Detection and Molecular Characterization of Enteric Viruses in Poultry Flocks in Hebei Province, China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Samples
2.2. Preparation of Samples
2.3. Viral Genome Extraction and Reverse Transcription
2.4. PCR Detection of Viruses
2.5. PCR Amplification of Complete Genome Sequences of Parvovirus
2.6. PCR Amplification of Complete ORF2 for CAstV and ANV
2.7. Evaluation of RT-PCR and PCR Products
2.8. Sequencing and Phylogenetic Analysis
2.9. Recombination Analysis
2.10. Statistical Analysis
3. Results
3.1. Single and Multiple Viral Infections
3.2. Age and Type of Birds
3.3. Clinical Signs
3.4. Phylogenetic Analysis and Recombination Analysis of Parvovirus
3.5. Phylogenetic Analysis of CAstV and ANV
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kouwenhoven, B.; Vertommen, M.; Eck, J.V. Runting and leg weakness in broilers; Involvement of infectious factors. Vet. Res. Commun. 1978, 2, 7. [Google Scholar] [CrossRef]
- Day, J.M.; Zsak, L. Recent Progress in the Characterization of Avian Enteric Viruses. Avian Dis. 2013, 57, 573–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mettifogo, E.; Nuez, L.; Chacón, J.; Parra, S.; Astolfi-Ferreira, C.S.; Jerez, J.A.; Jones, R.C.; Ferreira, A. Emergence of enteric viruses in production chickens is a concern for avian health. Sci. World J. 2014, 2014, 450423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharafeldin, T.A.; Singh, A.; Abdel-Glil, M.Y.; Mor, S.K.; Porter, R.E.; Goyal, S.M. Prevalence of parvovirus in Minnesota turkeys. Poult. Sci. 2017, 96, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Correa, I.; Truchado, D.A.; Gomez-Lucia, E.; Domenech, A.; Perez-Tris, J.; Schmidt-Chanasit, J.; Cadar, D.; Benitez, L. A novel group of avian astroviruses from Neotropical passerine birds broaden the diversity and host range of Astroviridae. Sci. Rep. 2019, 9, 9513. [Google Scholar] [CrossRef] [Green Version]
- Koo, B.S.; Lee, H.R.; Jeon, E.O.; Han, M.S.; Min, K.C.; Lee, S.B.; Mo, I.P. Molecular survey of enteric viruses in commercial chicken farms in Korea with a history of enteritis. Poult. Sci. 2013, 92, 2876–2885. [Google Scholar] [CrossRef] [PubMed]
- David, D.L.T.; Luis, N.E.; Claudete, A.F.; Antonio, P.F. Enteric Virus Diversity Examined by Molecular Methods in Brazilian Poultry Flocks. Vet. Sci. 2018, 5, 38. [Google Scholar]
- Huang, P.N. Microbiota and Enteric Viruses Infection. Med. Microecol. 2020, 100006. [Google Scholar] [CrossRef]
- Day, J.M.; Spackman, E.; Pantin-Jackwood, M. A multiplex RT-PCR test for the differential identification of turkey astrovirus type 1, turkey astrovirus type 2, chicken astrovirus, avian nephritis virus, and avian rotavirus. Avian Dis. 2007, 51, 681–684. [Google Scholar] [CrossRef]
- Liu, N.; Wang, F.; Zhang, D. Complete sequence of a novel duck astrovirus. Arch. Virol. 2014, 159, 2823–2827. [Google Scholar] [CrossRef]
- Niu, Y.; Sun, Q.; Zhu, M.; Zhao, J.; Zhang, G.; Liu, X.; Xiao, Y.; Liu, S. Molecular epidemiology and phylogenetic analysis of fowl adenoviruses caused hydropericardium outbreak in China during 2015. Poult. Sci. 2018, 97, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Han, T.; Xu, M.; Zhao, J.; Zhang, G. The first serological investigation of Chicken astrovirus infection in China. Biologicals 2017, 47, 22–24. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.Y.; Zhang, D.Y.; Ye, J.X.; Cheng, L.Q. Characterization of an avian infectious bronchitis virus isolated in China from chickens with nephritis. J. Vet. Med. B Infect. Dis. Vet. Public Health 2004, 51, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Feng, B.; Xie, Z.; Deng, X.; Zhang, M.; Xie, Z.; Xie, L.; Fan, Q.; Luo, S.; Zeng, T.; et al. Epidemiological Surveillance of Parvoviruses in Commercial Chicken and Turkey Farms in Guangxi, Southern China, during 2014–2019. Front. Vet. Sci. 2020, 7, 561371. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.; Liao, M.; Cao, W.; Xin, C. Cloning and sequence analyzing of M genes of 9 infectious bronchitis virus isolated in China. Chin. J. Vet. Med. 2006, 42, 3–6. (In Chinese) [Google Scholar]
- Pantin-Jackwood, M.J.; Spackman, E.; Day, J.M.; Rives, D. Periodic monitoring of commercial turkeys for enteric viruses indicates continuous presence of astrovirus and rotavirus on the farms. Avian Dis. 2007, 51, 674–680. [Google Scholar] [CrossRef] [Green Version]
- Zsak, L.; Strother, K.O.; Day, J.M. Development of a polymerase chain reaction procedure for detection of chicken and turkey parvoviruses. Avian Dis. 2009, 53, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhong, Q.; Zhao, Y.; Hu, Y.X.; Zhang, G.Z. Pathogenicity and Complete Genome Characterization of Fowl Adenoviruses Isolated from Chickens Associated with Inclusion Body Hepatitis and Hydropericardium Syndrome in China. PLoS ONE 2015, 10, e0133073. [Google Scholar]
- Todd, D.; Trudgett, J.; Smyth, V.J.; Donnelly, B.; McBride, N.; Welsh, M.D. Capsid protein sequence diversity of avian nephritis virus. Avian Pathol. 2011, 40, 249–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palomino-Tapia, V.; Mitevski, D.; Inglis, T.; van der Meer, F.; Martin, E.; Brash, M.; Provost, C.; Gagnon, C.A.; Abdul-Careem, M.F. Chicken Astrovirus (CAstV) Molecular Studies Reveal Evidence of Multiple Past Recombination Events in Sequences Originated from Clinical Samples of White Chick Syndrome (WCS) in Western Canada. Viruses 2020, 12, 1096. [Google Scholar] [CrossRef]
- Smyth; Victoria, J. A Review of the Strain Diversity and Pathogenesis of Chicken Astrovirus. Viruses 2017, 9, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagan Tregaskis, P.; Devaney, R.; Smyth, V.J. The First Whole Genome Sequence and Characterisation of Avian Nephritis Virus Genotype 3. Viruses 2021, 13, 235. [Google Scholar] [CrossRef] [PubMed]
- Zsak, L.; Cha, R.M.; Li, F.; Day, J.M. Host Specificity and Phylogenetic Relationships of Chicken and Turkey Parvoviruses. Avian Dis. 2015, 59, 157–161. [Google Scholar] [CrossRef]
- Kaithal, B.; Jindal, N.; Kumar, P.; Mor, S.K. Detection and molecular characterization of enteric viruses in enteritis-affected commercial broiler chickens in India. Acta Virol. 2016, 60, 361–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shackelton, L.A.; Hoelzer, K.; Parrish, C.R.; Holmes, E.C. Comparative analysis reveals frequent recombination in the parvoviruses. J. Gen. Virol. 2007, 88, 3294–3301. [Google Scholar] [CrossRef] [PubMed]
- Nuez, L.F.N.; Ferreira, A.J.P. Viral agents related to enteric disease in commercial chicken flocks, with special reference to Latin America. World’s Poult. Sci. J. 2013, 69, 12. [Google Scholar]
- Koo, B.S.; Lee, H.R.; Jeon, E.O.; Han, M.S.; Min, K.C.; Lee, S.B.; Bae, Y.J.; Cho, S.H.; Mo, J.S.; Kwon, H.M. Genetic characterization of three novel chicken parvovirus strains based on analysis of their coding sequences. Avian Pathol. J. WVPA 2015, 44, 28–34. [Google Scholar] [CrossRef]
- Cotmore, S.F.; Agbandje-Mckenna, M.; Chiorini, J.A.; Mukha, D.V.; Davison, A.J. The family Parvoviridae. Arch. Virol. 2014, 159, 1239–1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, C.A.; Leal, E.S.; Durigon, E.L. Selective regimen shift and demographic growth increase associated with the emergence of high-fitness variants of canine parvovirus. Infect. Genet. Evol. 2007, 7, 399–409. [Google Scholar] [CrossRef]
- Bidin, M.; Lojkic, I.; Bidin, Z.; Tiljar, M.; Majnaric, D. Identification and phylogenetic diversity of parvovirus circulating in commercial chicken and turkey flocks in Croatia. Avian Dis. 2011, 55, 693–696. [Google Scholar] [CrossRef]
- Carratala, A.; Rusinol, M.; Hundesa, A.; Biarnes, M.; Rodriguez-Manzano, J.; Vantarakis, A.; Kern, A.; Sunen, E.; Girones, R.; Bofill-Mas, S. A novel tool for specific detection and quantification of chicken/turkey parvoviruses to trace poultry fecal contamination in the environment. Appl. Environ. Microbiol. 2012, 78, 7496–7499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koci, M.D.; Schultz-Cherry, S. Avian astroviruses. Avian Pathol. 2002, 31, 213–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.; Murgia, A.M.; Saif, Y.M. Molecular characterization of the capsid gene of two serotypes of turkey astroviruses. Avian Dis. 2005, 49, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Schokker, D.; Jansman, A.J.; Veninga, G.; de Bruin, N.; Vastenhouw, S.A.; de Bree, F.M.; Bossers, A.; Rebel, J.M.; Smits, M.A. Perturbation of microbiota in one-day old broiler chickens with antibiotic for 24 hours negatively affects intestinal immune development. BMC Genom. 2017, 18, 241. [Google Scholar] [CrossRef] [PubMed]
Virus | Primer Name | Primer Sequences (5′ to 3′) | Target Gene | Amplicon Size (bp) | Annealing Temp (°C) | References |
---|---|---|---|---|---|---|
ANV | ANV-F ANV-R | RCTRGGCGCCTCTTTTGAYW CRTTKCCCKGTAGTCTYTGA | ORF1b | 473 | 52 | [9] |
CAstV | CAstV-F CAstV-R | GAYCAKCGAATGCGRAGGTTR TCRGTGGGAGTGGGKAGTCTRC | ORF1b | 362 | 52 | [9] |
ARoV | ARoV-F ARoV-R | GTGCGGAAAGATGGAGAAC GTTGGGGTACCAGGGATTAA | NSP4 | 630 | 52 | [9] |
ARe | ARe-F ARe-R | GGTGCGACTGCTGTATTTGGTAAC AATGGAACGATAGCGTGTGGG | S1 | 532 | 57 | [16] |
IBV | IBV-F IBV-R | CCTAAGAACGGTTGGAAT TACTCTCTACACACACAC | M | 739 | 54 | [15] |
FAdV-I | FAdV-I-F FAdV-I-R | TGCTCGTTGTGGATGGTGAA CTCCGTGTTGGGCTGGTC | Polymerase | 594 | 57 | [18] |
ChPV | ChPV-F ChPV-R | TAACGATATCACTCAAGTTTC GCGCTTGCGGTGAAGTCTGGC | NS | 552 | 53 | [17] |
Primer | Primer Sequences (5′ to 3′) | Amplicon Size (bp) | Annealing Temperature (°C) | Extension Time (s) | Primer Location (nt) | References |
---|---|---|---|---|---|---|
PV-AF | CAATCCGCACGTTGATTCGG | 303 | 57 | 30 | ChPV/TuPV 366–668 | [6] |
PV-AR | GGCGTGTTTCGCCAATTGAA | |||||
PV-BF | TATGCCTGTATTCGAGTGTG | 1559 | 52 | 100 | ChPV 485–2043 | |
PV-BR | CTTTCAGGAGACTATCCACG | |||||
PV-CF | TTCCACGGACCAGCCAATAC | 1360 | 52 | 100 | ChPV 1876–3915 | |
PV-CR | CATATCCCTGCTGGGTCGTC | |||||
PV-DF | CTCGAGTGGTACAATGGGGG | 569 | 55 | 45 | ChPV 2613–3181 | |
PV-DR | AGCGTTTGCGTTCAGCTTTT | |||||
PV-EF | GCTTCTATAGGCACACAATG | 895 | 50 | 50 | ChPV 2981- 3875 | |
PV-ER | CCTGTCAAGTCGTTAGAGTA | |||||
PV-FF | ACCGGTAATTGGAATTGTGA | 1448 | 52 | 100 | ChPV 3520–4967 | |
PV-FR | ACATTGACCTGGTATTGACC | |||||
PV-GF | GAACCACTCAACACTCACAG | 354 | 53 | 30 | ChPV/TuPV 4855–5208 | |
PV-GR | CATATGCATAGTCACGCCTT | |||||
PV-HF | CTGCTGAGCTGGTAAGATGG | 2007 | 64 | 130 | TuPV 395–2401 | [14] |
PV-HR | TTTGCGTTGCGGTGAAGTCTGGCTCG | |||||
PV-IF | TTCTAATAACGATATCACTCAAGTTTC | 1838 | 48 | 60 | TuPV 1841–3678 | |
PV-IR | GTATTGKGTYTGGTTTTCAG | |||||
PV-JF | CAAGCCGCCATTGTGTTTGT | 1451 | 57 | 100 | TuPV 3575–5025 | |
PV-JR | TTAATTGGTYYKCGGYRCSCG |
Primer Name | Primer Sequences (5′ to 3′) | Amplicon Size (bp) | Annealing Temperature (°C) | Extension Time (s) | References |
---|---|---|---|---|---|
ANV-ORF2-F | ACCTTGAATCCCTGTGGGGCA | 2500 | 55 | 130 | [19] |
ANV-ORF2-R | AAAAGTTAGCCAATTCAAAATTAATTC | ||||
CAstV-ORF2-F | CGGGATCCATGGCCGATAAGGCTGGGCCG | 2214 | 63 | 130 | This research |
CAstV-ORF2-R | CGGAATTCCTACTCGGCGTGGCCGCG |
Item | All | Infection Type | χ2 | p-Value 4 | ||
---|---|---|---|---|---|---|
Single Infection | Multiple Infection (2, 3, 4 Viruses) | |||||
Virus 2 | ||||||
ChPV | 100 | 69 (69.0%) 3 | 31 (31.0%) | (25, 5, 1) | 15.494 | 0.000 ** |
ANV | 44 | 17 (38.6%) | 27 (61.4%) | (21, 5, 1) | 10.040 | 0.002 ** |
CAstV | 41 | 18 (43.9%) | 23 (56.1%) | (18, 4, 1) | 6.769 | 0.009 ** |
FAdV-1 | 5 | 2 (40.0%) | 3 (60.0%) | (2, 1, 0) | - | 0.657 |
ARoV | 1 | 0 (0.0%) | 1 (100%) | (0, 0, 1) | - | 0.445 |
Total | 191 | 106 | 85 | (66, 15, 4) | ||
Positive samples, n | 145 | 106 | 39 | (33, 5, 1) | ||
Positive samples/145 | 73.1% | 26.9% | (22.8%, 3.4%, 0.7%) |
Pattern | Virus Examined in 145 Samples | Number of Samples and the % | ||||||
---|---|---|---|---|---|---|---|---|
FAdV-I | ChPV | CAstV | ANV | IBV | ARe | ARoV | ||
1 | + | + | + | 4 (2.8%) | ||||
2 | + | + | + | 1 (0.7%) | ||||
3 | + | + | + | + | 1 (0.7%) | |||
4 | + | + | 14 (9.7%) | |||||
5 | + | + | 2 (1.4%) | |||||
6 | + | + | 10 (6.9%) | |||||
7 | + | + | 7 (4.8%) | |||||
8 | + | 69 (47.6%) | ||||||
9 | + | 17 (11.7%) | ||||||
10 | + | 18 (12.4%) | ||||||
11 | + | 2 (1.4%) |
Pullet/Layer Hens | Broilers | ||||
---|---|---|---|---|---|
Age of Flocks | Number of Positive Samples | Positive Rate for Each Week of Age | Age of Flocks | Number of Positive Samples | Positive Rate for Each Day of Age |
2–6 weeks | 34 | 87.2% (34/39) 1 | 15–21 days | 3 | 100.0% (3/3) 1 |
7–11 weeks | 31 | 67.4% (31/46) | 22–28 days | 9 | 75.0% (9/12) |
12–16 weeks | 14 | 82.4% (14/17) | 29–35 days | 9 | 75.0% (9/12) |
17–21 weeks | 29 | 65.9% (29/44) | |||
22–26 weeks | 11 | 50.0% (11/22) | |||
>26 weeks | 5 | 29.4% (5/17) | |||
Total | 124 | 67.0% (124/185) | 21 | 77.8% (21/27) |
Chicken Line | Age of Birds | FAdV-1 | ChPV | CAstV | ANV | ARoV | ARe | IBV |
---|---|---|---|---|---|---|---|---|
Broilers | 15–21 days (n = 3) | 0 | 3 | 0 | 3 | 0 | 0 | 0 |
22–28 days (n = 9) | 0 | 8 | 1 | 5 | 0 | 0 | 0 | |
29–35 days (n = 9) | 1 | 7 | 4 | 2 | 0 | 0 | 0 | |
Pullet/layer hens | 2–6 weeks (n = 34) | 0 | 19 | 12 | 15 | 0 | 0 | 0 |
7–11 weeks (n = 31) | 0 | 18 | 10 | 12 | 1 | 0 | 0 | |
12–16 weeks (n = 14) | 0 | 11 | 5 | 0 | 0 | 0 | 0 | |
17–21 weeks (n = 29) | 3 | 23 | 6 | 5 | 0 | 0 | 0 | |
22–26 weeks (n = 11) | 0 | 9 | 2 | 1 | 0 | 0 | 0 | |
>26 weeks (n = 5) | 1 | 2 | 1 | 1 | 0 | 0 | 0 | |
Total | (n = 145) | 5 | 100 | 41 | 44 | 1 | 0 | 0 |
Item | All, n = 145 | Chicken Line | χ2 | p-Value 3 | |
---|---|---|---|---|---|
Broilers, n = 21 | Pullet/Layer Hens, n = 124 | ||||
Positive samples of infections | |||||
One virus | 106 (73.1%) 1 | 9 (42.86%) | 97 (78.22%) | 10.423 | 0.001 ** |
Two viruses | 33 (22.8%) | 11 (52.38%) | 22 (17.7%) | - | 0.001 ** |
Three viruses | 5 (3.5%) | 1 (4.76%) | 4 (3.2%) | - | 0.548 |
Four viruses | 1 (0.7%) | 0 (0.0%) | 1 (0.8%) | - | 1.000 |
Clinical signs | |||||
Respiratory problems | 16 (11.0%) | 3 (14.3%) | 13 (10.5%) | - | 0.705 |
Digestive problems 2 | 54 (37.2%) | 9 (42.9%) | 45 (36.3%) | 0.331 | 0.565 |
Stunting | 33 (22.8%) | 7 (33.3%) | 26 (21.0%) | - | 0.260 |
Not reported | 42 (29.0%) | 2 (9.5%) | 40 (32.3%) | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Chen, L.; Wang, X.; Huo, S.; Li, Y. Detection and Molecular Characterization of Enteric Viruses in Poultry Flocks in Hebei Province, China. Animals 2022, 12, 2873. https://doi.org/10.3390/ani12202873
Chen L, Chen L, Wang X, Huo S, Li Y. Detection and Molecular Characterization of Enteric Viruses in Poultry Flocks in Hebei Province, China. Animals. 2022; 12(20):2873. https://doi.org/10.3390/ani12202873
Chicago/Turabian StyleChen, Libao, Ligong Chen, Xuejing Wang, Shuying Huo, and Yurong Li. 2022. "Detection and Molecular Characterization of Enteric Viruses in Poultry Flocks in Hebei Province, China" Animals 12, no. 20: 2873. https://doi.org/10.3390/ani12202873
APA StyleChen, L., Chen, L., Wang, X., Huo, S., & Li, Y. (2022). Detection and Molecular Characterization of Enteric Viruses in Poultry Flocks in Hebei Province, China. Animals, 12(20), 2873. https://doi.org/10.3390/ani12202873