedary camels under an intensive farming system. J. Dairy Res. 2014, 81, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Abdelgadir, M.M. Measurements of Milk Flow and Udder Morphology and Their Impact on Milkability and Selecting of Dairy Camels (Camelus dromedarius) under Intensive System. Ph.D. Thesis, University of Science and Technology College of Graduate Studies, Khartoum, Sudan, 2018. [Google Scholar]
- Borghese, A.; Boselli, C.; Rosati, R. Lactation curve and milk flow. Buffalo Bull. 2013, 32, 334–350. [Google Scholar]
- Boselli, C.; Costa, A.; De Marchi, M.; Zia, M.A.; Shahid, M.Q.; Ahmad, N.; Fasulkov, I.; Karadaev, M.; Ilieva, Y.; Penchev, P.; et al. Teat morphology across five buffalo breeds: A multi-country collaborative study. Trop. Anim. Health Prod. 2024, 56, 61. [Google Scholar] [CrossRef] [PubMed]
- Tamburini, A.; Bava, L.; Piccinini, R.; Zecconi, A.; Zucali, M.; Sandrucci, A. Milk emission and udder health status in primiparous dairy cows during lactation. J. Dairy Res. 2010, 77, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Bava, L.; Sandrucci, A.; Tamburini, A.; Zucali, M. Milk flow traits of buffalo cows in intensive farming system. Ital. J. Anim. Sci. 2007, 6, 500–502. [Google Scholar] [CrossRef]
- Caria, M.; Boselli, C.; Murgia, L.; Rosati, R.; Pazzona, A. Effect of vacuum level on milk flow traits in Mediterranean Italian buffalo cow. Ital. J. Anim. Sci. 2012, 11, e25. [Google Scholar] [CrossRef]
- Pauciullo, A.; Cosenza, G.; Steri, R.; Coletta, A.; Jemma, L.; Feligini, M.; Di Berardino, D.; Macciotta, N.P.; Ramunno, L. An association analysis between OXT genotype and milk yield and flow in Italian Mediterranean river buffalo. J. Dairy Res. 2012, 79, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Di Palo, R.; Campanile, G.; Ariota, B.; Vecchio, D.; Grassi, C.; Neri, D.; Varricchio, E.; Rendina, M. Milk flow traits in Mediterranean Italian buffaloes. Ital. J. Anim. Sci. 2007, 6, 1319–1322. [Google Scholar] [CrossRef]
- Tancin, V.; Urhincat, M.; Macuhovà, J.; Bruckmaier, R.M. Effect of prestimulation on milk flow pattern and distribution of milk constituents at a quarter level. Czech J. Anim. Sci. 2007, 52, 117–121. [Google Scholar] [CrossRef]
- Ambord, S.; Stofel, M.H.; Bruckmaier, R.M. Teat anatomy affects requirements for udder preparation in Mediterranean buffaloes. J. Dairy Res. 2010, 77, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Atigui, M.; Marnet, P.G.; Brahmi, M.; Hammadi, M. Teat anatomy affects vacuum level needed to open teat sphincter in dairy camels. In Proceedings of the International Seminar Promotion of Camel Milk Value Chain CAMILK, Zarzis, Tunisia, 1–3 June 2022. [Google Scholar]
- Borghese, A.; Rasmussen, M.; Thomas, C.S. Milking management of dairy buffalo. Ital. J. Anim. Sci. 2007, 6, 39–50. [Google Scholar] [CrossRef]
- Marnet, P.G.; Atigui, M.; Hammadi, M. Developing mechanical milking in camels? Some main steps to take… Trop. Anim. Health Prod. 2016, 48, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Ayadi, M.; Musaad, A.; Aljumaah, R.S.; Matar, A.; Faye, B. Effects of manual udder stimulation on milk partitioning and flow traits during the machine milking in dairy camels (Camelus dromedarius). J. Camel Pract. Res. 2016, 23, 85–89. [Google Scholar] [CrossRef]
- Abdalla, E.B.; Ashmawy, A.A.; Farouk, M.H.; Salama, O.A.; Khalil, F.A.; Seioudy, A.F. Milk production potential in Maghrebi she-camels. Small Rumin. Res. 2015, 123, 129–135. [Google Scholar] [CrossRef]
- Atigui, M.; Brahmi, M.; Dahmani, K.; Seddik, M.M.; Khedheri, H.; Marnet, P.G.; Hammadi, M. Risks of sub-clinical mastitis associated with teat tissue changes induced by milking clusters in dairy camels (Camelus dromedarius). In Proceedings of the 6th Conference of the International Society of Camelid Research and Development ISOCARD-2023 “The Role of Camel in Food Security and Economic Development”, Al-Ahsa, Saudi Arabia, 12–16 March 2023. [Google Scholar]
- Saleh, A.A.; Easa, A.A.; EL-Hedainy, D.K.; Amr, M.A. Rashad. Prediction of some milk production traits using udder and teat measurements with a spotlight on their genetic background in Friesian cows. Sci. Rep. 2023, 13, 16193. [Google Scholar] [CrossRef] [PubMed]
- Weiss, D.; Weinfurtner, M.; Bruckmaier, R.M. Teat anatomy and its relationship with quarter and udder milk flow characteristics in dairy cows. J. Dairy Sci. 2004, 87, 3280–3289. [Google Scholar] [CrossRef]
- Ayadi, M.; Musaad, M.; Aljumaah, R.S.; Matar, A.; Konuspayeva, G.; Abdelrahman, M.M.; Abid, I.; Bengoumi, M.; Faye, B. Machine milking parameters for an efficient and healthy milking in dairy camels (Camelus dromedarius). J. Camel Pract. Res. 2018, 25, 81–87. [Google Scholar] [CrossRef]
- Pazzona, A.; Murgia, L. Effect of milking vacuum on leukocyte count in Buffalo milk. In Proceedings of the 24th International Conference on Agricultural Mechanization, Zaragoza, Spain, 1–4 April 1992; pp. 691–694. [Google Scholar]
- Matera, R.; Pascarella, L.; Cotticelli, A.; Conte, G.; Tondo, A.; Campanile, G.; Neglia, G. Milk characteristics and milking efficiency in Italian Mediterranean buffalo. Ital. J. Anim. Sci. 2023, 22, 1110–1119. [Google Scholar] [CrossRef]
- Dogra, P.K.; Parmar, O.S.; Gupta, S.C. Effect of vacuum and pulsation rate on some milking characteristics in Murrah buffaloes. Bubalus Bubalis 2000, 6, 78–83. [Google Scholar]
- Wieland, M.; Sipka, A. Comparison of 2 types of milk flow meters for detecting bimodality in dairy cows. J. Dairy Sci. 2023, 106, 1078–1088. [Google Scholar] [CrossRef] [PubMed]
- Odorcic, M.; Blau, B.; Löfstrand, J.; Bruckmaier, R.M. Teat wall diameter and teat tissue thickness in dairy cows are affected by intramammary pressure and by the mechanical forces of machine milking. J. Dairy Sci. 2020, 103, 884–889. [Google Scholar] [CrossRef] [PubMed]
- Faraz, A.; Waheed, A.; Tauqir, N.A.; Mustafa, A.B. Milk production variations between rear and fore udder-halves in Barela dromedary camel. J. Saudi Soc. Agric. Sci. 2021, 20, 48–51. [Google Scholar] [CrossRef]
- Vierbauch, T.; Peinhopf-Petz, W.; Wittek, T. Effects of milking, over-milking and vacuum levels on front and rear quarter teats in dairy cows. J. Dairy Res. 2021, 88, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Wieland, M.; Watters, R.D.; Virkler, P.D.; Sipka, A.S. Risk factors for delayed milk ejection in Holstein dairy cows milked 3 times per day. J. Dairy Sci. 2022, 105, 6936–6946. [Google Scholar] [CrossRef] [PubMed]
- Sandrucci, A.; Tamburini, A.; Bava, L.; Zucali, M. Factors affecting milk flow traits in dairy cows: Results of a field study. J. Dairy Sci. 2007, 90, 1159–1167. [Google Scholar] [CrossRef] [PubMed]
- Prakash, V.; Jyotsana, B.; Vyas, S.; Sawal, R.K. Study of milkability and associated factors in hand milked Indian Dromedary Camel. Small Rumin. Res. 2022, 207, 106600. [Google Scholar] [CrossRef]
- Tancin, V.; Ipema, B.; Hogewerf, P.; Macuhová, J. Sources of variation in milk flow characteristics at udder and quarter levels. J. Dairy Sci. 2006, 89, 978–988. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Nehara, M.; Prakash, V.; Pannu, U.; Jyotsana, B. Udder, teat, and milk vein measurements of Indian dromedary camel and its relationship with milkability traits. Trop. Anim. Health Pro. 2023, 55, 36. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.S. Milking Management of Dairy Buffaloes. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2004. [Google Scholar]
- Napolitano, F.; Braghieri, A.; Bragaglio, A.; Rodríguez-González, D.; Mora-Medina, P.; Ghezzi, M.D.; Álvarez-Macías, A.; Lendez, P.A.; Sabia, E.; Domínguez-Oliva, A.; et al. Neurophysiology of milk ejection and prestimulation in dairy buffaloes. Animals 2022, 12, 2649. [Google Scholar] [CrossRef] [PubMed]
Buffaloes (213) | Camels (209) | |
---|---|---|
MMY, kg | 3.99 ± 0.10 a | 3.52 ± 0.08 b |
TME, min | 2.06 ± 0.12 a | 1.02 ± 0.06 b |
Lag time, min | 2.12 ± 0.11 a | 0.27 ± 0.03 b |
EMT, min | 4.07 ± 0.11 a | 3.05 ± 0.09 b |
TMT, min | 9.89 ± 0.21 a | 3.76 ± 0.09 b |
AFR, kg/min | 0.93 ± 0.02 b | 1.16 ± 0.03 a |
PFR, kg/min | 1.50 ± 0.04 b | 2.45 ± 0.07 a |
tPFR, min | 3.17 ± 0.12 a | 1.25 ± 0.07 b |
BIMO, % | 15.49 b | 34.93 a |
APT, min | 0.47 ± 0.05 | 0.65 ± 0.05 |
PPT, min | 1.50 ± 0.08 a | 0.39 ± 0.05 b |
DPT, min | 2.10 ± 0.10 | 2.04 ± 0.08 |
MNG, kg | 0.10 ± 0.06 | 0.07 ± 0.01 |
tMBG, min | 3.64 ± 0.21 a | 0.29 ± 0.02 b |
Traits | MMY | TME | Lag Time | EMT | TMT | AFR | PFR | tPFR | PPT | DPT | APT | MNG |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Buffaloes | ||||||||||||
TME | −0.23 ** | 1 | ||||||||||
Lag time | −0.27 ** | 0.84 *** | 1 | |||||||||
EMT | 0.50 *** | −0.04 | −0.23 ** | 1 | ||||||||
TMT | 0.008 | 0.34 *** | 0.32 *** | 0.12 | 1 | |||||||
AFR | 0.59 *** | −0.16 | −0.14 | −0.23 ** | −0.12 | 1 | ||||||
PFR | 0.60 *** | −0.18 * | −0.20 * | −0.06 | −0.15 | 0.86 *** | 1 | |||||
tPFR | −0.07 | 0.75 *** | 0.76 *** | 0.20 * | 0.34 *** | −0.21 * | −0.23 ** | 1 | ||||
PPT | 0.26 ** | −0.02 | −0.03 | 0.42 *** | 0.16 | −0.14 | −0.30 *** | 0.22 * | 1 | |||
DPT | 0.31 *** | −0.10 | −0.18 * | 0.63 *** | −0.01 | −0.17 * | 0.07 | −0.04 | −0.27 ** | 1 | ||
APT | 0.18 * | 0.09 | −0.10 | 0.37 *** | 0.05 | 0.01 | 0.16 | 0.20 * | −0.02 | −0.11 | 1 | |
MNG | −0.03 | −0.09 | −0.01 | 0.11 | −0.03 | −0.10 | −0.09 | −0.04 | −0.02 | 0.17 * | −0.11 | 1 |
tMBG | −0.12 | −0.03 | −0.07 | −0.28 ** | 0.78 *** | 0.06 | −0.12 | −0.17 | 0.06 | −0.25 ** | −0.06 | −0.06 |
Camels | ||||||||||||
TME | 0.06 | 1 | ||||||||||
Lag time | −0.11 | 0.31 *** | 1 | |||||||||
EMT | 0.30 *** | 0.57 *** | −0.13 | 1 | ||||||||
TMT | 0.25 ** | 0.64 *** | 0.24 ** | 0.82 *** | 1 | |||||||
AFR | 0.62 *** | −0.24 ** | 0.01 | −0.46 *** | −0.36 *** | 1 | ||||||
PFR | 0.78 *** | −0.09 | −0.09 | −0.08 | −0.04 | 0.80 *** | 1 | |||||
tPFR | 0.23 ** | 0.73 *** | 0.39 *** | 0.60 *** | 0.70 *** | −0.19 * | 0.03 | 1 | ||||
PPT | −0.22 * | −0.06 | −0.05 | −0.09 | −0.16 | −0.23 ** | −0.40 *** | −0.09 | 1 | |||
DPT | 0.09 | 0.38 *** | −0.06 | 0.80 *** | 0.68 *** | −0.44 *** | −0.17 * | 0.29 ** | −0.29 ** | 1 | ||
APT | 0.47 *** | 0.47 *** | −0.10 | 0.57 *** | 0.48 *** | 0.42 *** | 0.32 *** | 0.67 *** | −0.25 ** | 0.07 | 1 | |
MNG | −0.02 | −0.06 | −0.11 | −0.12 | −0.08 | −0.14 | −0.08 | −0.08 | 0.07 | −0.10 | −0.09 | 1 |
tMBG | 0.06 | −0.02 | 0.11 | −0.15 | 0.23 ** | 0.10 | 0.21 * | 0.01 | −0.01 | −0.14 | −0.15 | −0.37 *** |
Buffaloes | Camels | |||
---|---|---|---|---|
Primiparous (71) | Multiparous (142) | Primiparous (53) | Multiparous (156) | |
MMY, kg | 3.79 ± 0.17 b | 4.04 ± 0.13 a | 2.68 ± 0.10 c | 3.88 ± 0.09 ab |
TME, min | 2.13 ± 0.25 a | 2.03 ± 0.14 a | 1.12 ± 0.15 b | 0.98 ± 0.05 b |
Lag time, min | 2.19 ± 0.19 a | 2.07 ± 0.13 a | 0.35 ± 0.10 b | 0.25 ± 0.03 b |
EMT, min | 4.02 ± 0.18 a | 4.10 ± 0.14 a | 3.14 ± 0.21 b | 3.02 ± 0.09 b |
TMT, min | 9.48 ± 0.35 a | 10.10 ± 0.26 a | 3.73 ± 0.23 b | 3.77 ± 0.09 b |
AFR, kg/min | 0.90 ± 0.04 b | 0.94 ± 0.03 b | 0.86 ± 0.03 b | 1.27 ± 0.03 a |
PFR, kg/min | 1.42 ± 0.06 c | 1.54 ± 0.05 c | 1.67 ± 0.07 b | 2.71 ± 0.07 a |
tPFR, min | 3.30 ± 0.21 a | 3.09 ± 0.15 a | 1.26 ± 0.17 b | 1.25 ± 0.86 b |
BIMO, % | 11.27 d | 17.61 c | 26.42 b | 37.82 a |
APT, min | 0.36 ± 0.05 b | 0.52 ± 0.08 ab | 0.43 ± 0.08 ab | 0.73 ± 0.06 a |
PPT, min | 1.61 ± 0.14 a | 1.44 ± 0.09 a | 0.45 ± 0.06 b | 0.36 ± 0.03 b |
DPT, min | 2.06 ± 0.09 ab | 2.13 ± 0.11 ab | 2.33 ± 0.23 a | 1.93 ± 0.07 b |
MNG, kg | 0.04 ± 0.01 | 0.13 ± 0.08 | 0.08 ± 0.01 | 0.07 ± 0.01 |
tMBG, min | 3.21 ± 0.31 a | 3.85 ± 0.27 a | 0.14 ± 0.03 b | 0.33 ± 0.03 b |
Buffaloes | Camels | |||||
Early (91) | Mid (74) | Late (48) | Early (68) | Mid (95) | Late (46) | |
MMY, kg | 4.90 ± 0.13 a | 3.89 ± 0.13 b | 2.41 ± 0.10 d | 3.76 ± 0.14 c | 3.64 ± 0.12 c | 3.01 ± 0.13 d |
TME, min | 1.78 ± 0.16 ab | 1.13 ± 0.22 b | 2.44 ± 0.27 a | 1.13 ± 0.12 b | 0.91 ± 0.08 c | 1.08 ± 0.07 bc |
Lagtime, min | 1.86 ± 0.14 b | 2.03 ± 0.20 b | 2.73 ± 0.26 a | 0.33 ± 0.08 c | 0.20 ± 0.03 c | 0.33 ± 0.06 c |
EMT, min | 4.55 ± 0.16 a | 4.27 ± 0.21 a | 2.87 ± 0.14 c | 3.48 ± 0.17 b | 3.05 ± 0.12 b | 2.42 ± 0.10 d |
TMT, min | 9.77 ± 0.31 a | 10.09 ± 0.37 a | 9.82 ± 0.43 a | 4.24 ± 0.18 b | 3.68 ± 0.12 bc | 3.21 ± 0.14 c |
AFR, kg/min | 1.06 ± 0.04 b | 0.91 ± 0.04 c | 0.72 ± 0.03 d | 1.09 ± 0.05 b | 1.20 ± 0.04 a | 1.18 ± 0.06 ab |
PFR, kg/min | 1.72 ± 0.06 d | 1.46 ± 0.06 e | 1.16 ± 0.04 f | 2.40 ± 0.10 b | 2.61 ± 0.11 a | 2.17 ± 0.10 c |
tPFR, min | 2.99 ± 0.17 a | 3.29 ± 0.24 a | 3.28 ± 0.25 a | 1.57 ± 0.14 b | 1.12 ± 0.09 c | 1.05 ± 0.10 c |
BIMO, % | 15.38 d | 16.22 c | 14.58 d | 51.47 a | 32.98 b | 15.56 c |
APT, min | 0.56 ± 0.09 bc | 0.46 ± 0.11 c | 0.30 ± 0.05 c | 0.85 ± 0.11 a | 0.64 ± 0.08 ab | 0.38 ± 0.06 c |
PPT, min | 1.68 ± 0.12 a | 1.62 ± 0.14 a | 0.97 ± 0.11 b | 0.32 ± 0.17 c | 0.37 ± 0.03 c | 0.52 ± 0.06 c |
DPT, min | 2.32 ± 0.15 a | 2.18 ± 0.19 a | 1.60 ± 0.12 bc | 2.32 ± 0.17 a | 2.07 ± 0.10 ab | 1.52 ± 0.10 c |
MNG, kg | 0.05 ± 0.02 | 0.21 ± 0.16 | 0.02 ± 0.01 | 0.04 ± 0.01 | 0.05 ± 0.07 | 0.15 ± 0.03 |
tMBG, min | 3.92 ± 0.33 a | 3.72 ± 0.38 a | 4.17 ± 0.37 a | 0.30 ± 0.04 b | 0.30 ± 0.03 b | 0.22 ± 0.05 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atigui, M.; Brahmi, M.; Marnet, P.-G.; Ben Salem, W.; Campagna, M.C.; Borghese, A.; Todde, G.; Caria, M.; Hammadi, M.; Boselli, C. Study of the Milkability of the Mediterranean Italian Buffalo and the Tunisian Maghrebi Camel According to Parity and Lactation Stage. Animals 2024, 14, 1055. https://doi.org/10.3390/ani14071055
Atigui M, Brahmi M, Marnet P-G, Ben Salem W, Campagna MC, Borghese A, Todde G, Caria M, Hammadi M, Boselli C. Study of the Milkability of the Mediterranean Italian Buffalo and the Tunisian Maghrebi Camel According to Parity and Lactation Stage. Animals. 2024; 14(7):1055. https://doi.org/10.3390/ani14071055
Chicago/Turabian StyleAtigui, Moufida, Marwa Brahmi, Pierre-Guy Marnet, Wiem Ben Salem, Maria Concetta Campagna, Antonio Borghese, Giuseppe Todde, Maria Caria, Mohamed Hammadi, and Carlo Boselli. 2024. "Study of the Milkability of the Mediterranean Italian Buffalo and the Tunisian Maghrebi Camel According to Parity and Lactation Stage" Animals 14, no. 7: 1055. https://doi.org/10.3390/ani14071055
APA StyleAtigui, M., Brahmi, M., Marnet, P.-G., Ben Salem, W., Campagna, M. C., Borghese, A., Todde, G., Caria, M., Hammadi, M., & Boselli, C. (2024). Study of the Milkability of the Mediterranean Italian Buffalo and the Tunisian Maghrebi Camel According to Parity and Lactation Stage. Animals, 14(7), 1055. https://doi.org/10.3390/ani14071055