Fish and Black Soldier Fly Meals as Partial Replacements for Soybean Meal Can Affect Sustainability of Productive Performance, Blood Constituents, Gut Microbiota, and Nutrient Excretion of Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Diets
2.2. Birds and Diets
2.3. Hematological Characteristics
2.4. Gut Microbial Counts
2.5. Statistical Analysis
3. Results
3.1. Chemical Composition of Feedstuffs
3.2. Growth Performance
3.3. Blood Profiles
3.4. Cecal Microbial Counts
3.5. Chemical Composition of Excreta
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Meat Market Review: Overview of Global Meat Market Developments in 2020; FAO: Rome, Italy, 2021; Available online: https://www.fao.org/3/cb3700en/cb3700en.pdf (accessed on 3 February 2022).
- Selaledi, L.; Mbajiorgu, C.A.; Mabelebele, M. The use of yellow mealworm (T. molitor) as alternative source of protein in poultry diets: A review. Trop. Anim. Health Prod. 2019, 52, 7–16. [Google Scholar] [CrossRef]
- Hafez, M.H.; Attia, Y.A.; Bovera, F.; Khafaga, A.F.; Abd El-Hack, M.E.; de Oliveira, M.C. Influence of COVID-19 on the poultry production and environment. Environ. Sci. Poll. Res. 2021, 28, 44833–44844. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Kim, Y.Y. Insect as feed ingredients for pigs. Anim. Biosci. 2022, 35, 347–355. [Google Scholar] [CrossRef]
- FAO. Mapping Supply and Demand for Animal-Source Foods to 2030; FAO: Rome, Italy, 2011. [Google Scholar]
- Marono, S.; Piccolo, G.; Loponte, R.; Di Meo, C.; Attia, Y.A.; Nizza, A.; Bovera, F. In vitro crude protein digestibility of Tenebrio molitor and Hermetia illucens insect meals and its correlation with chemical composition traits. Ital. J. Anim. Sci. 2015, 14, 3889. [Google Scholar] [CrossRef]
- Ahmed, A.K.A.; Asiry, K.A.; Al-Qurashi, A.D.; Almasoudi, N.M.; Mousa, M.A.A.; Ibrahim, O.H.M.; Attia, Y.A.; Alrefaei, M.S. Insect meal as promising feedstuffs in poultry nutrition with an emphasis on black soldier fly Hermetia illucens, update review. KAU Met. Environ. Arid. Land Agric. Sci. 2021, 31, 19–30. [Google Scholar]
- Woods, M.J.; Cullere, M.; Van Emmenes, L.; Vincenzi, S.; Pieterse, E.; Hoffman, L.C.; Dalle Zotte, A. Hermetia illucens larvae reared on different substrates in broiler quail diets: Effect on apparent digestibility, feed-choice and growth performance. J. Insects Food Feed 2019, 5, 89–98. [Google Scholar] [CrossRef]
- Van Huis, A.; Oonincx, D.G.A.B.; Rojo, S.; Tomberlin, J.K. Insects as feed: House fly or black soldier fly? J. Insects Food Feed 2020, 6, 221–229. [Google Scholar] [CrossRef]
- Gale, F.; Arnade, C. Effects of rising feed and labor costs on China’s chicken price. Int. Food Agribus. Man. 2015, 18, 137–150. [Google Scholar]
- Addeo, N.F.; Randazzo, B.; Olivotto, I.; Messina, M.; Tulli, F.; Vozzo, S.; Attia, Y.A.; Mahayri, T.M.; Iannaccone, F.; Asiry, K.A.; et al. Low inclusion levels of Tenebrio molitor larvae meal in laying Japanese quail (Coturnix japonica, Gould, 2 1837) diet improve the intestinal morphometry, enzymatic activity and caecal short chain fatty acids profile. Res. Vet. Sci. 2022, 149, 51–59. [Google Scholar] [CrossRef]
- FAO. Global Food Loss and Food Waste; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; Available online: https://www.fao.org/fileadmin/user_upload/suistainability/pdf/Global_Food_Losses_and_Food_Waste.pdf (accessed on 20 May 2023).
- Hargis, P.S.; Van Elswyk, M.E. Manipulating the fatty acid composition of poultry meat and eggs for the health conscious consumer. World’s Poult. Sci. J. 1993, 49, 251–264. [Google Scholar] [CrossRef]
- Bovera, F.; Piccolo, G.; Gasco, L.; Marono, S.; Loponte, R.; Vassalotti, G.; Mastellone, V.; Lombardi, P.; Attia, Y.A.; Nizza, A. Yellow mealworm larvae (Tenebrio molitor L.) as possible alternative to soybean meal in broiler diets. Br. Poult. Sci. 2015, 56, 569–575. [Google Scholar] [CrossRef]
- Ballitoc, D.A.; Sun, S. Ground yellow mealworms (Tenebrio molitor L.) feed supplementation improves growth performance and carcass yield characteristics in broilers. Open Sci. Reposit. Agric. 2013, 18, e23050425. [Google Scholar]
- Marono, S.; Loponte, R.; Lombardi, P.; Vassalotti, G.; Pero, M.E.; Russo, F.; Gasco, L.; Parisi, G.; Piccolo, G.; Nizza, S.; et al. Productive performance and blood profiles of laying hens fed Hermetia illucens larvae meal as total replacement of soybean meal from 24 to 45 weeks of age. Poult. Sci. 2017, 96, 1783–1790. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S.; Tran, G.; Henze, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Henry, M.; Gasco, L.; Piccolo, G.; Fountoulaki, E. Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed. Sci. Technol. 2015, 203, 1–22. [Google Scholar] [CrossRef]
- Addeo, N.F.; Vozzo, S.; Secci, G.; Mastellone, V.; Piccolo, G.; Lombardi, P.; Parisi, G.; Asiry, K.A.; Attia, Y.A.; Bovera, F. Different combinations of butchery and vegetable wastes on growth performance, chemical-nutritional characteristics and oxidative status of Black Soldier fly growing larvae. Animals 2021, 11, 3515. [Google Scholar] [CrossRef]
- Diener, S.; Zurbrügg, C.; Tockner, K. Conversion of organic material by black soldier fly larvae: Establishing optimal feeding rates. Waste Manag. Res. 2009, 27, 603–610. [Google Scholar] [CrossRef]
- Spranghers, T.; Ottoboni, M.; Klootwijk, C.; Ovyn, A.; Deboosere, S.; De Meulenaer, B.; Michiels, J.; Eeckhout, M.; De Clercq, P.; De Smet, S. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric. 2017, 97, 2594–2600. [Google Scholar] [CrossRef]
- Cullere, M.; Tasoniero, G.; Giaccone, V.; Miotti-Scapin, R.; Claeys, E.; De Smet, S.; Dalle Zotte, A. Black soldier fly as dietary protein source for broiler quails: Apparent digestibility, excreata microbial load, feed choice, performance, carcass and meat traits. Animal 2016, 10, 1923–1930. [Google Scholar] [CrossRef]
- Loponte, R.; Nizza, S.; Bovera, F.; De Riu, N.; Fliegerova, K.; Lombardi, P.; Vassalotti, G.; Mastellone, V.; Nizza, A.; Moniello, G. Growth performance, blood profiles and carcass traits of Barbary partridge (Alectoris barbara) fed two different insect larvae meals (Tenebrio molitor and Hermetia illucens). Res. Vet. Sci. 2017, 115, 183–188. [Google Scholar] [CrossRef]
- Secci, G.; Moniello, G.; Gasco, L.; Bovera, F.; Parisi, G. Barbary partridge meat quality as affected by Hermetia illucens and Tenebrio molitor larva meals in feeds. Food Res. Int. 2018, 112, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Analytical Chemists (AOAC). Association of Official Analytical Chemists, Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2004. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods of Dietary Fiber, Neutral Detergent Fiber and Non-Starch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- D’Hondt, E.; Soetemans, L.; Bastiaens, L.; Maesen, M.; Jespers, V.; Van den Bosch, B.; Voorspoels, S.; Elst, K. Simplified determination of the content and average degree of acetylation of chitin in crude black soldier fly larvae samples. Carbohydr. Res. 2020, 488, 107899. [Google Scholar] [CrossRef]
- NRC (National Research Council). Nutrient Requirements of Poultry, 9th ed.; The National Academic Press: Washington, DC, USA, 1994. [Google Scholar]
- Arbor Acres. Broiler Management Handbook. 2018. Available online: https://eu.aviagen.com/assets/Tech_Center/AA_Broiler/AA-BroilerHandbook2018-EN.pdf (accessed on 19 February 2019).
- Feldman, B.F.; Zinkl, J.G.; Jain, N.C. Schalm’s Veterinary Hematology, 5th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2000; pp. 1120–1124. [Google Scholar]
- Drew, M.D.; Syed, N.A.; Goldade, B.G.; Laarveld, B.; Van Kessel, A.G. Effects of dietary protein source and level on intestinal populations of Clostridium perfringens in broiler chickens. Poult. Sci. 2004, 83, 414–420. [Google Scholar] [CrossRef]
- Bartles, H.; Bohmer, M.; Heirli, C. Serum creatinine determination without protein precipitation. Clin. Chim. Acta 1972, 37, 193–197. [Google Scholar]
- Stein, E.A. Textbook of Clinical Chemistry; Tietz, N.W., Ed.; W.B. Saunders: Philadelphia, PA, USA, 1986; pp. 879–886. [Google Scholar]
- Lopes-Virella, M.F.; Stone, P.; Ellis, S.; Colwell, J.A. Cholesterol determination in high-density lipoproteins separated by three different methods. Clin. Chem. 1977, 23, 882–884. [Google Scholar] [CrossRef]
- Attia, Y.A.; Al-Khalaifah, H.; Abd El-Hamid, H.E.; Al-Harthi, M.A.; El-Shafey, A.A. Growth performance, digestibility, intestinal morphology, Carcass traits and meat quality of broilers fed marginal nutrients deficiency-diet supplemented with different levels of active Yeast. Livest. Sci. 2020, 103945. [Google Scholar] [CrossRef]
- Ricard, M.J.; Portal, B.; Meo, J.; Coudray, C.; Hadjian, A.; Favier, A. Malondialdehyde kit evaluated for determining plasma and lipoprotein fractions that react with Thiobarbituric acid. Clin. Chem. 1992, 38, 704–709. [Google Scholar] [CrossRef]
- SAS® Software, version 9.2; Statistical Analysis System Institute: Cary, NC, USA, 2009.
- Barragan-Fonseca, K.B.; Dicke, M.; van Loon, J.J.A. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed—A review. J. Insects Food Feed 2017, 3, 105–120. [Google Scholar] [CrossRef]
- Schiavone, A.; Marco, M.; Martinez, S.; Dabbou, S.; Renna, M.; Madrid, J.; Hernandez, F.; Rotolo, L.; Costa, P.; Gai, F.; et al. Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: Apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility. J. Anim. Sci. Biotechnol. 2017, 8, 51. [Google Scholar] [CrossRef]
- Gold, M.; Cassar, C.M.; Zurbrugg, C.; Kreuzer, M.; Boulos, S.; Diener, S.; Mathys, A. Biowaste treatment with black soldier fly larvae: Increasing performance through the formulation of biowastes based on protein and carbohydrates. Waste Manag. 2020, 102, 319–329. [Google Scholar] [CrossRef]
- Murawska, D.; Daszkiewicz, T.; Sobotka, W.; Gesek, M.; Witkowska, D.; Matusevičius, P.; Bakuła, T. Partial and Total Replacement of Soybean Meal with Full-Fat Black Soldier Fly (Hermetia illucens L.) Larvae Meal in Broiler Chicken Diets: Impact on Growth Performance, Carcass Quality and Meat Quality. Animals 2021, 11, 2715. [Google Scholar] [CrossRef] [PubMed]
- Facey, H.; Kithama, M.; Mohammadigheisar, M.; Huber, L.; Anna, K.S.; Elijah, G.K. Complete replacement of soybean meal with black soldier fly larvae meal in feeding program for broiler chickens from placement through to 49 days of age reduced growth performance and altered organs morphology. Poult. Sci. 2022, 102, 102293. [Google Scholar] [CrossRef]
- Altmann, B.A.; Neumann, C.; Velten, S.; Liebert, F.; Mörlein, D. Meat quality derived from high inclusion of a micro-alga or insect meal as an alternative protein source in poultry diets: A pilot study. Foods 2018, 7, 34. [Google Scholar] [CrossRef]
- Attivi, K.; Agboka, K.; Mlaga, G.K.; Oke, O.E.; Teteh, A.; Onagbesan, O.; Tona, K. Effect of Black Soldier Fly (Hermetia Illucens) Maggots Meal as a Substitute for Fish Meal on Growth Performance, Biochemical Parameters and Digestibility of Broiler Chickens. Int. J. Poult. Sci. 2020, 19, 75–80. [Google Scholar] [CrossRef]
- De Souza Vilela, J.; Andronicos, N.M.; Kolakshyapati, M.; Hilliar, M.; Sibanda, T.Z.; Andrew, N.R.; Swick, R.A.; Wilkinson, S.; Ruhnke, I. Black soldier fly larvae in broiler diets improve broiler performance and modulate the immune system. Anim. Nutr. 2021, 7, 695–706. [Google Scholar] [CrossRef]
- Dabbou, S.; Gai, F.; Biasato, I.; Capucchio, M.T.; Biasibetti, E.; Dezzutto, D.; Meneguz, M.; Plachà, I.; Gasco, L.; Schiavone, A. Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on growth performance, blood traits, gut morphology and histological features. J. Anim. Sci. Biotechnol. 2018, 9, 32–38. [Google Scholar] [CrossRef]
- Mohammed, A.; Laryea, T.E.; Ganiyu, A.; Adongo, T. Effects of black soldier fly (Hermetia illucens) larvae meal on the growth performance of broiler chickens. Int. J. Dev. 2017, 4, 35–41. [Google Scholar]
- Onsongo, V.O.; Osuga, I.M.; Gachuiri, C.K.; Wachira, A.M.; Miano, D.M.; Tanga, C.M.; Ekesi, S.; Nakimbugwe, D.; Fiaboe, K.K.M. Insects for income generation through animal feed: Effect of dietary replacement of soybean and fish meal with black soldier fly meal on broiler growth and economic performance. J. Econ. Entomol. 2018, 111, 1966–1973. [Google Scholar] [CrossRef]
- Pieterse, E.; Erasmus, S.W.; Uushona, T.; Hoffman, L.C. Black soldier fly (Hermetia illucens) pre-pupae meal as a dietary protein source for broiler production ensures a tasty chicken with standard meat quality for every pot. J. Sci. Food Agric. 2019, 99, 893–903. [Google Scholar] [CrossRef]
- Kim, T.K.; Yong, H.J.; Chun, H.H.; Lee, M.A.; Kim, Y.B.; Choi, Y.S. Changes of amino acid composition and protein technical functionality of edible insects by extracting steps. J. Asia-Pacific Entomol. 2020, 23, 298–305. [Google Scholar] [CrossRef]
- Fortuoso, F.F.; dos Reis, J.H.; Gsbert, R.R.; Barreta, M. Glycerol monolaurate in the diet of broiler chickens replacing conventional antimicrobials: Impact on health, performance and meat quality. Microb. Pathog. 2019, 129, 161–167. [Google Scholar] [CrossRef]
- Londok, J.; Rompis, J. Supplementation of lauric acid and feed fiber to optimise the performance of broiler. IOP Conf. Ser. Earth Environ. Sci. 2019, 387, 012082. [Google Scholar] [CrossRef]
- Bernatová, S.; Pilát, O.Z.; Šerý, M.; Ježek, J.; Jákl, P.; Šiler, M.; Krzyžánek, V.; Zemánek, P.; Holá, V.; Dvořáčková, M.; et al. Following the Mechanisms of Bacteriostatic versus Bactericidal Action Using Raman Spectroscopy. Molecules 2013, 18, 13188–13199. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, L.; Coretti, L.; Dipineto, L.; Bovera, F.; Menna, F.; Chiariotti, L.; Nizza, A.; Lembo, F.; Fioretti, A. Insect-based diet, a promising nutritional source, modulates gut microbiota composition and SCFAs production in laying hens. Sci Rep. 2017, 7, 16269. [Google Scholar] [CrossRef]
- Khempaka, S.; Chitsatchapong, C.; Molee, W. Effect of chitin and protein constituents in shrimp head meal on growth performance, nutrient digestibility, intestinal microbial populations, volatile fatty acids, and ammonia production in broilers. J. Appl. Poult. Res. 2011, 20, 1–11. [Google Scholar] [CrossRef]
- Park, S.I.; Chang, B.S.; Yoe, S.M. Detection of antimicrobial substances from larvae of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). Entomol. Res. 2014, 44, 58e64. [Google Scholar] [CrossRef]
- Diyantor, A.; Sundari, A.S.; Jariah, R.O.A.; Indriati, D.W.; Indriani, D.W. A Potential Insect Antimicrobial of Black Soldier Fly Larvae (Hermetia illucens) against Pathogenic Bacteria. Res. J. Pharm. Technol. 2022, 15, 4425–4433. [Google Scholar] [CrossRef]
- Müller, A.; Wolf, D.; Gutzeit, H.O. The black soldier fly, Hermetia illucens—A promising source for sustainable production of proteins, lipids and bioactive substances. Z. Naturforsch. C J. Biosci. 2017, 72, 351–363. [Google Scholar] [CrossRef]
- Biasato, I.; Ferrocino, I.; Dabbou, S.; Evangelista, R.; Gai, F.; Gasco, L.; Cocolin, L.; Capucchio, M.T.; Schiavone, A. Black soldier fly and gut health in broiler chickens: Insights into the relationship between cecal microbiota and intestinal mucin composition. J. Anim. Sci. Biotechnol. 2020, 11, 11. [Google Scholar] [CrossRef]
- Boyen, F.; Haesebrouck, F.; Vanparys, A.; Volf, J.; Mahu, M.; Van Immerseel, F.; Rychlik, I.; Dewulf, J.; Ducatelle, R.; Pasmans, F. Coated fatty acids alter virulence properties of Salmonella typhimurium and decrease intestinal colonization of pigs. Vet. Microbiol. 2008, 132, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Baltic, B.M.; Janjic, J.; Brankovic Lazic, I.; Mrdovic, B.; Ciric, J.; Markovic, R.; Mitrovic, R. Relationships between broiler final weights and microbiota of certain segments of the intestine. IOP Conf. Ser. Earth Environ. Sci. 2019, 333, 012045. [Google Scholar] [CrossRef]
- Van der Spiegel, M.; Noordam, M.Y.; Van der Fels-Klerx, H.J. Safety of novel protein sources (insects, microalgae, seaweed, duckweed, and rapeseed) and legislative aspects for their application in food and feed production. Compr. Rev. Food Sci. F. 2013, 12, 662–678. [Google Scholar] [CrossRef]
- Kawasaki, K.; Hashimoto, Y.; Hori, A.; Kawasaki, T.; Hirayasu, H.; Iwase, S.; Hashizume, A.; Ido, A.; Miura, C.; Miura, T.; et al. Evaluation of black soldier fly (Hermetia illucens) larvae and pre-pupae raised on household organic waste, as potential ingredients for poultry feed. Animals 2019, 9, 9030098. [Google Scholar] [CrossRef] [PubMed]
- Surendra, K.C.; Olivier, R.; Tomberlin, J.K.; Jha, R.; Khanal, S.K. Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Ren. Energy 2016, 98, 197–202. [Google Scholar] [CrossRef]
- Scieuzo, C.; Franco, A.; Salvia, R.; Triunfo, M.; Addeo, N.F.; Vozzo, S.; Piccolo, G.; Bovera, F.; Ritieni, A.; Di Francia, A.; et al. Enhancement of fruit byproducts through bioconversion by Hermetia illucens (Diptera: Stratiomyidae). Insect Sci. 2023, 30, 991–1010. [Google Scholar] [CrossRef]
Yellow Corn | Soybean Meal | Fish Meal | BSF Larvae | BSF Prepupae | |
---|---|---|---|---|---|
Dry matter, % | 91.0 | 89.0 | 91.1 | 90.2 | 90.8 |
Organic matter, % | 87.3 | 83.8 | 86.3 | 87.2 | 88.3 |
Gross energy, kcal/kg | 3943 | 4200 | 4545 | 4428 | 4450 |
Crude protein, % DM | 8.50 | 46.20 | 60.04 | 50.00 | 53.5 |
Ether extract, % DM | 6.50 | 3.00 | 9.69 | 22.0 | 20.0 |
Crude fiber, % DM | 5.80 | 6.10 | 1.15 | 7.40 | 7.00 |
Crude ash, % DM | 3.70 | 5.20 | 4.84 | 3.00 | 2.50 |
NFE, % DM | 66.5 | 28.5 | 15.4 | 7.75 | 7.79 |
Chitin, % DM | -- | -- | -- | 4.92 | 5.17 |
Calcium, % DM | 0.03 | 0.039 | 0.496 | 0.295 | 0.28 |
Phosphorus, % DM | 0.087 | 0.066 | 0.219 | 0.505 | 0.202 |
Starter Diets, g/kg | Growing-Finishing Diets, g/kg | |||||||
---|---|---|---|---|---|---|---|---|
Control | FM | BSFL | BSFP | Control | FM | BSFL | BSFP | |
Ingredients | ||||||||
Yellow corn | 570.3 | 583.3 | 566.6 | 564.6 | 617.0 | 656.0 | 628.4 | 628.0 |
Soybean meal | 355 | 323 | 335 | 335 | 305 | 240 | 255 | 255 |
Fish meal | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 50.0 | 0.0 | 0.0 |
BSFL | 0.0 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 50.0 | 0.0 |
BSPP | 0.0 | 0.0 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 50.0 |
Vit + Min Premix 1 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
NaCl | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
Ca(H2PO4) | 21.7 | 20.0 | 17.0 | 20.0 | 15.0 | 11.0 | 5.00 | 11.0 |
CaCO3 | 9.00 | 8.00 | 11.0 | 10.0 | 7.00 | 4.00 | 12.0 | 6.4 |
Soybean oil | 33.5 | 25.5 | 30.0 | 30.0 | 46.0 | 30.0 | 39.0 | 39.0 |
Lysine | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 1.40 | 2.60 | 2.60 |
Dl-methionine | 2.50 | 2.15 | 2.40 | 2.40 | 2.00 | 1.60 | 2.00 | 2.00 |
Calculated composition, g/kg | ||||||||
Calcium | 12.1 | 12.6 | 12.2 | 12.7 | 9.0 | 8.9 | 9.0 | 8.8 |
Av. phosphorus | 6.08 | 6.29 | 6.52 | 6.26 | 4.54 | 4.63 | 4.79 | 4.57 |
Lysine | 12.5 | 13.0 | 12.5 | 12.5 | 11.3 | 11.4 | 11.4 | 11.4 |
Methionine | 5.68 | 5.65 | 5.61 | 5.69 | 4.96 | 5.05 | 4.94 | 5.09 |
Methionine + cysteine (TSAA, %) | 9.05 | 9.00 | 9.03 | 9.04 | 8.09 | 8.10 | 8.07 | 8.11 |
Determined composition, g/kg | ||||||||
Crude protein | 218.8 | 222.0 | 223.3 | 225.5 | 196.1 | 193.6 | 193.7 | 201.5 |
AME, kcal/kg | 2921 | 2901 | 2850 | 2880 | 3085 | 3125 | 3075 | 3069 |
Ether extracts | 56.5 | 54.1 | 57.5 | 59.3 | 61.6 | 66.1 | 66.0 | 65.9 |
Crude fiber | 43.3 | 44.4 | 42.4 | 44.6 | 44.4 | 44.2 | 46.3 | 45.9 |
Ash, % | 11.3 | 11.2 | 11.2 | 11.1 | 10.9 | 11.0 | 10.0 | 10.8 |
Dry matter, % | 904.3 | 901.4 | 899.8 | 89.55 | 900.6 | 903.1 | 898.0 | 895.2 |
Treatments | Initial BW g | BWG 1–14 Days g | BWG 15–42 Days g | BWG 1–42 Days g | BW 42 Days g |
---|---|---|---|---|---|
Control | 42.1 | 292 | 1800 a | 2092 a | 2134 a |
Fish meal | 42.8 | 292 | 1768 a | 2060 a | 2103 a |
BSFL | 43.1 | 282 | 1798 a | 2080 a | 2123 a |
BSFP | 43.2 | 299 | 1425 b | 1724 b | 1767 b |
SEM | 2.45 | 11.4 | 36.1 | 62.8 | 62.8 |
p-value | 0.857 | 0.573 | 0.0004 | 0.002 | 0.002 |
Treatments | FI 1–14 Days g/bird | FI 15–42 Days g/bird | FI 1–42 Days g/bird | FCR 1–14 Days kg/kg | FCR 15–42 Days kg/kg | FCR 1–42 Days kg/kg | EPEI |
---|---|---|---|---|---|---|---|
Control | 561 b | 2866 ab | 3427 b | 1.94 b | 1.59 c | 1.83 bc | 273 a |
Fish meal | 533 bc | 3000 a | 3533 b | 1.93 b | 1.70 bc | 1.71 c | 288 a |
BSFL | 662 a | 3224 a | 3886 a | 2.36 a | 1.79 abc | 2.01 ab | 246 a |
BSFP | 493 c | 2820 b | 3313 b | 1.66 b | 1.97 a | 2.21 a | 188 b |
SEM | 18.32 | 40.56 | 75.99 | 0.123 | 0.054 | 0.071 | 11.06 |
p-value | 0.0001 | 0.002 | 0.0003 | 0.001 | 0.001 | 0.0001 | 0.0001 |
Treatments | RBC 106/cm | Hgb % | PCV % | MCV µm3/RBC | MCH pg/dL | MCHC % |
---|---|---|---|---|---|---|
Control | 2.03 | 12.38 | 36.54 | 182 | 61.69 | 33.92 |
Fish meal | 1.89 | 12.10 | 36.74 | 194 | 64.18 | 32.92 |
BSFL | 1.81 | 11.04 | 33.05 | 188 | 62.80 | 33.37 |
BSFP | 1.82 | 12.03 | 36.87 | 203 | 66.27 | 32.65 |
SEM | 0.716 | 0.415 | 1.219 | 12.205 | 3.76 | 0.531 |
p-value | 0.085 | 0.616 | 0.059 | 0.115 | 0.086 | 0.494 |
Treatments | TL mg/dL | Trgs mg/dL | Chol mg/dL | RHC | HDL mg/dL | LDL mg/dL | HDL/LDL | VLDL mg/dL |
---|---|---|---|---|---|---|---|---|
Control | 606 | 178 | 207 | 0.429 | 40.2 | 88.9 | 0.454 | 35.6 |
Fish meal | 610 | 174 | 203 | 0.459 | 42.3 | 93.1 | 0.456 | 34.8 |
BSFL | 556 | 180 | 203 | 0.464 | 42.3 | 94.0 | 0.452 | 36.0 |
BSFP | 545 | 180 | 214 | 0.414 | 39.9 | 88.7 | 0.423 | 36.0 |
SEM | 3.94 | 3.162 | 3.955 | 0.013 | 1.064 | 2.150 | 0.018 | 0.633 |
p-value | 0.488 | 0.667 | 0.212 | 0.067 | 0.224 | 0.260 | 0.676 | 0.667 |
Treatments | ALT IU/L | AST IU/L | ALT/AST | ALP u/100 mL | Urea mg/dL | Cr mg/dL | Urea/Cr |
---|---|---|---|---|---|---|---|
Control | 67.98 | 58.20 | 1.17 | 75.28 | 29.98 | 29.04 | 1.03 |
Fish meal | 66.61 | 57.38 | 1.17 | 76.82 | 29.10 | 28.05 | 1.04 |
BSFL | 66.68 | 58.06 | 1.17 | 76.26 | 27.93 | 27.81 | 1.00 |
BSFP | 65.71 | 55.26 | 1.19 | 75.68 | 30.41 | 28.54 | 1.08 |
SEM | 0.935 | 1.358 | 0.037 | 1.174 | 1.188 | 1.259 | 0.052 |
p-value | 0.557 | 0.543 | 0.910 | 0.331 | 0.095 | 0.084 | 0.094 |
Clostridia Cfu/ml | Salmonella Cfu/mL | TC Cfu/mL | E. coli Cfu/mL | Lactobacillus Cfu/mL | TBC Cfu/mL | |
---|---|---|---|---|---|---|
Control | 1.09 | 3.10 ab | 3.78 | 3.09 | 5.23 b | 5.84 b |
Fish meal | 1.45 | 3.22 a | 3.90 | 2.72 | 5.96 ab | 6.55 b |
BSFL | 1.38 | 2.92 ab | 4.30 | 3.33 | 6.29 ab | 7.55 ab |
BSFP | 2.03 | 2.39 b | 4.30 | 2.83 | 6.69 a | 9.04 a |
SEM | 0.749 | 0.264 | 0.164 | 0.217 | 0.317 | 0.417 |
p-value | 0.513 | 0.008 | 0.107 | 0.261 | 0.045 | 0.001 |
Treatments | DM % | GE kcal/kg | CP % | TP % | EE % | CF % | Ash % |
---|---|---|---|---|---|---|---|
Control | 27.8 | 1446 b | 23.3 a | 5.23 b | 4.61 c | 10.4 | 26.7 |
Fish meal | 28.1 | 1525 a | 22.7 b | 5.96 ab | 4.65 bc | 10.3 | 26.7 |
BSFL | 27.6 | 1347 c | 23.1 ab | 6.29 ab | 4.68 ab | 10.3 | 26.7 |
BSFP | 27.9 | 1347 c | 23.0 ab | 6.69 a | 4.71 a | 10.4 | 26.8 |
SEM | 0.211 | 1.83 | 0.136 | 0.021 | 0.038 | 0.053 | 0.4341 |
p-value | 0.304 | 0.0001 | 0.069 | 0.041 | 0.0001 | 0.456 | 0.883 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attia, Y.A.; Bovera, F.; Asiry, K.A.; Alqurashi, S.; Alrefaei, M.S. Fish and Black Soldier Fly Meals as Partial Replacements for Soybean Meal Can Affect Sustainability of Productive Performance, Blood Constituents, Gut Microbiota, and Nutrient Excretion of Broiler Chickens. Animals 2023, 13, 2759. https://doi.org/10.3390/ani13172759
Attia YA, Bovera F, Asiry KA, Alqurashi S, Alrefaei MS. Fish and Black Soldier Fly Meals as Partial Replacements for Soybean Meal Can Affect Sustainability of Productive Performance, Blood Constituents, Gut Microbiota, and Nutrient Excretion of Broiler Chickens. Animals. 2023; 13(17):2759. https://doi.org/10.3390/ani13172759
Chicago/Turabian StyleAttia, Youssef A., Fulvia Bovera, Khalid A. Asiry, Shatha Alqurashi, and Majed S. Alrefaei. 2023. "Fish and Black Soldier Fly Meals as Partial Replacements for Soybean Meal Can Affect Sustainability of Productive Performance, Blood Constituents, Gut Microbiota, and Nutrient Excretion of Broiler Chickens" Animals 13, no. 17: 2759. https://doi.org/10.3390/ani13172759
APA StyleAttia, Y. A., Bovera, F., Asiry, K. A., Alqurashi, S., & Alrefaei, M. S. (2023). Fish and Black Soldier Fly Meals as Partial Replacements for Soybean Meal Can Affect Sustainability of Productive Performance, Blood Constituents, Gut Microbiota, and Nutrient Excretion of Broiler Chickens. Animals, 13(17), 2759. https://doi.org/10.3390/ani13172759