Effects of Whole-Plant Corn Silage on Growth Performance, Serum Biochemical Indices, and Fecal Microorganisms in Hezuo Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Time and Location of the Experiment
2.3. Experimental Design and Animals
2.4. Experimental Diet
2.5. Measurement Indicators and Methods
2.5.1. Growth Performance Indexes
2.5.2. Measurement of Serum Biochemical Indicators
2.5.3. Sequencing of Fecal Microbiota
2.6. Data Analysis
3. Results
3.1. The Effect of Whole-Plant Corn Silage on the Growth Performance of Hezuo Pigs
3.2. The Effect of Whole-Plant Corn Silage on Serum Biochemical Indices of Hezuo Pigs
3.3. The Effects of Whole-Plant Corn Silage on the Fecal Microbiota of Hezuo Pigs
3.3.1. Alpha-Diversity
3.3.2. Comparison among Microbial Communities (Beta-Diversity)
3.3.3. Phylogenetic Composition of Fecal Microorganismal Communities
4. Discussion
4.1. The Effects of Whole-Plant Corn Silage on the Growth Performance of Hezuo Pigs
4.2. The Effects of Whole-Plant Corn Silage on Serum Biochemical Indices of Hezuo Pigs
4.3. The Effect of Whole-Plant Corn Silage on the Fecal Microbiota of Hezuo Pigs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhong, S.; Li, J.; Guo, X. Analysis on the green total factor productivity of pig breeding in China: Evidence from a meta-frontier approach. PLoS ONE 2022, 24, 17. [Google Scholar] [CrossRef]
- Zhang, B.; Yan, Z.; Gao, Y.; Li, J.; Wang, Z.; Wang, P.; Yang, Q.; Huang, X.; Gun, S. Integrated analysis of miRNA and mRNA expression profiles in testes of Landrace and Hezuo boars. Front. Vet. Sci. 2022, 18, 942669. [Google Scholar] [CrossRef]
- Qi, Z.; He, W. Investigation of juema pig breed resources in gannan prefecture. Chin. Qinghai J Anim Veteri Sci. 2006, 36, 23–24. [Google Scholar]
- National Bureau of Statistics Data. Available online: http://www.stats.gov.cn (accessed on 1 January 2022).
- Zhong, R.; Bai, G.; Sun, Y. Carbohydrate enzyme formulation optimization and precise and efficient utilization of pig feed. Swine Sci. 2022, 39, 46–49. [Google Scholar]
- Cheli, F.; Campagnoli, A.; Dellorto, V. Fungal populations and mycotoxins in silages: From occurrence to analysis. Anim. Feed. Sci. Technol. 2013, 183, 1–16. [Google Scholar] [CrossRef]
- FAO. FAO Stat Data [EB/OL]. 2020. Available online: http://www.fao.org/faostat/zh/#data/QA (accessed on 1 January 2021).
- Wang, M.; Li, S.; Shen, D.; Han, G.; Li, Y.; Dou, X.; Li, C. Effects of Dietary Different Whole-Plant Corn Silage Levels on Growth Performance, Slaughter Performance, Meat Quality and Serum Biochemical Parameters of Geese. Acta Vet. Zootech. Sin. 2021, 52, 3501–3511. [Google Scholar]
- Ren, J.; Zhang, J.; Zhang, M.; Sun, G.; Wang, F. Effects of Whole Corn silage Supplementation on Growth Performance, Blood Biochemical Indices and Feed Cost of Bamei Pigs. China Feed. 2021, 13, 34–38. [Google Scholar]
- Wang, P.; Jiang, H.; Cai, W.; Yang, Y.; Gu, L.; Yang, Z. Effect of fermented corn stalk on growing pig production performance, meat quality and economic benefit. Feed. Ind. 2014, 35, 44–47. [Google Scholar]
- China Feeding standard of swine NY/T 65-2004. Available online: https://www.antpedia.com/standard/5041407.html (accessed on 1 September 2004).
- Wilkinson, J.M.; Rinne, M. Highlights of progress in silage conservation and future perspectives. Grass Forage Sci. 2018, 73, 40–52. [Google Scholar] [CrossRef]
- Cristina, Z.; Mauro, S. Digestibility of diets containing whole ear corn silage for heavy pigs. Livest. Sci. 2012, 145, 287–291. [Google Scholar]
- Lyu, Y.; Li, J.; Hou, R.; Zhang, Y.; Hang, S.; Zhu, W.; Zhu, H.; Ouyang, Z. Precision Feeding in Ecological Pig-Raising Systems with Maize Silage. Animals 2022, 12, 1446. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Qin, C.; He, T.; Qiu, K.; Sun, W.; Zhang, X.; Jiao, N.; Zhu, W.; Yin, J. Alfalfa-containing diets alter luminal microbiota structure and short chain fatty acid sensing in the caecal mucosa of pigs. J. Anim. Sci. Biotechnol. 2018, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Brambillasca, S.; Fernandez-Garcia, M.; Aguerre, M.; Repetto, J.L.; Cajarville, C. Characterization of the in vitro digestion of starch and fermentation kinetics of dry sorghum grains soaked or rehydrated and ensiled to be used in pig nutrition. J. Cereal Sci. 2019, 89, 102817. [Google Scholar] [CrossRef]
- Weng, R.; Yang, Y.; Lu, D. Effects of dietary fiber on performance and carcass composition in growing pigs. Genom. Appl. Biol. 2007, 4, 293–297. [Google Scholar]
- Paik, H.S.; Yearick, E.S. The influence of dietary fat and meal frequency on lipoprotein lipase and hormone-sensitive lipase in rat adipose tissue. J. Nutr. 1978, 108, 1798–1805. [Google Scholar] [CrossRef]
- Russell, K.E.; Roussel, A.J. Evaluation of the ruminant serum chemistry profile. Vet. Clin. Food Anim. 2007, 23, 403–426. [Google Scholar] [CrossRef]
- Su, L.; Tuo, H.; Zhang, G.; Pa, R.; Xie, L.; Wang, Q. Effects of Whole Corn Silage and Supplementary Sodium Bicarbonate on Growth Performance, Digestibility, Serum Biochemical Indexes and Economic Benefits in Jiangyue Donkey. China Anim. Husb. Vet. Med. 2021, 33, 2083–2092. [Google Scholar]
- Xiong, L.; Pei, J.; Bao, P.; Wang, X.; Guo, S.; Cao, M.; Kang, Y.; Yan, P.; Guo, X. The effect of the feeding system on fat deposition in yak subcutaneous fat. Int. J. Mol. Sci. 2023, 24, 7381. [Google Scholar] [CrossRef]
- Zeng, B.; Sun, J.; Chen, T.; Sun, B.; He, Q.; Chen, X.; Zhang, Y.; Xi, Q. Effects of Moringa oleifera silage on milk yield, nutrient digestibility and serum biochemical indexes of lactating dairy cows. J. Anim. Physiol. Anim. Nutr. 2018, 102, 75–81. [Google Scholar] [CrossRef]
- Manen, C.A.; Costa, M.; Sipes, I.G.; Russell, D.H. Further evidence of cyclic AMP-mediated hypertrophy as a prerequisite of drug-specific enzyme induction. Biochem. Pharmacol. Biochem. Pharmacol. 1978, 2, 219–224. [Google Scholar] [CrossRef]
- Yang, S.; Ma, S.; Chen, J.; Mao, H.; He, Y.; Xi, D.; Yang, L.; He, T.; Deng, W. Bacterial diversity in the rumen of Gayals (Bos frontalis), Swamp buffaloes (Bubalus bubalis) and Holstein cow as revealed by cloned 16S rRNA gene sequences. Mol. Biol. Rep. 2010, 37, 2063–2073. [Google Scholar] [CrossRef]
- Sadet-Bourgeteau, S.; Martin, C.; Morgavi, D.P. Bacterial diversity dynamics in rumen epithelium of wethers fed forage and mixed concentrate forage diets. Vet. Microbiol. 2010, 146, 98–104. [Google Scholar] [CrossRef]
- Ley, R.E.; Hamady, M.; Lozupone, C.; Turnbaugh, P.J.; Ramey, R.R.; Bircher, J.S.; Schlegel, M.L.; Tucker, T.A.; Schrenzel, M.D.; Knight, R.; et al. Evolution of mammals and their gut microbes. Science 2008, 320, 1647–1651. [Google Scholar] [CrossRef]
- Isaacson, R.; Kim, H.B. The intestinal microbiome of the pig. Anim. Health Res. Rev. 2012, 13, 100–109. [Google Scholar] [CrossRef]
- Wang, X.; Li, G.; Wang, H.; Liu, Y.; Yang, Y.; Wang, C.; Gong, S.; He, D. Feeding whole-plant ensiled corn stover affects growth performance, blood parameters, and Cecal microbiota of Holdobagy goose. Front. Vet. Sci. 2023, 10, 1210706. [Google Scholar] [CrossRef]
- Tang, X.; Liu, X.; Zhang, K. Effects of microbial fermented feed on serum biochemical profile, carcass traits, meat amino acid and fatty acid profile, and gut microbiome composition of finishing pigs. Front. Vet. Sci. 2021, 8, 744630. [Google Scholar] [CrossRef]
- Zheng, X.; Zhuo, M.; Ji, J.; Jiang, W.; Deng, Z.; Zhang, J.; Tian, Y.; Ding, Y.; Zhang, X.; Yin, Z. Characteristics of Serum Immune Indices and intestinal Microbiota of Wannan Black Pigs at Different Growth Stages. Acta Vet. Zootech. Sin. 2023, 54, 3770–3783. [Google Scholar]
- Chao, R.; Xia, C.; Pei, C.; Huo, W.; Liu, Q.; Zhang, C. Comparison of the microbial communities of alpacas and sheep fed diets with three different ratios of corn stalk to concentrate. J. Anim. Physiol. Anim. Nutr. 2021, 105, 26–34. [Google Scholar] [CrossRef]
- Hao, W.L.; Lee, Y.K. Microflora of the gastrointestinal tract: A review. Methods Mol. Biol. 2004, 268, 491–502. [Google Scholar]
- Brulc, J.M.; Antonopoulos, D.A.; Miller, M.E.; Wilson, M.K.; Yannarell, A.C.; Dinsdale, E.A.; Edwards, R.E.; Frank, E.D.; Emerson, J.B.; Wacklin, P.; et al. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc. Natl. Acad. Sci. USA 2009, 106, 1948–1953. [Google Scholar] [CrossRef]
- Spence, C.; Wells, W.G.; Smith, C.J. Characterization of the primary starch utilization operon in the obligate anaerobe Bacteroides fragilis: Regulation by carbon source and oxygen. J. Bacteriol. 2006, 188, 4663–4672. [Google Scholar] [CrossRef]
- Yang, H.; Xiao, Y.; Wang, J.; Xiang, Y.; Gong, Y.; Wen, X.; Li, D. Core gut microbiota in Jinhua pigs and its correlation with strain, farm and weaning age. J. Microbiol. 2018, 56, 346–355. [Google Scholar] [CrossRef]
- Wertheim, H.F.; Nghia, H.D.; Taylor, W.; Schultsz, C. Streptococcus suis: An emerging human pathogen. Clin. Lnfect. Dis. 2009, 48, 617–625. [Google Scholar] [CrossRef]
- Huang, Y.T.; Teng, L.J.; Ho, S.W.; Hsueh, P.R. Streptococcus suis infection. J. Microbiol. Lmmunol. Lnfect. 2005, 38, 306–313. [Google Scholar]
- Walsh, B.; Williams, A.E.; Satsangi, J. Streptococcus suis type 2: Pathogenesis and clinical disease. Rey. Med. Microbiol. 1992, 3, 65–71. [Google Scholar]
Items | Content (%) |
---|---|
Crude protein | 11.36 |
Ether extract | 4.66 |
Neutral detergent fiber | 41.29 |
Acid detergent fiber | 29.29 |
Crude ash | 35.49 |
Calcium | 2.47 |
Phosphorus | 0.32 |
Items | CON | Whole-Plant Corn Silage Addition Level (%) | ||
---|---|---|---|---|
5 | 10 | 15 | ||
Ingredients (%) | ||||
Corn | 69.00 | 66.10 | 63.20 | 60.30 |
Soybean meal | 20.00 | 19.90 | 19.80 | 19.70 |
4% Premix (1) | 4.00 | 4.00 | 4.00 | 4.00 |
Wheat bran | 7.00 | 5.00 | 3.00 | 1.00 |
Whole-plant corn silage | 0.00 | 5.00 | 10.00 | 15.00 |
Total | 100.00 | 100.00 | 100.00 | 100.00 |
Nutrient levels (2) | ||||
Metabolizable energy (MJ/kg) | 13.47 | 13.35 | 13.23 | 13.10 |
CP (%) | 15.89 | 15.74 | 15.60 | 15.46 |
CF (%) | 3.45 | 4.65 | 5.85 | 7.05 |
Ca (%) | 0.50 | 0.62 | 0.74 | 0.85 |
P (%) | 0.35 | 0.35 | 0.35 | 0.36 |
Available phosphorus (%) | 0.10 | 0.10 | 0.11 | 0.11 |
NDF (%) | 11.80 | 12.83 | 13.87 | 14.91 |
ADF (%) | 5.25 | 6.34 | 7.43 | 8.53 |
Lysine (%) | 0.85 | 0.83 | 0.82 | 0.80 |
Threonine (%) | 0.58 | 0.57 | 0.56 | 0.55 |
Methionine (%) | 0.24 | 0.23 | 0.23 | 0.23 |
Items | CON | Whole-Plant Corn Silage Addition Level (%) | ||
---|---|---|---|---|
5 | 10 | 15 | ||
IBW (kg) | 8.06 ± 0.25 | 7.78 ± 0.37 | 7.56 ± 0.40 | 8.12 ± 0.18 |
FBW (kg) | 39.60 ± 1.17 | 40.81 ± 2.74 | 43.36 ± 1.93 | 39.62 ± 2.07 |
ADFI (kg/day) | 1.08 ± 0.04 | 1.10 ± 0.06 | 1.16 ± 0.05 | 1.07 ± 0.05 |
ADG (kg/day) | 0.26 ± 0.01 | 0.28 ± 0.02 | 0.30 ± 0.02 | 0.26 ± 0.02 |
F/G ratio | 4.11 ± 0.09 a | 4.01 ± 0.07 ab | 3.89 ± 0.03 b | 4.10 ± 0.08 ab |
Items | CON | Whole-Plant Corn Silage Addition Level (%) | ||
---|---|---|---|---|
5 | 10 | 15 | ||
TP (g/L) | 59.61 ± 2.11 b | 64.77 ± 1.47 ab | 66.82 ± 1.66 a | 63.46 ± 1.49 ab |
ALB (g/L) | 27.93 ± 0.62 b | 30.16 ± 0.37 ab | 32.82 ± 0.18 a | 30.54 ± 2.13 ab |
TC (mmol/L) | 3.01 ± 0.10 | 2.97 ± 0.08 | 2.92 ± 0.36 | 2.85 ± 0.36 |
TG (mmol/L) | 0.77 ± 0.01 b | 0.81 ± 0.05 ab | 0.87 ± 0.01 a | 0.80 ± 0.03 ab |
HDL-C (mmol/L) | 0.76 ± 0.02 | 0.78 ± 0.01 | 0.80 ± 0.05 | 0.76 ± 0.02 |
LDL-C (mmol/L) | 1.19 ± 0.26 | 1.11 ± 0.24 | 1.18 ± 0.31 | 1.39 ± 0.16 |
Cr (μmol/L) | 84.35 ± 4.59 | 80.47 ± 4.24 | 77.92 ± 3.02 | 80.60 ± 4.18 |
Urea (μmol/L) | 6.26 ± 0.25 | 5.84 ± 0.17 | 6.22 ± 0.26 | 6.58 ± 0.19 |
GLU (mmol/L) | 3.85 ± 0.18 b | 4.55 ± 0.02 ab | 4.80 ± 0.17 a | 4.11 ± 0.44 ab |
AST (U/L) | 62.49 ± 2.35 | 56.87 ± 0.94 | 55.41 ± 2.32 | 59.02 ± 2.66 |
ALT (U/L) | 54.02 ± 0.58 | 56.90 ± 3.52 | 59.21 ± 0.90 | 56.05 ± 1.25 |
Items | CON | Whole-Plant Corn Silage Addition Level (%) | ||
---|---|---|---|---|
5 | 10 | 15 | ||
Chao1 index | 1635.86 ± 129.71 | 1715.04 ± 126.08 | 1984.53 ± 80.11 | 1950.31 ± 104.02 |
Observed index | 1544.82 ± 133.14 | 1620.38 ± 118.79 | 1891.58 ± 80.88 | 1890 ± 106.08 |
Shannon index | 7.36 ± 0.23 c | 7.87 ± 0.15 bc | 8.24 ± 0.14 ab | 8.79 ± 0.22 a |
Simpson index | 0.94 ± 0.01 b | 0.97 ± 0.01 a | 0.97 ± 0.01 a | 0.99 ± 0.01 a |
Phylum | CON | Whole-Plant Corn Silage Addition Level (%) | ||
---|---|---|---|---|
5 | 10 | 15 | ||
Firmicutes | 76.13 ± 1.36 a | 72.36 ± 1.68 ab | 66.28 ± 3.07 ab | 63.40 ± 5.29 b |
Bacteroidetes | 18.65 ± 1.12 b | 21.47 ± 1.82 ab | 22.75 ± 1.93 ab | 27.02 ± 3.84 a |
Spirochaetes | 2.17 ± 0.89 | 2.87 ± 0.33 | 2.94 ± 0.98 | 2.89 ± 0.83 |
Fibrobacteres | 0.45 ± 0.23 | 0.77 ± 0.11 | 1.59 ± 0.65 | 1.31 ± 0.48 |
Actinobacteria | 1.19 ± 0.32 | 0.66 ± 0.06 | 0.69 ± 0.10 | 0.74 ± 0.16 |
Proteobacteria | 0.48 ± 0.13 b | 0.47 ± 0.05 b | 0.64 ± 0.18 b | 1.69 ± 0.49 a |
Tenericutes | 0.36 ± 0.07 b | 0.79 ± 0.07 a | 0.73 ± 0.14 a | 0.73 ± 0.13 a |
Verrucomicrobia | 0.07 ± 0.01 c | 0.15 ± 0.02 ab | 0.10 ± 0.03 bc | 0.18 ± 0.03 a |
Cyanobacteria | 0.06 ± 0.02 b | 0.13 ± 0.02 a | 0.06 ± 0.01 b | 0.06 ± 0.02 b |
TM7 | 0.02 ± 0.01 | 0.04 ± 0.01 | 0.11 ± 0.07 | 0.13 ± 0.07 |
Others | 0.43 ± 0.05 | 0.29 ± 0.05 | 0.49 ± 0.11 | 0.53 ± 0.10 |
Genus | CON | Whole-Plant Corn Silage Addition Level (%) | ||
---|---|---|---|---|
5 | 10 | 15 | ||
Streptococcus | 25.93 ± 4.32 a | 23.30 ± 2.24 a | 14.04 ± 3.26 b | 2.69 ± 2.03 c |
Lactobacillus | 12.54 ± 3.64 | 8.96 ± 1.34 | 8.17 ± 1.79 | 8.19 ± 2.57 |
Prevotella | 7.81 ± 1.96 | 6.95 ± 0.95 | 7.76 ± 0.94 | 7.68 ± 1.19 |
Treponema | 2.15 ± 0.89 | 2.85 ± 0.33 | 2.91 ± 0.97 | 2.85 ± 0.81 |
Coprococcus | 2.70 ± 0.47 | 2.68 ± 0.27 | 2.55 ± 0.35 | 2.64 ± 0.50 |
Ruminococcus | 2.23 ± 0.30 b | 1.84 ± 0.14 b | 2.61 ± 0.45 ab | 3.37 ± 0.35 a |
Oscillospira | 1.76 ± 0.37 b | 4.14 ± 0.70 a | 1.84 ± 0.45 b | 1.35 ± 0.22 b |
Roseburia | 2.08 ± 0.67 ab | 1.34 ± 0.47 b | 1.77 ± 0.35 ab | 2.97 ± 0.44 a |
SMB53 | 0.65 ± 0.13 b | 1.23 ± 0.19 ab | 2.07 ± 0.40 a | 2.17 ± 0.49 a |
Clostridiaceae_Clostridium | 1.16 ± 0.16 | 1.28 ± 0.13 | 1.34 ± 0.10 | 2.04 ± 0.74 |
Others | 40.99 ± 2.01 c | 45.43 ± 1.51 bc | 54.93 ± 3.90 ab | 64.04 ± 3.98 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, X.; Wang, P.; Yan, Z.; Yang, Q.; Huang, X.; Gun, S. Effects of Whole-Plant Corn Silage on Growth Performance, Serum Biochemical Indices, and Fecal Microorganisms in Hezuo Pigs. Animals 2024, 14, 662. https://doi.org/10.3390/ani14050662
Yin X, Wang P, Yan Z, Yang Q, Huang X, Gun S. Effects of Whole-Plant Corn Silage on Growth Performance, Serum Biochemical Indices, and Fecal Microorganisms in Hezuo Pigs. Animals. 2024; 14(5):662. https://doi.org/10.3390/ani14050662
Chicago/Turabian StyleYin, Xitong, Pengfei Wang, Zunqiang Yan, Qiaoli Yang, Xiaoyu Huang, and Shuangbao Gun. 2024. "Effects of Whole-Plant Corn Silage on Growth Performance, Serum Biochemical Indices, and Fecal Microorganisms in Hezuo Pigs" Animals 14, no. 5: 662. https://doi.org/10.3390/ani14050662
APA StyleYin, X., Wang, P., Yan, Z., Yang, Q., Huang, X., & Gun, S. (2024). Effects of Whole-Plant Corn Silage on Growth Performance, Serum Biochemical Indices, and Fecal Microorganisms in Hezuo Pigs. Animals, 14(5), 662. https://doi.org/10.3390/ani14050662