Influence of Contaminants Mercury and PAHs on Somatic Indexes of the European Hake (Merluccius merluccius, L. 1758)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Fish Sampling
2.2. Laboratory Analyses and Total Mercury Determination
2.3. Polycyclic Aromatic Hydrocarbon (PAH) Extraction and Analysis
2.4. Lipid Content in Fish Muscle
2.5. Statistical Analysis
3. Results
3.1. Total Mercury Levels in Fish Muscle
3.2. Total PAH Levels in Fish Muscle
3.3. Lipid Levels in Fish Muscle
3.4. Somatic Indexes: GSI, HSI, and Le Cren Kn
3.4.1. Gonadosomatic Index (GSI)
3.4.2. Hepatosomatic Index (HSI)
3.4.3. Le Cren’s Kn
3.5. Correlations between Pollutants, Lipids, and Somatic Indexes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Capodiferro, M.; Marco, E.; Grimalt, J.O. Wild fish and seafood species in the western Mediterranean Sea with low safe mercury concentrations. Environ. Pollut. 2022, 314, 120274. [Google Scholar] [CrossRef] [PubMed]
- Colloca, F.; Cardinale, M.; Maynou, F.; Giannoulaki, M.; Scarcella, G.; Jenko, K.; Bellido, J.M.; Fiorentino, F. Rebuilding Mediterranean fisheries: A new paradigm for ecological sustainability. Fish Fish. 2013, 14, 89–109. [Google Scholar] [CrossRef]
- Salomon, M.; Markus, T.; Dross, M. Masterstroke or paper tiger—The reform of the EU’s Common Fisheries Policy. Mar. Pol. 2014, 47, 76–84. [Google Scholar] [CrossRef]
- Tsikliras, A.C.; Dinouli, A.; Tsiros, V.Z.; Tsalkou, E. The Mediterranean and Black Sea Fisheries at Risk from Overexploitation. PLoS ONE 2015, 10, e0121188. [Google Scholar] [CrossRef] [PubMed]
- Carpi, P.; Scarcella, G.; Cardinale, M. The Saga of the Management of Fisheries in the Adriatic Sea: History, Flaws, Difficulties, and Successes toward the of the Common Fisheries Policy in the Mediterranean. Front. Mar. Sci. 2017, 4, 423. [Google Scholar] [CrossRef]
- Bahamon, N.; Recasens, L.; Sala-Coromina, J.; Calero, B.; Garcia, J.A.; Rotllant, G.; Maurer, A.; Rojas, A.; Muth, L.; Quevedo, J.; et al. Selectivity-based management for reversing overexploitation of demersal fisheries in North-western Mediterranean Sea. Mar. Pol. 2024, 165, 106185. [Google Scholar] [CrossRef]
- Hala, E.; Bakiu, R. Adriatic Sea Fishery Product Safety and Prospectives in Relation to Climate Change. Fishes 2024, 9, 160. [Google Scholar] [CrossRef]
- Janssen, P.A.H.; Lambert, J.G.D.; Goos, H.J.T. The annual ovarian cycle and the influence of pollution on vitellogenesis in the flounder, Pleuronectes flesus. J. Fish Biol. 1995, 47, 509–523. [Google Scholar] [CrossRef]
- Collier, T.K.; Anulacion, B.F.; Arkoosh, M.R.; Dietrich, J.P.; Incardona, J.P.; Johnson, L.L.; Ylitalo, G.M.; Myers, M.S. Effects on fish of polycyclic aromatic hydrocarbons (PAHS) and naphthenic acid exposures. In Fish Physiology: Organic Chemical Toxicology of Fishes; Tierney, K.B., Farrell, A.R., Brauner, C.L., Eds.; Academic Press: Cambridge, MA, USA, 2013; Volume 33, pp. 195–255. [Google Scholar] [CrossRef]
- Kaddour, A.; Djellouli, F.; Belhoucine, F.; Alioua, A. Heavy metal bioaccumulation and genotoxicity in fish (Merluccius merluccius, Linnaeus, 1758) from the Western Algerian Mediterranean coast. Appl. Ecol. Environ. Res. 2022, 20, 5361–5379. [Google Scholar] [CrossRef]
- Van Der Oost, R.; Beyer, J.; Vermeulen, N.P.E. Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environ. Toxicol. Pharmacol. 2003, 13, 57–149. [Google Scholar] [CrossRef]
- Kerdoun, M.A.; Alouk, L.; Rahmani, F.M.; Henni, H.A.; Dali, H.; Kelai, E.; Belkhalfa, H. Mercury in four common fishes sold in Algeria and associated humans risk. Food Addit. Contam. Part B 2024, 17, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Nyeste, K.; Dobrocsi, P.; Czeglédi, I.; Czédli, H.; Harangi, S.; Baranyai, E.; Simon, E.; Nagy, S.A.; Antal, L. Age and diet-specific trace element accumulation patterns in different tissues of chub (Squalius cephalus): Juveniles are useful bioindicators of recent pollution. Ecol. Indic. 2019, 101, 1–10. [Google Scholar] [CrossRef]
- Nyeste, K.; Zulkipli, N.; Uzochukwu, I.E.; Somogyi, D.; Nagy, L.; Czeglédi, I.; Harangi, S.; Baranyai, E.; Simon, E.; Nagy, S.A.; et al. Assessment of trace and macroelement accumulation in cyprinid juveniles as bioindicators of aquatic pollution: Effects of diets and habitat preferences. Sci. Rep. 2024, 14, 11288. [Google Scholar] [CrossRef]
- Vagi, M.C.; Petsas, A.S.; Kostopoulou, M.N. Potential Effects of Persistent Organic Contaminants on Marine Biota: A Review on Recent Research. Water 2021, 13, 2488. [Google Scholar] [CrossRef]
- Bolognesi, C.; Hayashi, M. Micronucleus assay in aquatic animals. Mutagenesis 2011, 26, 205–213. [Google Scholar] [CrossRef]
- El-Shehawi, A.M.; Ali, F.K.; Seehy, M.A. Estimation of water pollution by genetic biomarkers in tilapia and catfish species shows species-site interaction. Afr. J. Biotechnol. 2007, 6, 840–846. [Google Scholar]
- Frapiccini, E.; Panfili, M.; Guicciardi, S.; Santojanni, A.; Marini, M.; Truzzi, C.; Annibaldi, A. Effects of biological factors and seasonality on the level of polycyclic aromatic hydrocarbons in red mullet (Mullus barbatus). Environ. Pollut. 2020, 258, 113742. [Google Scholar] [CrossRef] [PubMed]
- Amina, K.; Fatma, B.; Amel, A. Integrated use of condition indexes, genotoxic and cytotoxic biomarkers for assessing pollution effects in fish (Mullus barbatus L., 1758) on the West coast of Algeria. South Asian J. Exp. Biol. 2021, 11, 287–299. [Google Scholar] [CrossRef]
- Frapiccini, E.; Cocci, P.; Annibaldi, A.; Panfili, M.; Santojanni, A.; Grilli, F.; Marini, M.; Palermo, F.A. Assessment of seasonal relationship between polycyclic aromatic hydrocarbon accumulation and expression patterns of oxidative stress-related genes in muscle tissues of red mullet (M. barbatus) from the Northern Adriatic Sea. Environ. Toxicol. Pharmacol. 2021, 88, 103752. [Google Scholar] [CrossRef]
- Pastorelli, A.A.; Baldini, M.; Stacchini, P.; Baldini, G.; Morelli, S.; Sagratella, E.; Zaza, S.; Ciardullo, S. Human exposure to lead, cadmium and mercury through fish and seafood product consumption in Italy: A pilot evaluation. Food Addit. Contam. Part A 2012, 29, 1913–1921. [Google Scholar] [CrossRef]
- Varol, M.; Kaya, G.K.; Sünbül, M.R. Evaluation of health risks from exposure to arsenic and heavy metals through consumption of ten fish species. Environ. Sci. Pollut. Res. Int. 2019, 26, 33311–33320. [Google Scholar] [CrossRef] [PubMed]
- Barone, G.; Storelli, A.; Garofalo, R.; Mallamaci, R.; Storelli, M.M. Residual Levels of Mercury, Cadmium, Lead and Arsenic in some commercially key species from Italian Coasts (Adriatic Sea): Focus on human health. Toxics 2022, 10, 223. [Google Scholar] [CrossRef] [PubMed]
- De Giovanni, A.; Abondio, P.; Frapiccini, E.; Luiselli, D.; Marini, M. Meta-analysis of a new georeferenced database on polycyclic aromatic hydrocarbons in Western and Central Mediterranean seafood. Appl. Sci. 2022, 12, 2776. [Google Scholar] [CrossRef]
- De Giovanni, A.; Iannuzzi, V.; Gallello, G.; Giuliani, C.; Marini, M.; Cervera, M.L.; Luiselli, D. Mercury Intake Estimation in Adult Individuals from Trieste, Italy: Hair Mercury Assessment and Validation of a Newly Developed Food Frequency Questionnaire. Pollutants 2023, 3, 320–336. [Google Scholar] [CrossRef]
- Ray, S.; Vashishth, R. From water to plate: Reviewing the bioaccumulation of heavy metals in fish and unravelling human health risks in the food chain. Emerg. Contam. 2024, 10, 100358. [Google Scholar] [CrossRef]
- Faganeli, J.; Horvat, M.; Covelli, S.; Fajon, V.; Logar, M.; Lipej, L.; Cermelj, B. Mercury and methylmercury in the Gulf of Trieste (northern Adriatic Sea). Sci. Total Environ. 2003, 304, 315–326. [Google Scholar] [CrossRef]
- Marini, M.; Frapiccini, E. Persistence of polycyclic aromatic hydrocarbons in sediments in the deeper area of the Northern Adriatic Sea (Mediterranean Sea). Chemosphere 2013, 90, 1839–1846. [Google Scholar] [CrossRef]
- Kotnik, J.; Horvat, M.; Ogrinc, N.; Fajon, V.; Žagar, D.; Cossa, D.; Sprovieri, F.; Pirrone, N. Mercury speciation in the Adriatic Sea. Mar. Pollut. Bull. 2015, 96, 136–148. [Google Scholar] [CrossRef]
- Ricci, F.; Capellacci, S.; Casabianca, S.; Grilli, F.; Campanelli, A.; Marini, M.; Penna, A. Variability of hydrographic and biogeochemical properties in the North-western Adriatic coastal waters in relation to river discharge and climate changes. Chemosphere 2024, 361, 142486. [Google Scholar] [CrossRef]
- Russo, A.; Artegiani, A. Adriatic sea hydrography. Sci. Mar. 1996, 60, 33–43. [Google Scholar]
- Artegiani, A.; Paschini, E.; Russo, A.; Bregant, D.; Raicich, F.; Pinardi, N. The Adriatic Sea general circulation. Part I: Air-sea interactions and water mass structure. J. Phys. Oceanogr. 1997, 27, 1492–1514. [Google Scholar] [CrossRef]
- Artegiani, A.; Paschini, E.; Russo, A.; Bregant, D.; Raicich, F.; Pinardi, N. The Adriatic Sea general circulation. Part II: Baroclinic circulation structure. J. Phys. Oceanogr. 1997, 27, 1515–1532. [Google Scholar] [CrossRef]
- Rovere, M.; Mercorella, A.; Frapiccini, E.; Funari, V.; Spagnoli, F.; Pellegrini, C.; Bonetti, A.S.; Veneruso, T.; Tassetti, A.N.; Dell’Orso, M.; et al. Geochemical and geophysical monitoring of hydrocarbon seepage in the Adriatic Sea. Sensors 2020, 20, 1504. [Google Scholar] [CrossRef] [PubMed]
- Solé, M.; Rodríguez, S.; Papiol, V.; Maynou, F.; Cartes, J.E. Xenobiotic metabolism markers in marine fish with different trophic strategies and their relationship to ecological variables. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2009, 149, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Schirmer, M.; Reinstorf, F.; Leschik, S.; Musolff, A.; Krieg, R.; Strauch, G.; Molson, J.W.; Martienssen, M.; Schirmer, K. Mass fluxes of xenobiotics below cities: Challenges in urban hydrogeology. Environ. Earth Sci. 2011, 64, 607–617. [Google Scholar] [CrossRef]
- Goyer, R.; Clarkson, T. Toxic effects of metals. Casarett & Doull’s Toxicology. In The Basic Science of Poisons, 5th ed.; Klaassen, C.D., Ed.; McGraw-Hill Health Professions Division: NewYork, NY, USA, 1996. [Google Scholar]
- Sharma, R.; Agrawal, M. Biological effects of heavy metals: An overview. J. Environ. Biol. 2005, 26, 301–313. [Google Scholar]
- Amara, R.; Méziane, T.; Gilliers, C.; Hermel, G.; Laffargue, P. Growth and condition indices in juvenile sole Solea solea measured to assess the quality of essential fish habitat. Mar. Ecol. Prog. Ser. 2007, 351, 201–208. [Google Scholar] [CrossRef]
- Araújo, F.G.; Morado, C.N.; Parente, T.T.E.; Paumgartten, F.J.; Gomes, I.D. Biomarkers and bioindicators of the environmental condition using a fish species (Pimelodus maculatus Lacepède, 1803) in a tropical reservoir in Southeastern Brazil. Braz. J. Biol. 2018, 78, 351–359. [Google Scholar] [CrossRef]
- Kerambrun, E.; Henry, F.; Perrichon, P.; Courcot, L.; Meziane, T.; Spilmont, N.; Amara, R. Growth and condition indices of juvenile turbot, Scophthalmus maximus, exposed to contaminated sediments: Effects of metallic and organic compounds. Aquat. Toxicol. 2012, 108, 130–140. [Google Scholar] [CrossRef]
- Pandit, D.N.; Gupta, M.L. Heapto-somatic index, gonado-somatic index and condition factor of Anabas testudineus as bio-monitoring tools of nickel and chromium toxicity. Int. J. Innov. Eng. Technol. 2019, 12, 25–28. [Google Scholar]
- Snyder, S.M.; Pulster, E.L.; Murawski, S.A. Associations between chronic exposure to polycyclic aromatic hydrocarbons and health indices in Gulf of Mexico tilefish (Lopholatilus chamaeleonticeps) post Deepwater Horizon. Environ. Toxicol. Chem. 2019, 38, 2659–2671. [Google Scholar] [CrossRef]
- Pulster, E.L.; Gracia, A.; Armenteros, M.; Carr, B.E.; Mrowicki, J.; Murawski, S.A. Chronic PAH exposures and associated declines in fish health indices observed for ten grouper species in the Gulf of Mexico. Sci. Total Environ. 2020, 703, e135551. [Google Scholar] [CrossRef]
- Alves, L.M.; Lemos, M.F.; Cabral, H.; Novais, S.C. Elasmobranchs as bioindicators of pollution in the marine environment. Mar. Poll. Bull. 2022, 176, 113418. [Google Scholar] [CrossRef]
- Kleinkauf, A.; Connor, L.; Swarbreck, D.; Levene, C.; Walker, P.; Johnson, P.J.; Leah, R.T. General condition biomarkers in relation to contaminant burden in European flounder (Platichthys flesus). Ecotox. Environ. Saf. 2004, 58, 335–355. [Google Scholar] [CrossRef] [PubMed]
- Morado, C.N.; Araújo, F.G.; Gomes, I.D. The use of biomarkers for assessing effects of pollutant stress on fish species from a tropical river in Southeastern Brazil. Acta Sci. Biol. Sci. 2017, 39, 431–439. [Google Scholar] [CrossRef]
- Łuczyńska, J.; Paszczyk, B.; Łuczyński, M.J. Fish as a bioindicator of heavy metals pollution in aquatic ecosystem of Pluszne Lake, Poland, and risk assessment for consumer’s health. Ecotoxicol. Environ. Saf. 2018, 153, 60–67. [Google Scholar] [CrossRef]
- Choudhury, C.; Ray, A.K.; Bhattacharya, S.; Bhattacharya, S. Non lethal concentrations of pesticide impair ovarian function in the freshwater perch, Anabas testudineus. Environ. Biol. Fishes 1993, 36, 319–324. [Google Scholar] [CrossRef]
- Sakamoto, K.Q.; Nakai, K.; Aoto, T.; Yokoyama, A.; Ushikoshi, R.; Hirose, H.; Ishizuka, M.; Kazuka, A.; Fujita, S. Cytochrome P450 induction and gonadal status alteration in common carp (Cyprinus carpio) associated with the discharge of dioxin contaminated effluent to the Hikiji River, Kanagawa Prefecture, Japan. Chemosphere 2003, 51, 491–500. [Google Scholar] [CrossRef]
- Goede, R.W.; Barton, B.A. Organismic indices and an autopsy-based assessment as indicators of health and condition of fish. Am. Fish. Soc. Symp. 1990, 8, 93–108. [Google Scholar]
- Solé, M.; Antó, M.; Baena, M.; Carrasson, M.; Cartes, J.E.; Maynou, F. Hepatic biomarkers of xenobiotic metabolism in eighteen marine fish from NW Mediterranean shelf and slope waters in relation to some of their biological and ecological variables. Mar. Env. Res. 2010, 70, 181–188. [Google Scholar] [CrossRef]
- Sadekarpawar, S.; Parikh, P. Gonadosomatic and hepatosomatic indices of freshwater fish Oreochromis mossambicus in response to a plant nutrient. World J. Zool. 2013, 8, 110–118. [Google Scholar]
- Le Cren, E.D. The Length-Weight Relationship and Seasonal Cycle in Gonad Weight and Condition in the Perch (Perca fluviatilis). J. Anim. Ecol. 1951, 20, 201–219. [Google Scholar] [CrossRef]
- Sutton, S.G.; Bult, T.P.; Haedrich, R.L. Relationships among fat weight, body weight, water weight, and condition factors in wild Atlantic salmon parr. Trans. Am. Fish. Soc. 2000, 129, 527–538. [Google Scholar] [CrossRef]
- Barrilli, G.H.C.; Rocha, O.; Negreiros, N.F.; Verani, J.R. Influence of environmental quality of the tributaries of the Monjolinho River on the relative condition factor (Kn) of the local ichthyofauna. Biota Neotrop. 2015, 15, e20140107. [Google Scholar] [CrossRef]
- FAO. The State of Mediterranean and Black Sea Fisheries—Special Edition; General Fisheries Commission for the Mediterranean: Rome, Italy, 2023; 52p. [Google Scholar]
- FishStat Plus. Universal Software for Fishery Statistical Time Series FAO Fisheries and Aquaculture of the United Nations—Version 4.03.05. 2023.
- Russo, T.; Bitetto, I.; Carbonara, P.; Carlucci, R.; D’Andrea, L.; Facchini, M.T.; Lembo, G.; Maiorano, P.; Sion, L.; Spedicato, M.T.; et al. A holistic approach to fishery management: Evidence and insights from a central Mediterranean case study (Western Ionian Sea). Front. Mar. Sci. 2017, 4, 193. [Google Scholar] [CrossRef]
- Sion, L.; Zupa, W.; Calculli, C.; Garofalo, G.; Hidalgo, M.; Jadaud, A.; Lefkaditou, E.; Ligas, A.; Peristeraki, P.; Bitetto, I.; et al. Spatial distribution pattern of European hake, Merluccius merluccius (Pisces: Merlucciidae), in the Mediterranean Sea. Sci. Mar. 2019, 83, 21–32. [Google Scholar] [CrossRef]
- Maynou, F. Sale price flexibilities of Mediterranean hake and red shrimp. Mar. Pol. 2022, 136, 104904. [Google Scholar] [CrossRef]
- Wiech, M.; Bienfait, A.M.; Silva, M.; Barre, J.; Sele, V.; Bank, M.S.; Bérail, S.; Tessier, E.; Amouroux, D.; Azad, A.M. Organ-specific mercury stable isotopes, speciation and particle measurements reveal methylmercury detoxification processes in Atlantic Bluefin Tuna. J. Hazard. Mater. 2024, 473, 134699. [Google Scholar] [CrossRef]
- Honda, M.; Suzuki, N. Toxicities of Polycyclic Aromatic Hydrocarbons for aquatic animals. Int. J. Environ. Res. Public Health 2020, 17, 1363. [Google Scholar] [CrossRef]
- Bukowska, B.; Mokra, K.; Michałowicz, J. Benzo[a]pyrene—Environmental Occurrence, Human Exposure, and Mechanisms of Toxicity. Int. J. Mol. Sci. 2022, 23, 6348. [Google Scholar] [CrossRef]
- Mai, Y.; Wang, Y.; Geng, T.; Peng, S.; Lai, Z.; Wang, X.; Li, H. A systematic toxicologic study of polycyclic aromatic hydrocarbons on aquatic organisms via food-web bioaccumulation. Sci. Total Environ. 2024, 929, 172362. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.Y.; Fu, J.J.; Shi, J.B.; Zhou, Q.F.; Yuan, C.G.; Jiang, G.B. Methylmercury accumulation, histopathology effects, and cholinesterase activity alterations in medaka (Oryzias latipes) following sublethal exposure to methylmercury chloride. Environ. Toxicol. Pharmacol. 2006, 22, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Gao, L.A.; Shan, X.J.; Lin, L.S.; Dou, S.Z. Toxicity testing of waterborne mercury with red sea bream (Pagrus major) embryos and larvae. Bull. Environ. Contam. Toxicol. 2011, 86, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Sfakianakis, D.G.; Renieri, E.; Kentouri, M.; Tsatsakis, A.M. Effect of heavy metals on fish larvae deformities: A review. Environ. Res. 2015, 137, 246–255. [Google Scholar] [CrossRef]
- O’Bryhim, J.R.; Adams, D.H.; Spaet, J.L.Y.; Mills, G.; Lance, S.L. Relationships of mercury concentrations across tissue types, muscle regions and fins for two shark species. Environ. Pollut. 2017, 223, 323–333. [Google Scholar] [CrossRef]
- Zheng, N.A.; Wang, S.; Dong, W.U.; Hua, X.; Li, Y.; Song, X.; Chu, Q.; Hou, S.; Li, Y. The toxicological effects of mercury exposure in marine fish. Bull. Environ. Contam. Toxicol. 2019, 102, 714–720. [Google Scholar] [CrossRef]
- Girolametti, F.; Panfili, M.; Colella, S.; Frapiccini, E.; Annibaldi, A.; Illuminati, S.; Marini, M.; Truzzi, C. Mercury levels in Merluccius merluccius muscle tissue in the central Mediterranean Sea: Seasonal variation and human health risk. Mar. Poll. Bull. 2022, 176, 113461. [Google Scholar] [CrossRef]
- Mascoli, A. Studio della Gonade Maschile di Merluccius merluccius: Cambiamenti Macroscopici e Molecolari Durante il Ciclo Riproduttivo. Master’s Thesis, Università Politecnica delle Marche, Ancona, Italy, 2018. [Google Scholar]
- Illuminati, S.; Truzzi, C.; Annibaldi, A.; Migliarini, B.; Carnevali, O.; Scarponi, G. Cadmium bioaccumulation and metallothionein induction in the liver of the Antarctic teleost Trematomus bernacchii during an on-site short-term exposure to the metal via sea water. Toxicol. Eviron. Chem. 2010, 92, 617–640. [Google Scholar] [CrossRef]
- Illuminati, S.; Annibaldi, A.; Bau, S.; Scarchilli, C.; Ciardini, V.; Grigioni, P.; Girolametti, F.; Vagnoni, F.; Scarponi, G.; Truzzi, C. Seasonal evolution of size-segregated particulate mercury in the atmospheric aerosol over Terra Nova Bay, Antarctica. Molecules 2020, 25, 3971. [Google Scholar] [CrossRef]
- Roveta, C.; Pica, D.; Calcinai, B.; Girolametti, F.; Truzzi, C.; Illuminati, S.; Annibaldi, A.; Puce, S. Hg levels in marine Porifera of Montecristo and Giglio Islands (Tuscan archipelago, Italy). Appl. Sci. 2020, 10, 4342. [Google Scholar] [CrossRef]
- Truzzi, C.; Annibaldi, A.; Girolametti, F.; Giovannini, L.; Riolo, P.; Ruschioni, S.; Olivotto, I.; Illuminati, S. A chemically safe way to produce insect biomass for possible application in feed and food production. Int. J. Environ. Res. Public Health 2020, 17, 2121. [Google Scholar] [CrossRef] [PubMed]
- Girolametti, F.; Annibaldi, A.; Illuminati, S.; Damiani, E.; Carloni, P.; Truzzi, C. Essential and potentially toxic elements (PTEs) content in European tea (Camellia sinensis) leaves: Risk assessment for consumers. Molecules 2023, 28, 3802. [Google Scholar] [CrossRef]
- Annibaldi, A.; Truzzi, C.; Carnevali, O.; Pignalosa, P.; Api, M.; Scarponi, G.; Illuminati, S. Determination of Hg in farmed and wild Atlantic bluefin tuna (Thunnus thynnus L.) muscle. Molecules 2019, 24, 1273. [Google Scholar] [CrossRef] [PubMed]
- Caroselli, E.; Frapiccini, E.; Franzellitti, S.; Palazzo, Q.; Prada, F.; Betti, M.; Goffredo, S.; Marini, M. Accumulation of PAHs in the tissues and algal symbionts of a common Mediterranean coral: Skeletal storage relates to population age structure. Sci. Total Environ. 2020, 743, 140781. [Google Scholar] [CrossRef] [PubMed]
- João Ramalhosa, M.; Paíga, P.; Morais, S.; Delerue-Matos, C.; Prior Pinto Oliveira, M.B. Analysis of polycyclic aromatic hydrocarbons in fish: Evaluation of a quick, easy, cheap, effective, rugged, and safe extraction method. J. Sep. Sci. 2009, 32, 3529–3538. [Google Scholar] [CrossRef]
- ICH Steering Committee. ICH Harmonized Tripartite Guideline, Validation of Analytical Procedures, Text and Methodology Q2(R1); International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use: London, UK, 1996. [Google Scholar]
- Zarantoniello, M.; Randazzo, B.; Nozzi, V.; Truzzi, C.; Giorgini, E.; Cardinaletti, G.; Freddi, L.; Ratti, S.; Girolametti, F.; Osimani, A.; et al. Physiological responses of Siberian sturgeon (Acipenser baerii) juveniles fed on full-fat insect-based diet in an aquaponic system. Sci. Rep. 2021, 11, 1057. [Google Scholar] [CrossRef] [PubMed]
- Truzzi, C.; Annibaldi, A.; Illuminati, S.; Antonucci, M.; Api, M.; Scarponi, G.; Lombardo, F.; Pignalosa, P.; Carnevali, O. Characterization of the fatty acid composition in cultivated atlantic bluefin tuna (Thunnus thynnus L.) muscle by gas chromatography-mass spectrometry. Anal. Lett. 2018, 51, 2981–2993. [Google Scholar] [CrossRef]
- Truzzi, C.; Illuminati, S.; Antonucci, M.; Scarponi, G.; Annibaldi, A. Heat shock influences the fatty acid composition of the muscle of the Antarctic fish Trematomus bernacchii. Mar. Environ. Res. 2018, 139, 122–128. [Google Scholar] [CrossRef]
- Uyanto, S.S. An Extensive Comparisons of 50 Univariate Goodness-of-fit Tests for Normality. Austrian J. Stat. 2022, 51, 45–97. [Google Scholar] [CrossRef]
- Kay, M.; Elkin, L.; Higgins, J.; Wobbrock, J. ARTool: Aligned Rank Transform for Nonparametric Factorial ANOVAs. R Package Version 0.11.1. 2021. Available online: https://github.com/mjskay/ARTool (accessed on 8 October 2024). [CrossRef]
- Elkin, L.; Kay, M.; Higgins, J.; Wobbrock, J. An Aligned Rank Transform Procedure for Multifactor Contrast Tests. In Proceedings of the UIST ’21: The 34th Annual ACM Symposium on User Interface Software and Technology, Virtual Event, 10–14 October 2021. [Google Scholar] [CrossRef]
- Quinn, G.P.; Keough, M.J. Experimental Design and Data Analysis for Biologists; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- McPherson, G. Statistics in Scientific Investigation; Springer: New York, NY, USA, 1990. [Google Scholar]
- Anderson, T.W.; Finn, J.D. The New Statistical Analysis of Data; Springer: New York, NY, USA, 1996. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Candelma, M.; Marisaldi, L.; Bertotto, D.; Radaelli, G.; Gioacchini, G.; Santojanni, A.; Colella, S.; Carnevali, O. Aspects of Reproductive Biology of the European Hake (Merluccius merluccius) in the Northern and Central Adriatic Sea (Gsa 17-Central Mediterranean Sea). J. Mar. Sci. Eng. 2021, 9, 389. [Google Scholar] [CrossRef]
- Mascoli, A.; Candelma, M.; Santojanni, A.; Carnevali, O.; Colella, S. Reproductive biology of male European hake (Merluccius merluccius) in Central Mediterranean Sea: An overview from macroscopic to molecular investigation. Biology 2023, 12, 562. [Google Scholar] [CrossRef] [PubMed]
- Freund, R.J.; Wilson, W.J.; Mohr, D.L. Statistical Methods, 3rd ed.; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Adams, D.H.; Onorato, G.V. Mercury concentrations in red drum, Sciaenops ocellatus, from estuarine and offshore waters of Florida. Mar. Pollut. Bull. 2005, 50, 291–300. [Google Scholar] [CrossRef]
- Bank, M.S.; Chesney, E.; Shine, J.P.; Maage, A.; Senn, D.B. Mercury bioaccumulation and trophic transfer in sympatric snapper species from the Gulf of Mexico. Ecol. Appl. 2007, 17, 2100–2110. [Google Scholar] [CrossRef] [PubMed]
- Tremain, D.M.; Adams, D.H. Mercury in groupers and sea basses from the Gulf of Mexico: Relationships with size, age, and feeding ecology. Trans. Am. Fish. Soc. 2012, 141, 1274–1286. [Google Scholar] [CrossRef]
- Murua, H.; Motos, L.; Lucio, P. Reproductive modality and batch fecundity of the European hake (Merluccius merluccius L.) in the Bay of Biscay. Calif. Coop. Ocean. Fish. Investig. Rep. 1998, 39, 196–203. [Google Scholar]
- Korta, M.; Murua, H.; Kurita, Y.; Kjesbu, O.S. How are the oocytes recruited in an indeterminate fish? Applications of stereological techniques along with advanced packing density theory on European hake (Merluccius merluccius L.). Fish. Res. 2010, 104, 56–63. [Google Scholar] [CrossRef]
- Domínguez-Petit, R.; Saborido-Rey, F. New bioenergetic perspective of European hake (Merluccius merluccius L.) reproductive ecology. Fish. Res. 2010, 104, 83–88. [Google Scholar] [CrossRef]
- Murua, H.; Lucio, P.; Santurtun, M.; Motos, L. Seasonal variation in egg production and batch fecundity of European hake Merluccius merluccius (L.) in the Bay of Biscay. J. Fish. Biol. 2006, 69, 1304–1316. [Google Scholar] [CrossRef]
- Kjesbu, O.S.; Murua, H.; Witthames, P.; Saborido-Rey, F. Method development and evaluation of stock reproductive potential of marine fish. Fish. Res. 2010, 104, 1–7. [Google Scholar] [CrossRef]
- Murua, H. The biology and fisheries of European hake, Merluccius merluccius, in the north-east Atlantic. Adv. Mar. Biol. 2010, 58, 97–154. [Google Scholar] [CrossRef]
- Pineiro, C.; Sainza, M. Age estimation, growth and maturity of the European hake (Merluccius merluccius (Linnaeus, 1758) from Iberian Atlantic waters. ICES J. Mar. Sci. 2003, 60, 1086–1102. [Google Scholar] [CrossRef]
- Recasens, L.; Chiericoni, V.; Belcari, P. Spawning Pattern and Batch Fecundity of the European Hake (Merluccius merluccius (Linnaeus, 1758)) in the Western Mediterranean. Sci. Mar. 2008, 72, 721–732. [Google Scholar] [CrossRef]
- Soykan, O.; Ilkyaz, A.T.; Metan, G.; Kinacigal, H.T. Age, Growth and Reproduction of European Hake (Merluccius merluccius (Linn., 1758)) in the Central Aegean Sea, Turkey. J. Mar. Biol. Assoc. UK 2015, 95, 829–837. [Google Scholar] [CrossRef]
- Carbonara, P.; Porcu, C.; Donnaloia, M.; Pesci, P.; Sion, L.; Spedicato, M.T.; Zupa, W.; Vitale, F.; Follesa, M.C. The spawning strategy of European hake (Merluccius merluccius, L. 1758) across the Western and Central Mediterranean Sea. Fish. Res. 2019, 219, 105333. [Google Scholar] [CrossRef]
- Zorica, B.; Isajlović, I.; Vrgoč, N.; Kec, V.Č.; Medvešek, D.; Vuletin, V.; Radonić, I.; Cvitanić, R.; Lepen Pleić, I.; Šestanović, M. Reproductive Traits of the European Hake, Merluccius merluccius (L. 1758), in the Adriatic Sea. Acta Adriat. 2021, 62, 183–198. [Google Scholar] [CrossRef]
- Burger, J.; Fossi, C.; Mc Clellan-Green, P.; Orlando, E.F. Methodologies, bioindicators, and biomarkers for assessing gender-related differences in wildlife exposed to environmental chemicals. Environ. Res. 2007, 104, 135–152. [Google Scholar] [CrossRef]
- Grgec, A.S.; Kljaković-Gašpić, Z.; Orct, T.; Tičina, V.; Sekovanić, A.; Jurasović, J.; Piasek, M. Mercury and selenium in fish from the eastern part of the Adriatic Sea: A risk-benefit assessment in vulnerable population groups. Chemosphere 2020, 261, 127742. [Google Scholar] [CrossRef]
- Storelli, M.M.; Storelli, A.; Giacominelli-Stuffler, R.; Marcotrigiano, G.O. Mercury speciation in the muscle of two commercially important fish, hake (Merluccius merluccius) and striped mullet (Mullus barbatus) from the Mediterranean Sea: Estimated weekly intake. Food Chem. 2005, 89, 295–300. [Google Scholar] [CrossRef]
- Aksu, A.; Balkis, N.; Taşkin, O.S.; Erşan, M.S. Toxic metal (Pb, Cd, As and Hg) and organochlorine residue levels in hake (Merluccius merluccius) from the Marmara Sea, Turkey. Environ. Monit. Assess. 2011, 182, 509–521. [Google Scholar] [CrossRef]
- Hornung, H.; Zismann, L.; Oren, O.H. Mercury in twelve Mediterranean trawl fishes of Israel. Environ. Int. 1980, 3, 243–248. [Google Scholar] [CrossRef]
- Kontas, A. Mercury in the Izmir Bay: An assessment of contamination. J. Mar. Syst. 2006, 61, 67–78. [Google Scholar] [CrossRef]
- Jureša, D.; Blanuša, M. Mercury, arsenic, lead and cadmium in fish and shellfish from the Adriatic Sea. Food Addit. Contam. 2003, 20, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Perugini, M.; Visciano, P.; Manera, M.; Zaccaroni, A.; Olivieri, V.; Amorena, M. Heavy metal (As, Cd, Hg, Pb, Cu, Zn, Se) concentrations in muscle and bone of four commercial fish caught in the central Adriatic Sea, Italy. Environ. Monit. Assess. 2014, 186, 2205–2213. [Google Scholar] [CrossRef]
- Hammerschmidt, C.R.; Sandheinrich, M.B. Maternal diet during oogenesis is the major source of methylmercury in fish embryos. Environ. Sci. Technol. 2005, 39, 3580–3584. [Google Scholar] [CrossRef]
- Del Carmen Alvarez, M.; Murphy, C.A.; Rose, K.A.; McCarthy, I.D.; Fuiman, L.A. Maternal body burdens of methylmercury impair survival skills of offspring in Atlantic croaker (Micropogonias undulatus). Aquat. Toxicol. 2006, 80, 329–337. [Google Scholar] [CrossRef]
- Sackett, D.K.; Aday, D.D.; Rice, J.A.; Cope, W.G. Maternally transferred mercury in wild largemouth bass, Micropterus salmoides. Environ. Poll. 2013, 178, 493–497. [Google Scholar] [CrossRef]
- Girolametti, F.; Frapiccini, E.; Annibaldi, A.; Illuminati, S.; Panfili, M.; Marini, M.; Santojanni, A.; Truzzi, C. Total Mercury (THg) Content in Red Mullet (Mullus barbatus) from Adriatic Sea (Central Mediterranean Sea): Relation to Biological Parameters, Sampling Area and Human Health Risk Assessment. Appl. Sci. 2022, 12, 10083. [Google Scholar] [CrossRef]
- Belhoucine, F.; Alioua, A.; Bouhadiba, S.; Boutiba, Z. Impact of some biotics and abiotics factors on the accumulation of heavy metals by a biological model Merluccius merluccius in the bay of Oran in Algeria. J. Biodivers. Environ. Sci. 2014, 5, 33–44. [Google Scholar]
- Mille, T.; Soulier, L.; Caill-Milly, N.; Cresson, P.; Morandeau, G.; Monperrus, M. Differential micropollutants bioaccumulation in European hake and their parasites Anisakis sp. Environ. Pollut. 2020, 265, 115021. [Google Scholar] [CrossRef]
- Mille, T.; Bisch, A.; Caill-Milly, N.; Cresson, P.; Deborde, J.; Gueux, A.; Morandeau, G.; Monperrus, M. Distribution of mercury species in different tissues and trophic levels of commonly consumed fish species from the south Bay of Biscay (France). Mar. Pollut. Bull. 2021, 166, 112172. [Google Scholar] [CrossRef]
- Candelma, M.; Valle, L.D.; Colella, S.; Santojanni, A.; Carnevali, O. Cloning, characterization, and molecular expression of gonadotropin receptors in European hake (Merluccius merluccius), a multiple-spawning species. Fish Physiol. Biochem. 2018, 44, 895–910. [Google Scholar] [CrossRef] [PubMed]
- Soares-Gomes, A.; Neves, R.L.; Aucélio, R.; Van Der Ven, P.H.; Pitombo, F.B.; Mendes, C.L.T.; Ziolli, R.L. Changes and variations of polycyclic aromatic hydrocarbon concentrations in fish, barnacles and crabs following an oil spill in a mangrove of Guanabara Bay, Southeast Brazil. Mar. Pollut. Bull. 2010, 60, 1359–1363. [Google Scholar] [CrossRef] [PubMed]
- Marrone, R.; Smaldone, G.; Pepe, T.; Mercogliano, R.; De Felice, A.; Anastasio, A. Polycyclic Aromatic Hydrocarbons (Pahs) in Seafoods Caught in Corigliano Calabro Gulf (CS, Italy). Ital. J. Food Saf. 2012, 1, 41–46. [Google Scholar] [CrossRef]
- Perugini, M.; Visciano, P.; Manera, M.; Turno, G.; Lucisano, A.; Amorena, M. Polycyclic Aromatic Hydrocarbons in Marine Organisms from the Gulf of Naples, Tyrrhenian Sea. J. Agric. Food Chem. 2007, 55, 2049–2054. [Google Scholar] [CrossRef]
- Moraleda-Cibrián, N.; Carrassón, M.; Rosell-Melé, A. Polycyclic aromatic hydrocarbons, polychlorinated biphenyls and organochlorine pesticides in European hake (Merluccius merluccius) muscle from the Western Mediterranean Sea. Mar. Poll. Bull. 2015, 95, 513–519. [Google Scholar] [CrossRef]
- Bodiguel, X.; Loizeau, V.; Le Guellec, A.M.; Roupsard, F.; Philippon, X.; Mellon-Duval, C. Influence of sex, maturity and reproduction on PCB and pp′ DDE concentrations and repartitions in the European hake (Merluccius merluccius, L.) from the Gulf of Lions (NW Mediterranean). Sci. Total Environ. 2009, 408, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhang, L.; Cai, Y.; Chen, Y. Distribution of polycyclic aromatic hydrocarbon (PAH) residues in several tissues of edible fishes from the largest freshwater lake in China, Poyang Lake, and associated human health risk assessment. Ecotoxicol. Environ. Saf. 2014, 104, 323–331. [Google Scholar] [CrossRef]
- Frapiccini, E.; Annibaldi, A.; Betti, M.; Polidori, P.; Truzzi, C.; Marini, M. Polycyclic aromatic hydrocarbon (PAH) accumulation in different common sole (Solea solea) tissues from the North Adriatic Sea peculiar impacted area. Mar. Poll. Bull. 2018, 137, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.L.; Wu, W.J.; Wang, J.J.; Qin, N.; Wang, Y.; He, Q.S.; Tao, S. Residual levels and health risk of polycyclic aromatic hydrocarbons in freshwater fishes from Lake Small Bai-Yang-Dian, Northern China. Ecol. Model. 2011, 222, 275–286. [Google Scholar] [CrossRef]
- Mashroofeh, A.; Bakhtiari, A.R.; Pourkazemi, M. Distribution and composition pattern of polycyclic aromatic hydrocarbons in different tissues of sturgeons collected from Iranian coastline of the Caspian Sea. Chemosphere 2015, 120, 575–583. [Google Scholar] [CrossRef]
- Jafarabadi, A.R.; Bakhtiari, A.R.; Yaghoobi, Z.; Yap, C.K.; Maisano, M.; Cappello, T. Distributions and compositional patterns of polycyclic aromatic hydrocarbons (PAHs) and their derivatives in three edible fishes from Kharg coral Island, Persian Gulf, Iran. Chemosphere 2019, 215, 835–845. [Google Scholar] [CrossRef]
- Qin, N.; He, W.; Liu, W.; Kong, X.; Xu, F.; Giesy, J.P. Tissue distribution, bioaccumulation, and carcinogenic risk of polycyclic aromatic hydrocarbons in aquatic organisms from Lake Chaohu, China. Sci. Total Environ. 2020, 749, 141577. [Google Scholar] [CrossRef] [PubMed]
- Stow, C.A.; Jackson, L.J.; Amrhein, J.F. An examination of the PCB: Lipid relationship among individual fish. Can. J. Fish. Aquat. Sci. 1997, 54, 1031–1038. [Google Scholar] [CrossRef]
- Devier, M.H.; Augagneur, S.; Budzinski, H.; Le Menach, K.; Mora, P.; Narbonne, J.F.; Garrigues, P. One-year monitoring survey of organic compounds (PAHs, PCBs, TBT), heavy metals and biomarkers in blue mussels from the Arcachon Bay, France. J. Environ. Monit. 2005, 7, 224–240. [Google Scholar] [CrossRef]
- García-Hernández, J.; Cadena-Cárdenas, L.; Betancourt-Lozano, M.; García-De-La-Parra, L.M.; García-Rico, L.; Márquez-Farías, F. Total mercury content found in edible tissues of top predator fish from the Gulf of California, Mexico. Toxicol. Environ. Chem. 2007, 89, 507–522. [Google Scholar] [CrossRef]
- Al-Sulaiti, M.M.; Soubra, L.; Ramadan, G.A.; Ahmed, A.Q.S.; Al-Ghouti, M.A. Total Hg levels distribution in fish and fish products and their relationships with fish types, weights, and protein and lipid contents: A multivariate analysis. Food Chem. 2023, 421, 136163. [Google Scholar] [CrossRef]
- Lloret, J.; Planes, S. Condition, feeding and reproductive potential of white seabream (Diplodus sargus) as indicators of habitat quality and the effect of protection in the northwestern Mediterranean. Mar. Ecol. Prog. Ser. 2003, 248, 197–208. [Google Scholar] [CrossRef]
- Lloret, J.; Galzin, R.; Gil de Sola, A.; Souplet, A.; Demestre, M. Habitat related differences in lipid reserves of some exploited fish species in the north-western Mediterranean continental shelf. J. Fish. Biol. 2005, 67, 51–67. [Google Scholar] [CrossRef]
- Lloret, J.; Demestre, M.; Sánchez-Pardo, J. Lipid reserves of red mullet (Mullus barbatus) in the north-western Mediterranean. Sci. Mar. 2007, 71, 269–277. [Google Scholar] [CrossRef]
- Pethybridge, H.; Daley, R.; Virtue, P.; Butler, E.C.V.; Cossa, D.; Nichols, P.D. Lipid and mercury profiles of 61 mid-trophic species collected off south-eastern Australia. Mar. Freshw. Res. 2010, 61, 1092–1108. [Google Scholar] [CrossRef]
- Łuczyńska, J.; Łuczyński, M.J.; Nowosad, J.; Kowalska-Góralska, M.; Senze, M. Total mercury and fatty acids in selected fish species on the Polish market: A risk to human health. Int. J. Environ. Res. Public Health 2022, 19, 10092. [Google Scholar] [CrossRef] [PubMed]
- Shulman, G.E.; Love, R.M. Advances in Marine Ecology. The Biochemical Ecology of Marine Fishes; Southward, A.J., Tyler, P.A., Young, C.M., Eds.; Academic Press: London, UK, 1999. [Google Scholar]
- Ferrer Maza, D.; Lloret, J.; Muñoz, M.; Faliex, E.; Vila, S.; Sasal, P. Parasitism, Condition and Reproduction of the European Hake (Merluccius merluccius) in the Northwestern Mediterranean Sea. J. Mar. Sci. 2014, 71, 1088–1099. [Google Scholar] [CrossRef]
Sex | Season | # | Median | Mean | sd | Min | Max |
---|---|---|---|---|---|---|---|
F | Spring | 5 | 0.137 | 0.158 | 0.081 | 0.073 | 0.287 |
F | Summer | 10 | 0.182 | 0.196 | 0.095 | 0.073 | 0.374 |
F | Autumn | 10 | 0.103 | 0.103 | 0.033 | 0.045 | 0.152 |
F | Winter | 13 | 0.096 | 0.091 | 0.02 | 0.059 | 0.122 |
M | Spring | 10 | 0.155 | 0.155 | 0.032 | 0.111 | 0.217 |
M | Summer | 7 | 0.125 | 0.131 | 0.074 | 0.071 | 0.289 |
M | Autumn | 10 | 0.117 | 0.130 | 0.061 | 0.072 | 0.267 |
M | Winter | 9 | 0.112 | 0.127 | 0.040 | 0.085 | 0.202 |
Sex | Season | # | Median | Mean | sd | Min | Max |
---|---|---|---|---|---|---|---|
F | Spring | 15 | 15.317 | 16.152 | 6.885 | 5.890 | 30.680 |
F | Summer | 17 | 16.238 | 17.078 | 6.863 | 8.462 | 36.833 |
F | Autumn | 9 | 4.990 | 5.998 | 2.287 | 3.236 | 8.959 |
F | Winter | 34 | 99.680 | 89.221 | 41.464 | 23.725 | 185.788 |
M | Spring | 33 | 10.211 | 16.931 | 22.421 | 3.713 | 117.229 |
M | Summer | 14 | 5.593 | 5.835 | 1.443 | 3.881 | 8.206 |
M | Autumn | 19 | 5.495 | 6.084 | 1.929 | 2.704 | 9.450 |
M | Winter | 10 | 69.775 | 70.844 | 41.542 | 20.380 | 129.278 |
Sex | Season | # | Median | Mean | sd | Min | Max |
---|---|---|---|---|---|---|---|
F | Spring | 15 | 0.684 | 1.157 | 1.286 | 0.247 | 4.534 |
F | Summer | 17 | 2.126 | 3.545 | 3.295 | 0.345 | 11.232 |
F | Autumn | 19 | 0.685 | 1.510 | 2.355 | 0.053 | 8.536 |
F | Winter | 18 | 0.421 | 0.393 | 0.117 | 0.136 | 0.562 |
M | Spring | 32 | 0.809 | 0.792 | 0.394 | 0.196 | 2.009 |
M | Summer | 14 | 0.728 | 0.850 | 0.419 | 0.353 | 1.615 |
M | Autumn | 17 | 0.182 | 0.252 | 0.155 | 0.062 | 0.583 |
M | Winter | 6 | 0.244 | 0.239 | 0.080 | 0.128 | 0.323 |
Sex | Season | # | Median | Mean | sd | Min | Max |
---|---|---|---|---|---|---|---|
F | Spring | 6 | 1.636 | 1.6500 | 0.389 | 1.036 | 2.126 |
F | Summer | 16 | 2.690 | 3.059 | 1.111 | 1.720 | 5.422 |
F | Autumn | 19 | 3.187 | 3.087 | 1.189 | 1.242 | 5.688 |
F | Winter | 18 | 2.820 | 2.879 | 0.867 | 1.082 | 4.272 |
M | Spring | 32 | 1.941 | 2.398 | 1.103 | 0.856 | 4.797 |
M | Summer | 14 | 2.152 | 2.481 | 0.852 | 1.393 | 3.939 |
M | Autumn | 18 | 1.693 | 2.038 | 0.959 | 1.132 | 4.724 |
M | Winter | 6 | 1.663 | 1.653 | 0.296 | 1.250 | 2.072 |
Sex | Season | # | Median | Mean | sd | Min | Max |
---|---|---|---|---|---|---|---|
F | Spring | 15 | 1.098 | 1.084 | 0.085 | 0.921 | 1.233 |
F | Summer | 17 | 1.196 | 1.159 | 0.079 | 1.011 | 1.262 |
F | Autumn | 19 | 1.105 | 1.098 | 0.109 | 0.874 | 1.328 |
F | Winter | 34 | 1.136 | 1.116 | 0.092 | 0.918 | 1.242 |
M | Spring | 33 | 1.085 | 1.097 | 0.080 | 0.969 | 1.324 |
M | Summer | 14 | 1.126 | 1.124 | 0.119 | 0.933 | 1.356 |
M | Autumn | 17 | 1.050 | 1.065 | 0.091 | 0.912 | 1.284 |
M | Winter | 11 | 1.037 | 1.097 | 0.149 | 0.985 | 1.485 |
Lipids | Tot PAHs | GSI | HSI | Le Cren CF | THg | |
---|---|---|---|---|---|---|
Lipids | 1.000 | −0.106 | 0.254 | −0.072 | −0.078 | 0.447 |
Tot PAHs | 1.000 | −0.079 | 0.071 | −0.004 | −0.175 | |
GSI | 1.000 | 0.255 | 0.154 | 0.288 | ||
HSI | 1.000 | 0.268 | −0.169 | |||
Le Cren CF | 1.000 | −0.046 | ||||
THg | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panfili, M.; Guicciardi o Guizzardi, S.; Frapiccini, E.; Truzzi, C.; Girolametti, F.; Marini, M.; Santojanni, A.; Annibaldi, A.; Illuminati, S.; Colella, S. Influence of Contaminants Mercury and PAHs on Somatic Indexes of the European Hake (Merluccius merluccius, L. 1758). Animals 2024, 14, 2938. https://doi.org/10.3390/ani14202938
Panfili M, Guicciardi o Guizzardi S, Frapiccini E, Truzzi C, Girolametti F, Marini M, Santojanni A, Annibaldi A, Illuminati S, Colella S. Influence of Contaminants Mercury and PAHs on Somatic Indexes of the European Hake (Merluccius merluccius, L. 1758). Animals. 2024; 14(20):2938. https://doi.org/10.3390/ani14202938
Chicago/Turabian StylePanfili, Monica, Stefano Guicciardi o Guizzardi, Emanuela Frapiccini, Cristina Truzzi, Federico Girolametti, Mauro Marini, Alberto Santojanni, Anna Annibaldi, Silvia Illuminati, and Sabrina Colella. 2024. "Influence of Contaminants Mercury and PAHs on Somatic Indexes of the European Hake (Merluccius merluccius, L. 1758)" Animals 14, no. 20: 2938. https://doi.org/10.3390/ani14202938
APA StylePanfili, M., Guicciardi o Guizzardi, S., Frapiccini, E., Truzzi, C., Girolametti, F., Marini, M., Santojanni, A., Annibaldi, A., Illuminati, S., & Colella, S. (2024). Influence of Contaminants Mercury and PAHs on Somatic Indexes of the European Hake (Merluccius merluccius, L. 1758). Animals, 14(20), 2938. https://doi.org/10.3390/ani14202938