Effect of Purple Neem Foliage as a Feed Supplement on Nutrient Apparent Digestibility, Nitrogen Utilization, Rumen Fermentation, Microbial Population, Plasma Antioxidants, Meat Quality and Fatty Acid Profile of Goats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Dried Purple Neem Foliage
2.2. Location, Experimental Design, Animal Diets and Managements
2.3. Chemical Composition
2.4. Feed and Fecal Sampling
2.5. Urine Sampling Procedures
2.6. Apparent Digestibility
2.7. Plasma Antioxidant Enzyme Activity Analysis
2.8. Rumen Fermentation Parameters
2.9. DNA Extraction and Real-Time PCR Quantification
2.10. Meat Quality Characteristics Analysis
2.10.1. pH and Color Measurement
2.10.2. Drip Loss, Cooking Loss and Shear Force Determination
2.10.3. Proximate Composition Analysis
2.10.4. Fatty Acid Analysis in Meat
2.11. Statistical Analyses
3. Results
3.1. Feed Intake and Nutrient Intake
3.2. Nutrient Apparent Digestibility
3.3. Nitrogen Balance
3.4. Rumen Fermentation Parameter
3.5. Microbial Population
3.6. Antioxidant Activity in Plasma
3.7. Meat Quality Characteristics
3.8. Fatty Acid Profile in Meat Goat
4. Discussion
4.1. Feed Intake and Nutrient Intake
4.2. Nutrient Apparent Digestibility
4.3. Nitrogen Balance
4.4. Rumen Fermentation Parameter
4.5. Microbial Population
4.6. Antioxidant Activity in Plasma
4.7. Meat Quality Characteristics
4.8. Fatty Acid Profile in Meat
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sithisarn, P.; Supabphol, R.; Gritsanapan, W. Antioxidant activity of Siamese neem tree (VP1209). J. Ethnopharmacol. 2005, 99, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Chanjula, P.; Wungsintaweekul, J.; Chiarawipa, R.; Rugkong, A.; Khonkhaeng, B.; Suntara, C.; Cherdthong, A. Effect of Feed Supplement Containing Dried Kratom Leaves on Apparent Digestibility, Rumen Fermentation, Serum Antioxidants, Hematology, and Nitrogen Balance in Goats. Fermentation 2022, 8, 131. [Google Scholar] [CrossRef]
- Suong, N.T.M.; Paengkoum, S.; Schonewille, J.T.; Purba, R.A.P.; Paengkoum, P. Growth Performance, Blood Biochemical Indices, Rumen Bacterial Community, and Carcass Characteristics in Goats Fed Anthocyanin-Rich Black Cane Silage. Front. Vet. Sci. 2022, 9, 880838. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Lu, Q.; Zhao, S.; Li, J.; Luo, Q.; Wang, X.; Zhang, Y.; Zheng, N. Purple Corn Anthocyanin Affects Lipid Mechanism, Flavor Compound Profiles, and Related Gene Expression of Longissimus Thoracis et Lumborum Muscle in Goats. Animals 2021, 11, 2407. [Google Scholar] [CrossRef] [PubMed]
- Purba, R.A.P.; Paengkoum, S.; Yuangklang, C.; Paengkoum, P.; Salem, A.Z.M.; Juan Boo, L. Mammary gene expressions and oxidative indicators in ruminal fluid, blood, milk, and mammary tissue of dairy goats fed a total mixed ration containing piper meal (Piper betle L.). Ital. J. Anim. Sci. 2022, 21, 129–141. [Google Scholar] [CrossRef]
- Patra, A.K.; Kamra, D.N.; Agarwal, N. Effects of extracts of spices on rumen methanogenesis, enzyme activities and fermentation of feeds in vitro. J. Sci. Food Agric. 2010, 90, 511–520. [Google Scholar] [CrossRef]
- Wallace, R.J.; McEwan, N.R.; McIntosh, F.M.; Teferedegne, B.; Newbold, C.J. Natural Products as Manipulators of Rumen Fermentation. Asian—Australas. J. Anim. Sci. 2002, 15, 1458–1468. [Google Scholar] [CrossRef]
- Kamra, D.N.; Agarwal, N.; Chaudhary, L.C. Inhibition of ruminal methanogenesis by tropical plants containing secondary compounds. Int. Congr. Ser. 2006, 1293, 156–163. [Google Scholar] [CrossRef]
- Ghimeray, A.; Jin, C.-W.; Ghimire, B.; Cho, D. Antioxidant activity and quantitative estimation of azadirachtin and nimbin in Azadirachta Indica A. Juss grown in foothills of Nepal. Afr. J. Biotechnol. 2009, 8, 13. [Google Scholar]
- Brasil, L.; Lima, M.; de Queiroz, A.; Silva, J.; Bezerra, T.K.A.; Arcanjo, N.; Magnani, M.; Souza, E.; Madruga, M. Microbiological and Nutritional Quality of the Goat Meat by-Product “Sarapatel”. Molecules 2014, 19, 1047–1059. [Google Scholar] [CrossRef] [Green Version]
- El-Zaiat, H.M.; Alqaisi, O.; Sallam, S.M.; Al-Marzooqi, W.S. Effect of increasing doses of neem (Azadirachta indica) seed oil on feed intake, nutrients digestibility, ruminal fermentation and nitrogen utilization of Omani sheep. Anim. Biotechnol. 2021, 30, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Paengkoum, P. Effects of Neem (Azadirachta indica) and Leucaena (Leucaena leucocephala) Fodders on Digestibility, Rumen Fermentation and Nitrogen Balance of Goats Fed Corn Silage. J. Anim. Vet. Adv. 2010, 9, 883–886. [Google Scholar] [CrossRef]
- Prommachart, R.; Uriyapongson, J.; Cherdthong, A.; Uriyapongson, S. Feed Intake, Nutrient Digestibility, Antioxidant Activity in Plasma, and Growth Performance of Male Dairy Cattle Fed Black Rice and Purple Corn Extracted Residue. Trop. Anim. Sci. J. 2021, 44, 307–315. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Yuangklang, C.; Paengkoum, S.; Paengkoum, P. Milk fatty acid composition, rumen microbial population and animal performance in response to diets rich in linoleic acid supplemented with Piper betle leaves in Saanen goats. Anim. Prod. Sci. 2020, 62, 1391–1401. [Google Scholar] [CrossRef]
- Hagerman, A.E.; Butler, L.G. Choosing appropriate methods and standards for assaying tannin. J. Chem. Ecol. 1989, 15, 1795–1810. [Google Scholar] [CrossRef]
- Wrolstad, R.E.; Acree, T.E.; Decker, E.A.; Penner, M.H.; Reid, D.S.; Schwartz, S.J.; Shoemaker, C.F.; Smith, D.M.; Sporns, P. Handbook of Food Analytical Chemistry, Volume 1: Water, Proteins, Enzymes, Lipids, and Carbohydrates; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Kuppusamy, P.; Lee, K.D.; Song, C.E.; Ilavenil, S.; Srigopalram, S.; Arasu, M.V.; Choi, K.C. Quantification of major phenolic and flavonoid markers in forage crop Lolium multiflorum using HPLC-DAD. Rev. Bras. de Farmacogn. 2018, 28, 282–288. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Paengkoum, P.; Paengkoum, S. The links between supplementary tannin levels and conjugated linoleic acid (CLA) formation in ruminants: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0216187. [Google Scholar] [CrossRef] [Green Version]
- Purba, R.; Paengkoum, P. Bioanalytical HPLC method of Piper betle L. for quantifying phenolic compound, water-soluble vitamin, and essential oil in five different solvent extracts. J. Appl. Pharm. Sci. 2019, 9, 033–039. [Google Scholar] [CrossRef] [Green Version]
- Van Soest, P.J. Symposium on Factors Influencing the Voluntary Intake of Herbage by Ruminants: Voluntary Intake in Relation to Chemical Composition and Digestibility. J. Anim. Sci. 1965, 24, 834–843. [Google Scholar] [CrossRef]
- McCartney, D.; Tingley, J. Development of a rapid moisture content method for compost materials. Compos. Sci. Util. 1998, 6, 14–25. [Google Scholar] [CrossRef]
- Bremner, J.M.; Keeney, D.R. Steam distillation methods for determination of ammonium, nitrate and nitrite. Anal. Chim. Acta 1965, 32, 485–495. [Google Scholar] [CrossRef]
- Furuichi, Y.; Takahashi, T. Evaluation of acid insoluble ash as a marker in digestion studies. Agric. Biol. Chem. 1981, 45, 2219–2224. [Google Scholar]
- Tian, X.; Paengkoum, P.; Paengkoum, S.; Sorasak, T.; Ban, C. Comparison of forage yield, silage fermentative quality, anthocyanin stability, antioxidant activity, and in vitro rumen fermentation of anthocyanin-rich purple corn (Zea mays L.) stover and sticky corn stover. J. Integr. Agric. 2018, 17, 2082–2095. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Lee, C.; Hwang, S. Analysis of community structures in anaerobic processes using a quantitative real-time PCR method. Water Sci. Technol. 2005, 52, 85–91. [Google Scholar] [CrossRef]
- Robertson, A.R. The CIE 1976 color-difference formulae. Color Res. Appl. 1977, 2, 7–11. [Google Scholar] [CrossRef]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- Ramírez, J.; Segura, J.; Benitez, C.; Torre, Á.; Rubio, A. Efficient voice activity detection algorithms using long-term speech information. Speech Commun. 2004, 42, 271–287. [Google Scholar] [CrossRef]
- Wheeler, T.; Shackelford, S.; Koohmaraie, M.; Hruska, R. Standardizing collection and interpretation of Warner-Bratzler shear force and sensory tenderness data. Proc. Recip. Meat Conf. 1997, 50, 68–77. [Google Scholar]
- AOAC. Official Methods of Analysis; AOAC: Washington, DC, USA, 1990. [Google Scholar]
- Garcés, R.; Mancha, M. One-step lipid extraction and fatty acid methyl esters preparation from fresh plant tissues. Anal. Biochem. 1993, 211, 139–143. [Google Scholar] [CrossRef]
- Mocak, J.; Bond, A.M.; Mitchell, S.; Scollary, G. A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: Application to voltammetric and stripping techniques (technical report). Pure Appl. Chem. 1997, 69, 297–328. [Google Scholar] [CrossRef]
- Aldai, N.; Lavín, P.; Kramer, J.K.; Jaroso, R.; Mantecón, A.R. Breed effect on quality veal production in mountain areas: Emphasis on meat fatty acid composition. Meat Sci. 2012, 92, 687–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torrie, J.H.; Steel, R.G. Principles and Procedures of Statistics: A Biometrical Approach; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Paengkoum, P.; Liang, J.B.; Jelan, Z.A.M.; Basery, M. Utilization of steam-treated oil palm fronds in growing saanen goats: II. Supplementation with energy and urea. Asian-Australas. J. Anim. Sci. 2006, 19, 1623–1631. [Google Scholar] [CrossRef]
- Paengkoum, P.; Sorasak, T.; Paengkoum, S. Utilization of concentrate supplements containing varying levels of cassava leaf pellet by growing goats fed a basal diet of pangola hay. Indian J. Anim. Res. 2017, 51, B-642. [Google Scholar] [CrossRef] [Green Version]
- Antunovic, Z.; Novoselec, J.; Klir Salavardic, Z.; Steiner, Z.; Speranda, M.; Jakobek Barron, L.; Ronta, M.; Pavic, V. Influence of Red Corn Rich in Anthocyanins on Productive Traits, Blood Metabolic Profile, and Antioxidative Status of Fattening Lambs. Animals 2022, 12, 612. [Google Scholar] [CrossRef]
- Taethaisong, N.; Paengkoum, S.; Nakharuthai, C.; Onjai-uea, N.; Thongpea, S.; Sinpru, B.; Surakhunthod, J.; Meethip, W.; Paengkoum, P. Consumption of Purple Neem Foliage Rich in Anthocyanins Improves Rumen Fermentation, Growth Performance and Plasma Antioxidant Activity in Growing Goats. Fermentation 2022, 8, 373. [Google Scholar] [CrossRef]
- Correddu, F.; Lunesu, M.F.; Buffa, G.; Atzori, A.S.; Nudda, A.; Battacone, G.; Pulina, G. Can Agro-Industrial By-Products Rich in Polyphenols be Advantageously Used in the Feeding and Nutrition of Dairy Small Ruminants? Animals 2020, 10, 131. [Google Scholar] [CrossRef] [Green Version]
- Esonu, B.O.; Emenalom, O.; Udedibie, A.; Anyanwu, A.; Madu, U.; Inyang, A. Evaluation of Neem (Azadirachta indica) leaf meal on performance, carcass characteristics and egg quality of laying hens. Int. J. Agric. Rural Dev. 2006, 6, 1. [Google Scholar] [CrossRef]
- Kaewwongsa, W.; Traiyakun, S.; Yuangklang, C.; Wachirapakorn, C.; Paengkoum, P. Protein Enrichment of Cassava Pulp Fermentation by Saccharomyces cerevisiae. J. Anim. Vet. Adv. 2011, 10, 2434–2440. [Google Scholar] [CrossRef]
- Vorlaphim, T.; Paengkoum, P.; Purba, R.A.P.; Yuangklang, C.; Paengkoum, S.; Schonewille, J.T. Treatment of Rice Stubble with Pleurotus ostreatus and Urea Improves the Growth Performance in Slow-Growing Goats. Animals 2021, 11, 1053. [Google Scholar] [CrossRef]
- Paengkoum, P.; Paengkoum, S. Effects of supplementing rice straw with Leucaena (Leucaena leucocephala) and Madras thorn (Pithecellobium dulce) foliages on digestibility, microbial N supply and nitrogen balance of growing goats. J. Anim. Physiol. Anim. Nutr 2010, 94, e59–e65. [Google Scholar] [CrossRef] [PubMed]
- Trach, N.; Mo, M.; Dan, C. Effects of treatment of rice straw with lime and/or urea on its chemical composition, in-vitro gas production and in-sacco degradation characteristics. Livest. Res. Rural Dev. 2001, 13, 4. [Google Scholar]
- Paengkoum, S.; Anan, P.; Purba, R.; Paengkoum, P. Protein-binding affinity of various condensed tannin molecular weights from tropical leaf peel. J. Appl. Pharm. Sci. 2021, 11, 114–120. [Google Scholar] [CrossRef]
- Harikrishnan, R.; Nisha Rani, M.; Balasundaram, C. Hematological and biochemical parameters in common carp, Cyprinus carpio, following herbal treatment for Aeromonas hydrophila infection. Aquaculture 2003, 221, 41–50. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Yuangklang, C.; Paengkoum, S.; Paengkoum, P. Piper oil decreases in vitro methane production with shifting ruminal fermentation in a variety of diets. Int. J. Agric. Biol. 2021, 25, 231–240. [Google Scholar]
- Paengkoum, P.; Liang, J.; Jelan, Z.A.; Basery, M. Utilization of Steam-treated Oil Palm Fronds in Growing Goats: 1. Supplementation with Dietary Urea. Asian—Australas. J. Anim. Sci. 2006, 19, 1305–1313. [Google Scholar] [CrossRef]
- Anantasook, N.; Wanapat, M.; Gunun, P.; Cherdthong, A. Reducing methane production by supplementation of Terminalia chebula RETZ. containing tannins and saponins. Anim. Sci. J. 2016, 87, 783–790. [Google Scholar] [CrossRef]
- Cherdthong, A.; Prachumchai, R.; Wanapat, M.; Foiklang, S.; Chanjula, P. Effects of Supplementation with Royal Poinciana Seed Meal (Delonix regia) on Ruminal Fermentation Pattern, Microbial Protein Synthesis, Blood Metabolites and Mitigation of Methane Emissions in Native Thai Beef Cattle. Animals 2019, 9, 625. [Google Scholar] [CrossRef] [Green Version]
- Wanapat, M.; Chumpawadee; Paengkoum, P. Utilization of Urea-Treated Rice Straw and Whole Sugar Cane Crop as Roughage Sources for Dairy Cattle during the Dry Season. Asian—Australas. J. Anim. Sci. 2000, 13, 474–477. [Google Scholar] [CrossRef]
- Nudda, A.; Correddu, F.; Atzori, A.S.; Marzano, A.; Battacone, G.; Nicolussi, P.; Bonelli, P.; Pulina, G. Whole exhausted berries of Myrtus communis L. supplied to dairy ewes: Effects on milk production traits and blood metabolites. Small Rumin. Res. 2017, 155, 33–38. [Google Scholar] [CrossRef]
- Chen, S.; Paengkoum, P.; Xia, X.; Na-Lampang, P. Effects of Dietary Protein on Ruminal Fermentation, Nitrogen Utilization and Crude Protein Maintenance in Growing Thai-indigenous Beef Cattle Fed Rice Straw as Roughage. J. Anim. Vet. Adv. 2010, 9, 2396–2400. [Google Scholar] [CrossRef] [Green Version]
- Mattos, G.N.; Tonon, R.V.; Furtado, A.A.; Cabral, L.M. Grape by-product extracts against microbial proliferation and lipid oxidation: A review. J. Sci. Food Agric. 2017, 97, 1055–1064. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.B.; Wilson, D.B. Why Are Ruminal Cellulolytic Bacteria Unable to Digest Cellulose at Low pH? J. Dairy Sci. 1996, 79, 1503–1509. [Google Scholar] [CrossRef]
- Mertens, D.R. Predicting intake and digestibility using mathematical models of ruminal function. J. Anim. Sci. 1987, 64, 1548–1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hristov, A.N.; Etter, R.P.; Ropp, J.K.; Grandeen, K.L. Effect of dietary crude protein level and degradability on ruminal fermentation and nitrogen utilization in lactating dairy cows. J. Anim. Sci. 2004, 82, 3219–3229. [Google Scholar] [CrossRef]
- Onetti, S.G.; Shaver, R.D.; McGuire, M.A.; Grummer, R.R. Effect of type and level of dietary fat on rumen fermentation and performance of dairy cows fed corn silage-based diets. J. Dairy Sci. 2001, 84, 2751–2759. [Google Scholar] [CrossRef]
- James, R.E. Growth standards and nutrient requirements for dairy heifers-weaning to calving. J. Adv. Dairy Technol. 2001, 13, 63–77. [Google Scholar]
- Islam, M.; Dahlan, I.; Rajion, M.; Jelan, Z. Rumen pH and ammonia nitrogen of cattle fed different levels of oil palm (Elaeis guineensis) frond based diet and dry matter degradation of fractions of oil palm frond. Asian—Australas. J. Anim. Sci. 2000, 13, 941–947. [Google Scholar] [CrossRef]
- Hosoda, K.; Eruden, B.; Matsuyama, H.; Shioya, S. Effect of anthocyanin-rich corn silage on digestibility, milk production and plasma enzyme activities in lactating dairy cows. Anim. Sci. J. 2012, 83, 453–459. [Google Scholar] [CrossRef]
- Kaneko, J.J.; Harvey, J.W.; Bruss, M.L. Appendixes. In Clinical Biochemistry of Domestic Animals; Academic Press: San Diego, CA, USA, 1997; pp. 885–905. [Google Scholar]
- Tiengtam, N.; Paengkoum, P.; Sirivoharn, S.; Phonsiri, K.; Boonanuntanasarn, S. The effects of dietary inulin and Jerusalem artichoke (Helianthus tuberosus) tuber on the growth performance, haematological, blood chemical and immune parameters of Nile tilapia (Oreochromis niloticus) fingerlings. Aquac. Res. 2017, 48, 5280–5288. [Google Scholar] [CrossRef]
- Purba, R.; Paengkoum, S.; Yuangklang, C.; Paengkoum, P. Flavonoids and their aromatic derivatives in Piper betle powder promote in vitro methane mitigation in a variety of diets. Ciência. E Agrotecnologia 2020, 44, e012420. [Google Scholar] [CrossRef]
- Hosoda, S.; Suga, T.; Shikama, N.; Mizuno, K. Global Surface Layer Salinity Change Detected by Argo and Its Implication for Hydrological Cycle Intensification. J. Oceanogr. 2009, 65, 579–586. [Google Scholar] [CrossRef]
- Leng, R.A.; Brett, D.J. Simultaneous measurements of the rates of production of acetic, propionic and butyric acids in the rumen of sheep on different diets and the correlation between production rates and concentrations of these acids in the rumen. Br. J. Nutr. 1966, 20, 541–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, X.; Xin, H.; Paengkoum, P.; Paengkoum, S.; Ban, C.; Sorasak, T. Effects of anthocyanin-rich purple corn (Zea mays L.) stover silage on nutrient utilization, rumen fermentation, plasma antioxidant capacity, and mammary gland gene expression in dairy goats1. J. Anim. Sci. 2019, 97, 1384–1397. [Google Scholar] [CrossRef] [PubMed]
- McGhie, T.K.; Ainge, G.D.; Barnett, L.E.; Cooney, J.M.; Jensen, D.J. Anthocyanin glycosides from berry fruit are absorbed and excreted unmetabolized by both humans and rats. J. Agric. Food Chem. 2003, 51, 4539–4548. [Google Scholar] [CrossRef] [PubMed]
- Paengkoum, P.; Chen, S.; Paengkoum, S. Effects of crude protein and undegradable intake protein on growth performance, nutrient utilization, and rumen fermentation in growing Thai-indigenous beef cattle. Trop. Anim. Health Prod. 2019, 51, 1151–1159. [Google Scholar] [CrossRef]
- Zhao, J.X.; Li, Q.; Zhang, R.X.; Liu, W.Z.; Ren, Y.S.; Zhang, C.X.; Zhang, J.X. Effect of dietary grape pomace on growth performance, meat quality and antioxidant activity in ram lambs. Anim. Feed Sci. Technol. 2018, 236, 76–85. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Yuangklang, C.; Paengkoum, P. Enhanced conjugated linoleic acid and biogas production after ruminal fermentation with Piper betle L. supplementation. Ciência. Rural. 2020, 50, 7. [Google Scholar] [CrossRef]
- Li, J.; Wu, T.; Li, N.; Wang, X.; Chen, G.; Lyu, X. Bilberry anthocyanin extract promotes intestinal barrier function and inhibits digestive enzyme activity by regulating the gut microbiota in aging rats. Food Funct. 2019, 10, 333–343. [Google Scholar] [CrossRef]
- Mensor, L.L.; Menezes, F.S.; Leitao, G.G.; Reis, A.S.; dos Santos, T.C.; Coube, C.S.; Leitao, S.G. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother. Res. 2001, 15, 127–130. [Google Scholar] [CrossRef]
- Olivas-Aguirre, F.J.; Rodrigo-García, J.; Martínez-Ruiz, N.D.R.; Cárdenas-Robles, A.I.; Mendoza-Díaz, S.O.; Álvarez-Parrilla, E.; González-Aguilar, G.A.; de la Rosa, L.A.; Ramos-Jiménez, A.; Wall-Medrano, A. Cyanidin-3-O-glucoside: Physical-Chemistry, Foodomics and Health Effects. Molecules 2016, 21, 1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogunade, I.M.; McCoun, M.; Idowu, M.D.; Peters, S.O. Comparative effects of two multispecies direct-fed microbial products on energy status, nutrient digestibility, and ruminal fermentation, bacterial community, and metabolome of beef steers. J. Anim. Sci. 2020, 98, skaa201. [Google Scholar] [CrossRef] [PubMed]
- Wanapat, M.; Pimpa, O. Effect of Ruminal NH3-N Levels on Ruminal Fermentation, Purine Derivatives, Digestibility and Rice Straw Intake in Swamp Buffaloes. Asian-Australas. J. Anim. Sci. 1999, 12, 904–907. [Google Scholar] [CrossRef]
- Cardona, F.; Andres-Lacueva, C.; Tulipani, S.; Tinahones, F.J.; Queipo-Ortuno, M.I. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 2013, 24, 1415–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirohi, S.; Pandey, N.; Goel, N.; Singh, B.; Mohini, M.; Pandey, P.; Chaudhary, P.P. Microbial Activity and Ruminal methanogenesis as affected by Plant Secondary Metabolites in Different Plant Extracts. Int. J. Environ. Sci. Eng. 2009, 1, 52–58. [Google Scholar]
- Igwe, E.O.; Charlton, K.E.; Probst, Y.C.; Kent, K.; Netzel, M.E. A systematic literature review of the effect of anthocyanins on gut microbiota populations. J. Hum. Nutr. Diet 2019, 32, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Petlum, A.; Paengkoum, P.; Liang, J.; Vasupen, K.; Paengkoum, S. Molecular weight of condensed tannins of some tropical feed-leaves and their effect on in vitro gas and methane production. Anim. Prod. Sci. 2019, 59, 2154–2160. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.; Zhang, N.; Zhou, Q.; Fan, D.; Wang, M. Lipophilized apigenin derivatives produced during the frying process as novel antioxidants. Food Chem. 2022, 379, 132178. [Google Scholar] [CrossRef]
- Tian, X.Z.; Wang, X.; Ban, C.; Luo, Q.Y.; Li, J.X.; Lu, Q. Effect of Purple Corn Anthocyanin on Antioxidant Activity, Volatile Compound and Sensory Property in Milk During Storage and Light Prevention. Front. Nutr. 2022, 9, 862689. [Google Scholar] [CrossRef]
- Dijkstra, J.; Forbes, J.; France, J. Quantitative Aspects of Ruminant Digestion and Metabolism; CAB International: Wallingford, UK, 2005; Volume 50, pp. 175–178. [Google Scholar]
- Toaldo, I.M.; Cruz, F.A.; da Silva, E.L.; Bordignon-Luiz, M.T. Acute consumption of organic and conventional tropical grape juices (Vitis labrusca L.) increases antioxidants in plasma and erythrocytes, but not glucose and uric acid levels, in healthy individuals. Nutr. Res. 2016, 36, 808–817. [Google Scholar] [CrossRef]
- Tian, X.Z.; Lu, Q.; Paengkoum, P.; Paengkoum, S. Short communication: Effect of purple corn pigment on change of anthocyanin composition and unsaturated fatty acids during milk storage. J. Dairy Sci. 2020, 103, 7808–7812. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Sun, J.; Lu, Y.; Bo, Y. Effects of Anthocyanin on Serum Lipids in Dyslipidemia Patients: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0162089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Wang, C.; Pan, Y.; Gao, X.; Chen, H. Hypoglycemic and hypolipidemic effects of anthocyanins extract from black soybean seed coat in high fat diet and streptozotocin-induced diabetic mice. Food Funct. 2018, 9, 426–439. [Google Scholar] [CrossRef] [PubMed]
- Hosoda, K.; Miyaji, M.; Matsuyama, H.; Haga, S.; Ishizaki, H.; Nonaka, K. Effect of supplementation of purple pigment from anthocyanin-rich corn (Zea mays L.) on blood antioxidant activity and oxidation resistance in sheep. Livest. Sci. 2012, 145, 266–270. [Google Scholar] [CrossRef]
- Duan, T.; Wu, Z.; Zhang, H.; Liu, Y.; Li, Y.; Zhang, W. Effects of melatonin implantation on carcass characteristics, meat quality and tissue levels of melatonin and prolactin in Inner Mongolian cashmere goats. J. Anim. Sci. Biotechnol. 2019, 10, 70. [Google Scholar] [CrossRef] [Green Version]
- Ponnampalam, E.N.; Hopkins, D.L.; Bruce, H.; Li, D.; Baldi, G.; Bekhit, A.E. Causes and Contributing Factors to “Dark Cutting” Meat: Current Trends and Future Directions: A Review. Compr. Rev. Food. Sci. Food Saf. 2017, 16, 400–430. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.Z.; Li, J.X.; Luo, Q.Y.; Zhou, D.; Long, Q.M.; Wang, X.; Lu, Q.; Wen, G.L. Effects of Purple Corn Anthocyanin on Blood Biochemical Indexes, Ruminal Fluid Fermentation, and Rumen Microbiota in Goats. Front. Vet. Sci. 2021, 8, 715710. [Google Scholar] [CrossRef]
- Kafle, D.; Lee, J.H.; Min, B.R.; Kouakou, B. Carcass and meat quality of goats supplemented with tannin-rich peanut skin. J. Agric. Food Res. 2021, 5, 100159. [Google Scholar] [CrossRef]
- Babiker, S.A.; El Khider, I.A.; Shafie, S.A. Chemical composition and quality attributes of goat meat and lamb. Meat Sci. 1990, 28, 273–277. [Google Scholar] [CrossRef]
- Trout, G.R. Techniques for measuring water-binding capacity in muscle foods—A review of methodology. Meat Sci. 1988, 23, 235–252. [Google Scholar] [CrossRef]
- Chuntang, M. Effects of high-concentrate diet supplemented with grape seed proanthocyanidins on growth performance, liver function, meat quality, and antioxidant activity in finishing lambs. Anim. Feed Sci. Technol. 2020, 266, 114518. [Google Scholar] [CrossRef]
- Karami, M.; Alimon, A.R.; Sazili, A.Q.; Goh, Y.M.; Ivan, M. Effects of dietary antioxidants on the quality, fatty acid profile, and lipid oxidation of longissimus muscle in Kacang goat with aging time. Meat Sci 2011, 88, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Sekhon, K.S.; Bawa, A.S. Effect of muscle-type, stage of maturity and level of nutrition on the quality of meat from male buffalo calves. Food Res. Int. 1996, 29, 779–783. [Google Scholar] [CrossRef]
- Webb, E.C.; Casey, N.H.; Simela, L. Goat meat quality. Small Rumin. Res. 2005, 60, 153–166. [Google Scholar] [CrossRef]
- Lazalde-Cruz, R.; Miranda-Romero, L.A.; Tirado-González, D.N.; Carrillo-Díaz, M.I.; Medina-Cuéllar, S.E.; Mendoza-Martínez, G.D.; Lara-Bueno, A.; Tirado-Estrada, G.; Salem, A.Z.M. Potential Effects of Delphinidin-3-O-Sambubioside and Cyanidin-3-O-Sambubioside of Hibiscus sabdariffa L. on Ruminant Meat and Milk Quality. Animals 2021, 11, 2827. [Google Scholar] [CrossRef]
- Morán, L.; Rodríguez-Calleja, J.M.; Bodas, R.; Prieto, N.; Giráldez, F.J.; Andrés, S. Carnosic acid dietary supplementation at 0.12% rates slows down meat discoloration in gluteus medius of fattening lambs. Meat Sci. 2012, 90, 789–795. [Google Scholar] [CrossRef]
- Nieto, M.A. Epithelial plasticity: A common theme in embryonic and cancer cells. Science 2013, 342, 1234850. [Google Scholar]
- Cao, F.L.; Zhang, X.H.; Yu, W.W.; Zhao, L.G.; Wang, T. Effect of feeding fermented Ginkgo biloba leaves on growth performance, meat quality, and lipid metabolism in broilers. Poult. Sci. 2012, 91, 1210–1221. [Google Scholar] [CrossRef]
- Chen, C.; Yu, R.; Owuor, E.D.; Kong, A.N. Activation of antioxidant-response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death. Arch. Pharm. Res. 2000, 23, 605–612. [Google Scholar] [CrossRef]
- Bryszak, M.; Szumacher-Strabel, M.; El-Sherbiny, M.; Stochmal, A.; Oleszek, W.; Roj, E.; Patra, A.K.; Cieslak, A. Effects of berry seed residues on ruminal fermentation, methane concentration, milk production, and fatty acid proportions in the rumen and milk of dairy cows. J. Dairy Sci. 2019, 102, 1257–1273. [Google Scholar] [CrossRef] [Green Version]
- Colombo, R.; Ferron, L.; Papetti, A. Colored corn: An up-date on metabolites extraction, health implication, and potential use. Molecules 2021, 26, 199. [Google Scholar] [CrossRef] [PubMed]
- Saturno, J.F.L.; Dilawar, M.A.; Mun, H.S.; Kim, D.H.; Rathnayake, D.; Yang, C.J. Meat Composition, Fatty Acid Profile and Sensory Attributes of Meat from Goats Fed Diet Supplemented with Fermented Saccharina japonica and Dendropanax morbifera. Foods 2020, 9, 937. [Google Scholar] [CrossRef] [PubMed]
Items | Control | 3% PNF + 3% SFO | 6% PNF + 3% SFO |
---|---|---|---|
soybean meal | 18.00 | 16.00 | 14.00 |
Rice bran | 32.00 | 24.00 | 25.80 |
cassava chip | 28.00 | 27.00 | 24.30 |
corn | 20.40 | 25.40 | 25.30 |
salt | 0.40 | 0.40 | 0.40 |
limestone | 0.20 | 0.20 | 0.20 |
premix | 1.00 | 1.00 | 1.00 |
Sunflower oil | 0.00 | 3.00 | 3.00 |
Purple Neem | 0.00 | 3.00 | 6.00 |
Chemical composition (% DM) | |||
Dry matter | 88.66 | 88.87 | 89.02 |
Ash | 6.17 | 6.95 | 6.19 |
Crude protein | 16.01 | 16.20 | 16.29 |
Ether extract | 4.78 | 5.44 | 5.48 |
Non-fibrous carbohydrate | 44.84 | 45.02 | 41.22 |
Neutral detergent fiber | 28.20 | 26.39 | 30.82 |
Acid detergent fiber | 10.71 | 13.33 | 15.92 |
TDN, % | 87.76 | 84.80 | 83.84 |
Metabolizable energy, Mcal/kg DM | 3.17 | 3.07 | 3.03 |
Fatty Acids, g/100 g of Total Fatty Acids | Control | 3% PNF + 3% SFO | 6% PNF + 3% SFO | SEM | p Value |
---|---|---|---|---|---|
Palmitic C16:0 | 22.16 | 22.15 | 22.19 | 0.01 | 0.41 |
Palmitoleic C16:1 | 1.35 c | 1.45 b | 1.65 a | 0.03 | 0.01 |
Stearic C18:0 | 2.15 c | 4.55 b | 6.25 a | 0.45 | 0.01 |
Oleic C18:1 | 27.49 c | 28.50 b | 29.85 a | 0.27 | 0.01 |
Linoleic C18:2 n-6 | 27.50 c | 28.15 b | 29.25 a | 0.2 | 0.01 |
α-Linolenic C18:3 n-3 | 2.34 c | 2.46 b | 2.56 a | 0.02 | 0.01 |
Total saturated fatty acids | 24.31 c | 26.70 b | 28.44 a | 0.45 | 0.01 |
Total monounsaturated fatty acids | 28.84 c | 29.95 b | 31.50 a | 0.3 | 0.01 |
Total polyunsaturated fatty acids | 29.84 c | 30.61 b | 31.81 a | 0.22 | 0.01 |
n-6: n-3 fatty acid ratio | 11.75 a | 11.45 b | 11.44 b | 0.05 | 0.01 |
Items | Product Size (bp) | F/R | Sequence |
---|---|---|---|
Total bacteria | 130 | F | CGGCAACGAGCGCAACCC |
R | CCATTGTAGCACGTGTGTAGCC | ||
Methanogen | 140 | F | TTCGGTGGATCDCARAGRGC |
R | GBARGTCGWAWCCGTAGAATC | ||
Protozoa | 223 | F | CTTGCCCCTCYAATCGTWCT |
R | GCTTTCGWTGGTAGTGTATT | ||
Butyrivibrio fibrisolvens | 64 | F | ACACACCGCCCGTCACA |
R | TCCTTACGGTTGGGTCACAGA | ||
Fibrobacter succinogenes | 446 | F | GGTATGGGATGAGCTTGC |
R | GCCTGCCCCTGAACTATC | ||
Ruminococcus flavefaciens | 295 | F | TCTGGAAACGGATGGTA |
R | CCTTTAAGACAGGAGTTTACAA | ||
Ruminococcus albus | 176 | F | CCCTAAAAGCAGTCTTAGTTCG |
R | CCTCCTTGCGGTTAGAACA | ||
Streptococcus bovis | 82 | F | TTCCTAGAGATAGGAAGTTTCTTCGG |
R | ATGATGGCAACTAACAATAGGGGT |
Items | Control | 3% PNF + 3% SFO | 6% PNF + 3% SFO | SEM | p Value |
---|---|---|---|---|---|
Feed intake | |||||
gDM/d | 855.60 c | 971.56 b | 1055.11 a | 24.68 | 0.01 |
% BW | 3.07 c | 3.15 b | 3.27 a | 0.02 | 0.01 |
g/kgBW0.75 | 43.96 c | 59.04 b | 61.64 a | 2.09 | 0.01 |
Nutrient intake | |||||
OMI, g/d | 750.33 c | 817.74 b | 943.31 a | 21.37 | 0.01 |
CPI, g/d | 81.46 c | 96.33 b | 98.52 a | 2.03 | 0.01 |
EEI, g/d | 38.79 c | 40.57 b | 45.62 a | 0.77 | 0.01 |
NDFI, g/d | 696.60 a | 573.44 b | 556.56 c | 16.72 | 0.01 |
ADFI, g/d | 373.52 a | 274.21 b | 225.36 c | 16.50 | 0.01 |
Items | Control | 3% PNF + 3% SFO | 6% PNF + 3% SFO | SEM | p Value |
---|---|---|---|---|---|
Apparent Digestibility, % of intake | |||||
DDM | 66.80 c | 74.30 b | 75.61 a | 1.04 | 0.01 |
DOM | 51.67 c | 52.77 b | 56.91 a | 0.62 | 0.01 |
DCP | 47.78 c | 51.62 b | 54.58 a | 0.75 | 0.01 |
DEE | 43.40 c | 45.53 b | 48.56 a | 0.57 | 0.01 |
DNDF | 64.48 a | 63.53 b | 62.61 c | 0.21 | 0.01 |
DADF | 62.48 a | 60.26 b | 59.68 c | 0.33 | 0.01 |
Items | Control | 3% PNF + 3% SFO | 6% PNF + 3% SFO | SEM | p Value |
---|---|---|---|---|---|
N intake, g/d | 11.08 c | 12.74 b | 13.54 a | 0.28 | 0.01 |
N Faces, g/d | 4.75 a | 3.56 b | 3.25 c | 0.18 | 0.01 |
N Urine, g/d | 0.13 c | 0.16 b | 0.18 a | 0.006 | 0.01 |
N digestion, g/d | 4.06 c | 6.53 b | 8.46 a | 0.49 | 0.01 |
N digestion (%) | 37.35 c | 48.40 b | 62.20 a | 2.72 | 0.01 |
N retention, g/d | 4.54 c | 6.48 b | 8.49 a | 0.44 | 0.01 |
N retention (%) | 33.84 c | 47.68 b | 61.22 a | 3.00 | 0.01 |
Items | Control | 3% PNF + 3% SFO | 6% PNF + 3% SFO | SEM | p Value |
---|---|---|---|---|---|
pH | |||||
0 h | 6.95 | 6.96 | 6.93 | 0.008 | 0.37 |
2 h | 6.75 | 6.76 | 6.77 | 0.008 | 0.58 |
4 h | 6.85 | 6.86 | 6.87 | 0.01 | 0.38 |
Mean | 6.85 | 6.86 | 6.86 | 0.007 | 0.89 |
Ammonia nitrogen mg/dL | |||||
0 h | 12.43 | 12.65 | 12.52 | 0.07 | 0.47 |
2 h | 12.84 | 13.34 | 14.49 | 0.2 | 0.01 |
4 h | 13.24 c | 14.34 b | 15.49 a | 0.25 | 0.01 |
Mean | 12.84 c | 13.44 b | 14.17 a | 0.15 | 0.01 |
BUN mg/dL | |||||
0 h | 11.23 | 11.22 | 11.24 | 0.62 | 0.008 |
2 h | 12.35 c | 13.42 b | 14.35 a | 0.22 | 0.01 |
4 h | 13.48 c | 14.20 b | 15.28 a | 0.21 | 0.01 |
Mean | 12.35 c | 12.95 b | 13.62 a | 0.14 | 0.01 |
Items | Control | 3% PNF + 3% SFO | 6% PNF + 3% SFO | SEM | p Value |
---|---|---|---|---|---|
Acetic acid (molar proportion, %) | |||||
0 h | 58.64 | 58.65 | 58.66 | 0.03 | 0.97 |
2 h | 59.74 c | 61.07 b | 62.29 a | 0.28 | 0.01 |
4 h | 60.12 c | 62.08 b | 63.37 a | 0.36 | 0.01 |
Mean | 59.50 c | 60.60 b | 61.44 a | 0.21 | 0.01 |
Propionic acid (molar proportion, %) | |||||
0 h | 23.64 | 23.67 | 23.68 | 0.02 | 0.76 |
2 h | 24.80 c | 25.15 b | 26.48 a | 0.19 | 0.01 |
4 h | 25.43 c | 26.07 b | 27.45 a | 0.22 | 0.01 |
Mean | 24.63 c | 24.96 b | 25.87 a | 0.14 | 0.01 |
Butyric acid (molar proportion,%) | |||||
0 h | 17.71 | 17.73 | 17.74 | 0.02 | 0.72 |
2 h | 18.78 b | 19.21 b | 20.46 a | 0.21 | 0.01 |
4 h | 19.87 c | 20.19 b | 21.36 a | 0.17 | 0.01 |
Mean | 18.79 c | 19.04 b | 19.85 a | 0.12 | 0.01 |
Acetic acid: Propionic | |||||
0 h | 2.44 | 2.45 | 2.46 | 0.005 | 0.35 |
2 h | 2.41 a | 2.43 b | 2.35 c | 0.14 | 0.01 |
4 h | 2.36 a | 2.38 b | 2.31 c | 0.21 | 0.01 |
Mean | 2.40 a | 2.42 b | 2.71 c | 0.07 | 0.01 |
Total VFA (mmol/L) | |||||
0 h | 86.15 | 86.19 | 86.21 | 0.07 | 0.94 |
2 h | 89.50 c | 92.19 b | 95.38 a | 0.64 | 0.01 |
4 h | 92.29 c | 96.07 b | 98.56 a | 0.69 | 0.01 |
Mean | 89.31 c | 91.48 b | 93.38 a | 0.45 | 0.01 |
Items | Control | 3% PNF + 3% SFO | 6% PNF + 3% SFO | SEM | p Value |
---|---|---|---|---|---|
Total bacteria (lg10 copies/mL) | |||||
0 h | 4.52 | 4.63 | 4.70 | 0.08 | 0.66 |
2 h | 4.07 c | 6.18 b | 7.03 a | 0.35 | 0.01 |
4 h | 4.03 b | 6.08 a | 6.71 a | 0.35 | 0.0001 |
Mean | 4.21 b | 5.63 a | 6.15 a | 0.25 | 0.0001 |
Butyrivibrio fibrisolven (lg10 copies/mL) | |||||
0 h | 5.40 | 5.41 | 5.43 | 0.07 | 0.99 |
2 h | 6.15 c | 7.26 b | 8.29 a | 0.26 | 0.01 |
4 h | 6.11 c | 7.22 b | 8.09 a | 0.24 | 0.01 |
Mean | 5.89 c | 6.63 b | 7.27 a | 0.16 | 0.01 |
Fibrobacter succinogenes (lg10 copies/mL) | |||||
0 h | 3.59 | 3.54 | 3.53 | 0.08 | 0.96 |
2 h | 4.60 b | 4.50 b | 7.32 a | 0.40 | 0.01 |
4 h | 3.54 b | 4.05 b | 7.23 a | 0.44 | 0.01 |
Mean | 3.73 b | 4.03 b | 6.03 a | 0.28 | 0.01 |
Ruminococcus albus (lg10 copies/mL) | |||||
0 h | 3.59 | 3.45 | 3.57 | 0.07 | 0.73 |
2 h | 4.46 c | 5.25 b | 6.26 a | 0.22 | 0.01 |
4 h | 4.26 b | 5.08 b | 6.15 a | 0.24 | 0.0003 |
Mean | 4.10 b | 4.59 b | 5.33 a | 0.17 | 0.0018 |
Ruminococcus flavefacises (lg10 copies/mL) | |||||
0 h | 3.57 | 3.58 | 3.59 | 0.08 | 0.99 |
2 h | 4.34 c | 6.31 b | 8.30 a | 0.45 | 0.01 |
4 h | 4.14 c | 6.11 b | 8.15 a | 0.46 | 0.01 |
Mean | 4.02 c | 5.34 b | 6.68 a | 0.31 | 0.01 |
Streptococcus bovis (lg10 copies/mL) | |||||
0 h | 4.55 | 4.56 | 4.57 | 0.08 | 1.00 |
2 h | 5.05 c | 6.08 b | 7.15 a | 0.26 | 0.0001 |
4 h | 3.92 c | 5.09 b | 7.09 a | 0.37 | 0.01 |
Mean | 4.51 c | 5.25 b | 6.27 a | 0.22 | 0.01 |
Protozoa (lg10 copies/mL) | |||||
0 h | 7.58 | 7.55 | 7.21 | 0.09 | 0.19 |
2 h | 9.08 a | 6.29 b | 5.24 c | 0.45 | 0.01 |
4 h | 8.03 a | 6.14 b | 5.03 c | 0.35 | 0.01 |
Mean | 8.23 a | 6.66 b | 5.83 c | 0.29 | 0.01 |
Methanogen (lg10 copies/mL) | |||||
0 h | 8.33 | 8.55 | 8.57 | 0.08 | 0.43 |
2 h | 9.38 a | 8.14 b | 6.94 c | 0.29 | 0.01 |
4 h | 9.34 a | 8.06 b | 6.93 c | 0.28 | 0.01 |
Mean | 9.01 a | 8.25 b | 7.48 c | 0.19 | 0.0003 |
Items | Control | 3% PNF + 3% SFO | 6% PNF + 3% SFO | SEM | p Value |
---|---|---|---|---|---|
Total antioxidant (nmol/uL) | |||||
0 h | 1.58 | 1.61 | 1.64 | 0.05 | 0.89 |
2 h | 2.07 c | 2.28 b | 2.46 a | 0.05 | 0.01 |
4 h | 1.79 c | 2.05 b | 2.17 a | 0.04 | 0.01 |
Mean | 1.82 b | 1.98 a | 2.09 a | 0.04 | 0.0005 |
SOD (inhibition rate %) | |||||
0 h | 88.91 | 88.83 | 89.04 | 0.21 | 0.93 |
2 h | 89.17 c | 90.45 b | 92.62 a | 0.41 | 0.01 |
4 h | 90.40 b | 90.87 a | 91.19 a | 0.10 | 0.0003 |
Mean | 89.49 b | 90.05 b | 90.95 a | 0.20 | 0.0017 |
GPX (units/mL) | |||||
0 h | 67.60 | 67.41 | 67.71 | 0.13 | 0.66 |
2 h | 72.83 c | 74.15 b | 76.35 a | 0.40 | 0.01 |
4 h | 67.37 b | 69.93 a | 70.39 a | 0.40 | 0.01 |
mean | 69.27 c | 70.50 b | 71.48 a | 0.26 | 0.01 |
CAT (nmol/min/mL) | |||||
0 h | 9.61 | 9.80 | 9.79 | 0.14 | 0.84 |
2 h | 14.79 b | 14.87 a | 14.93 a | 0.02 | 0.0003 |
4 h | 13.81 b | 13.89 a | 13.96 a | 0.02 | 0.0003 |
Mean | 12.73 | 12.86 | 12.89 | 0.05 | 0.43 |
DPPH scavenging activity (%) | |||||
0 h | 35.43 | 35.48 | 35.74 | 0.55 | 0.97 |
2 h | 43.37 c | 47.79 b | 52.92 a | 1.16 | 0.01 |
4 h | 38.99 b | 52.14 a | 56.11 a | 2.10 | 0.01 |
Mean | 39.26 b | 45.14 a | 48.26 a | 1.10 | 0.01 |
MDA (μg/mL) | |||||
0 h | 28.04 | 27.75 | 27.76 | 0.27 | 0.9 |
2 h | 36.07 a | 30.50 b | 25.13 c | 1.30 | 0.01 |
4 h | 32.14 a | 30.13 b | 28.42 c | 0.43 | 0.01 |
Mean | 32.08 a | 29.46 b | 27.10 c | 0.60 | 0.01 |
Items | Control | 3% PNF + 3% SFO | 6% PNF + 3% SFO | SEM | p Value |
---|---|---|---|---|---|
Slaughter weight (SW), kg | 32.57 | 32.58 | 32.61 | 0.02 | 0.71 |
Carcass weight (kg) | 17.61 | 17.62 | 17.64 | 0.05 | 0.97 |
Carcass (%) | 48.46 | 48.5 | 48.36 | 0.07 | 0.77 |
Skin g/100 g SW | 12.5 | 12.52 | 12.56 | 0.06 | 0.93 |
White offal, g/100 g SW | 7.50 | 7.52 | 7.54 | 0.05 | 0.95 |
Red offal, g/100 g SW | 0.44 | 0.46 | 0.49 | 0.01 | 0.16 |
Items | Control | 3% PNF + 3% SFO | 6% PNF + 3% SFO | SEM | p Value |
---|---|---|---|---|---|
pH value at | |||||
1 h | 7.23 | 7.24 | 7.25 | 0.01 | 0.44 |
24 h | 6.85 | 6.84 | 6.83 | 0.006 | 0.79 |
Mean | 7.03 | 7.04 | 7.05 | 0.005 | 0.9 |
Meat Color | |||||
L* | 31.54 | 31.63 | 31.6 | 0.04 | 0.72 |
a* | 1.75 | 1.76 | 1.77 | 0.01 | 0.76 |
b* | 5.27 | 5.28 | 5.25 | 0.01 | 0.66 |
Drip loss (%) | 5.45 a | 4.51 b | 3.82 c | 0.2 | 0.0001 |
Cooking loss (%) | 32.79 a | 29.32 b | 24.44 c | 1.04 | 0.0001 |
Shear force (N) | 11.70 a | 8.93 b | 7.28 c | 0.52 | 0.01 |
Items | Control | 3% PNF + 3% SFO | 6% PNF + 3% SFO | SEM | p Value |
---|---|---|---|---|---|
Moisture, (%) | 76.6 | 76.63 | 76.64 | 0.01 | 0.44 |
Dry matter, (%) | 23.4 | 23.37 | 23.36 | 0.01 | 0.44 |
CP, (%) | 26.65 | 26.66 | 26.68 | 0.01 | 0.66 |
Ash, (%) | 4.16 | 4.17 | 4.18 | 0.007 | 0.48 |
EE, (%) | 10.1 | 10.11 | 10.13 | 0.01 | 0.49 |
Fatty Acids, g/100 g of Total Fatty Acids | Control | 3% PNF + 3% SFO | 6% PNF + 3% SFO | SEM | p Value |
---|---|---|---|---|---|
Saturated FA (SFA) | |||||
C14:0 | 5.54 a | 4.41 b | 3.48 c | 0.24 | 0.01 |
C15:0 | 0.45 a | 0.36 b | 0.25 c | 0.02 | 0.01 |
C16:0 | 24.71 a | 23.72 b | 22.68 c | 0.23 | 0.01 |
C17:0 | 1.76 a | 1.66 b | 1.56 c | 0.22 | 0.01 |
C18:0 | 19.72 a | 18.90 b | 17.71 c | 0.23 | 0.01 |
C20:0 | 0.31 a | 0.30 b | 0.20 c | 0.01 | 0.01 |
C22:0 | 2.37 a | 2.23 b | 2.10 c | 0.03 | 0.0001 |
Other SFA | 0.97 a | 0.85 b | 0.75 c | 0.02 | 0.01 |
Total SFA | 55.83 a | 52.43 b | 48.73 c | 0.6 | 0.01 |
Monounsaturated FA (MUFA) | |||||
C16:1 cis-9 | 1.47 c | 1.55 b | 1.65 a | 0.02 | 0.01 |
C17:1 cis-10 | 1.36 c | 1.47 b | 1.55 a | 0.02 | 0.01 |
C18:1 cis-9 | 15.64 c | 16.80 b | 18.73 a | 0.35 | 0.01 |
C20:1 cis-11 | 1.27 c | 1.45 b | 1.65 a | 0.04 | 0.01 |
Other MUFA | 0.66 c | 0.85 b | 1.09 a | 0.05 | 0.01 |
Total MUFA | 20.40 c | 22.12 b | 24.67 a | 0.47 | 0.01 |
Polyunsaturated FA (PUFA) | |||||
C18:2 n-6 | 4.56 c | 6.58 b | 7.70 a | 0.35 | 0.01 |
C18:3 n-3 | 0.95 c | 1.25 b | 1.45 a | 0.06 | 0.01 |
C20:3 n-6 | 0.95 c | 1.15 b | 1.25 a | 0.03 | 0.01 |
C20:4 n-6 | 2.53 c | 3.68 b | 4.53 a | 0.23 | 0.01 |
C20:5 n-3 (EPA) | 0.84 c | 1.05 b | 1.15 a | 0.03 | 0.01 |
C22:6 n-3 (DHA) | 0.35 c | 0.55 b | 0.65 a | 0.03 | 0.01 |
Other PUFA | 0.41 | 0.35 | 0.45 | 0.08 | 0.1 |
Total PUFA | 10.59 c | 14.61 b | 17.18 a | 0.74 | 0.01 |
Total PUFA n-3 | 2.14 c | 2.85 b | 3.25 a | 0.12 | 0.01 |
Total PUFA n-6 | 8.05 c | 11.42 b | 13.48 a | 0.61 | 0.01 |
PUFA/SFA ratio | 0.19 c | 0.28 b | 0.35 a | 0.03 | 0.01 |
MUFA/SFA ratio | 0.37 c | 0.42 b | 0.51 a | 0.03 | 0.01 |
n-6/n-3 ratio | 3.75 c | 4.00 b | 4.15 a | 0.05 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taethaisong, N.; Paengkoum, S.; Nakharuthai, C.; Onjai-uea, N.; Thongpea, S.; Sinpru, B.; Surakhunthod, J.; Meethip, W.; Paengkoum, P. Effect of Purple Neem Foliage as a Feed Supplement on Nutrient Apparent Digestibility, Nitrogen Utilization, Rumen Fermentation, Microbial Population, Plasma Antioxidants, Meat Quality and Fatty Acid Profile of Goats. Animals 2022, 12, 2985. https://doi.org/10.3390/ani12212985
Taethaisong N, Paengkoum S, Nakharuthai C, Onjai-uea N, Thongpea S, Sinpru B, Surakhunthod J, Meethip W, Paengkoum P. Effect of Purple Neem Foliage as a Feed Supplement on Nutrient Apparent Digestibility, Nitrogen Utilization, Rumen Fermentation, Microbial Population, Plasma Antioxidants, Meat Quality and Fatty Acid Profile of Goats. Animals. 2022; 12(21):2985. https://doi.org/10.3390/ani12212985
Chicago/Turabian StyleTaethaisong, Nittaya, Siwaporn Paengkoum, Chatsirin Nakharuthai, Narawich Onjai-uea, Sorasak Thongpea, Boontum Sinpru, Jariya Surakhunthod, Weerada Meethip, and Pramote Paengkoum. 2022. "Effect of Purple Neem Foliage as a Feed Supplement on Nutrient Apparent Digestibility, Nitrogen Utilization, Rumen Fermentation, Microbial Population, Plasma Antioxidants, Meat Quality and Fatty Acid Profile of Goats" Animals 12, no. 21: 2985. https://doi.org/10.3390/ani12212985
APA StyleTaethaisong, N., Paengkoum, S., Nakharuthai, C., Onjai-uea, N., Thongpea, S., Sinpru, B., Surakhunthod, J., Meethip, W., & Paengkoum, P. (2022). Effect of Purple Neem Foliage as a Feed Supplement on Nutrient Apparent Digestibility, Nitrogen Utilization, Rumen Fermentation, Microbial Population, Plasma Antioxidants, Meat Quality and Fatty Acid Profile of Goats. Animals, 12(21), 2985. https://doi.org/10.3390/ani12212985