Macromolecules Influence Cellular Competence and Expression Level of IGFs Genes in Bovine Oocytes In Vitro
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Isolation of Cumulus-Oocyte Complexes
2.2. Experimental Design and In Vitro Oocyte Maturation
2.3. Maturation Characteristics of Oocytes
2.4. Protein Extraction
2.5. Glutathione Peroxidase (GPx) Enzyme Activity
2.6. Total RNA Isolation, Synthesis of cDNA, and qRT-PCR Analyses
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tetzner, T.A.D.; Saraiva, N.Z.; Perecin, F.; Niciura, S.C.M.; Ferreira, C.R.; Oliveira, C.S.; Garcia, J.M. The effects of ovalbumin as a protein source during the in vitro production of bovine embryos. Rev. Bras. Zootec. 2011, 40, 2135–2141. [Google Scholar] [CrossRef]
- McEvoy, T.G.; Sinclair, K.D.; Young, L.E.; Wilmut, I.; Robinson, J.J. Large offspring syndrome and other consequences of ruminant embryo culture in vitro: Relevance to blastocyst culture in human ART. Hum. Fertil. 2000, 3, 238–246. [Google Scholar] [CrossRef]
- Gutierrez-Adan, A.; Lonergan, P.; Rizos, D.; Ward, F.A.; Boland, M.P.; Pintado, B.; De La Fuente, J. Effect of the in vitro culture system on the kinetics of blastocyst development and sex ratio of bovine embryos. Theriogenology 2001, 55, 1117–1126. [Google Scholar] [CrossRef]
- Sen, U.; Kuran, M. Low incubation temperature successfully supports the in vitro bovine oocyte maturation and subsequent development of embryos. Asian-Australas. J. Anim. Sci. 2018, 31, 827–834. [Google Scholar] [CrossRef]
- Ferré, L.B.; Kjelland, M.E.; Strøbech, L.B.; Hyttel, P.; Mermillod, P.; Ross, P.J. Review: Recent advances in bovine in vitro embryo production: Reproductive biotechnology history and methods. Animal 2020, 14, 991–1004. [Google Scholar] [CrossRef] [PubMed]
- Holm, P.; Booth, P.J.; Callesen, H. Kinetics of early in vitro development of bovine in vivo- and in vitro derived zygotes produced and/or cultured in chemically defined or serum-containing media. Reproduction 2002, 123, 553–565. [Google Scholar] [CrossRef] [PubMed]
- Leibfried-Rutledge, M.L.; Critser, E.S.; First, N.L. Effects of fetal calf serum and bovine serum albumin on in vitro maturation and fertilization of bovine and hamster cumulus-oocyte complexes. Biol. Reprod. 1986, 35, 850–857. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, K.; Othman, A.M.; Taniguchi, T.; Yamanaka, H.; Sekikawa, K. Differential patterns of blastulation in bovine morulae cultured in synthetic oviduct fluid medium containing FCS or BSA. Theriogenology 1997, 48, 997–1006. [Google Scholar] [CrossRef]
- Korhonen, K.; Kananen, K.; Ketoja, E.; Matomäki, J.; Halmekytö, M.; Peippo, J. Effects of serum-free in vitro maturation of bovine oocytes on subsequent embryo development and cell allocation in two developmental stages of day 7 blastocysts. Reprod. Domest. Anim. 2010, 45, 42–49. [Google Scholar] [CrossRef]
- Shirazi, A.; Ardali, M.A.; Ahmadi, E.; Nazari, H.; Mamuee, M.; Heidari, B. The effect of macromolecule source and type of media during in vitro maturation of sheep oocytes on subsequent embryo development. J. Reprod. Infertil. 2012, 13, 13–19. [Google Scholar]
- Young, L.E.; Sinclair, K.D.; Wilmut, I. Large offspring syndrome in cattle and sheep. Rev. Reprod. 1998, 3, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Lazzari, G.; Wrenzycki, C.; Herrmann, D.; Duchi, R.; Kruip, T.; Niemann, H.; Galli, C. Cellular and molecular deviations in bovine in vitro-produced embryos are related to the large offspring syndrome. Biol. Reprod. 2002, 67, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Sagirkaya, H.; Misirlioglu, M.; Kaya, A.; First, N.L.; Parrish, J.J.; Memili, E. Developmental potential of bovine oocytes cultured in different maturation and culture conditions. Anim. Reprod. Sci. 2007, 1, 225–240. [Google Scholar] [CrossRef] [PubMed]
- Kocyigit, A.; Cevik, M.; Sen, U.; Kuran, M. The effect of macromolecule and growth factors combinations on in vitro development of bovine embryos. Turk. J. Vet. Anim. Sci. 2015, 39, 308–313. [Google Scholar] [CrossRef]
- Rieger, D.; Guay, P. Measurement of the metabolism of energy substrates in individual bovine blastocysts. J. Reprod. Fertil. 1988, 83, 585–591. [Google Scholar] [CrossRef]
- Grealy, M.; Diskin, M.G.; Sreenan, J.M. Protein content of cattle oocytes and embryos from the two-cell to the elongated blastocyst stage at day 16. J. Reprod. Fertil. 1996, 107, 229–233. [Google Scholar] [CrossRef]
- Yoshida, Y.; Miyamura, M.; Hamano, S.; Yoshida, M. Expression of growth factor ligand and their receptor mRNAs in bovine ova during in vitro maturation and after fertilization in vitro. J. Vet. Med. Sci. 1998, 60, 549–554. [Google Scholar] [CrossRef]
- Bradshaw, R.A.; Rubin, J.S. Polypeptide growth factors: Some structural and mechanistic considerations. J. Supramol. Struct. 1980, 14, 183–199. [Google Scholar] [CrossRef]
- Meiyu, Q.I.; Zvi, R.; Di, L.I.U. Insulin-like growth factor-I (IGF-I), in reproduction system of female bovine. J. Northeast. Agric. Univ. 2011, 18, 84–87. [Google Scholar]
- Wrenzycki, C.; Herrmann, D.; Lucas-Hahn, A.; Korsawe, K.; Lemme, E.; Niemann, H. Messenger RNA expression patterns in bovine embryos derived from in vitro procedures and their implications for development. Reprod. Fertil. Dev. 2005, 17, 23–35. [Google Scholar] [CrossRef]
- Wang, L.M.; Feng, H.L.; Ma, Y.Z.; Cang, M.; Li, H.J.; Yan, Z.; Zhou, P.; Wen, J.X.; Bou, S.; Liu, D.J. Expression of IGF receptors and its ligands in bovine oocytes and preimplantation embryos. Anim. Reprod. Sci. 2009, 114, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Sen, U. Maturation of bovine oocytes under low culture temperature decreased glutathione peroxidase activity of both oocytes and blastocysts. Polish J. Vet. Sci. 2021, 24, 93–99. [Google Scholar]
- Halliwell, B.; Aruoma, O.I. DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett. 1991, 281, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Halliwell, B.; Gutteridge, J.M. Free radicals and antioxidant protection: Mechanisms and significance in toxicology and disease. Hum. Toxicol. 1988, 7, 7–13. [Google Scholar] [CrossRef]
- Carbone, M.C.; Tatone, C.; Delle Monache, S.; Marci, R.; Caserta, D.; Colonna, R.; Amicarelli, F. Antioxidant enzymatic defences in human follicular fluid: Characterization and age-dependent changes. Mol. Hum. Reprod. 2003, 9, 639–643. [Google Scholar] [CrossRef]
- Lapointe, J.; Bilodeau, J.F. Antioxidant defenses are modulated in the cow oviduct during the estrous cycle. Biol. Reprod. 2003, 68, 1157–1164. [Google Scholar] [CrossRef]
- Camargo, L.S.; Viana, J.H.; Sa, W.F.; Ferreira, A.M.; Ramos, A.A.; Vale Filho, V.R. Factors influencing in vitro embryo production. Anim. Reprod. 2006, 3, 19–28. [Google Scholar]
- Booth, P.J.; Holm, P.; Callesen, H. The effect of oxygen tension on porcine embryonic development is dependent on embryo type. Theriogenology 2005, 63, 2040–2052. [Google Scholar] [CrossRef]
- Mingoti, G.Z.; Castro, V.S.; Meo, S.C.; Sa Barretto, L.S.; Garcia, J.M. The effects of macromolecular and serum supplements and oxygen tension during bovine in vitro procedures on kinetics of oocyte maturation and embryo development. In Vitro Cell. Dev. Biol. Anim. 2011, 47, 361–367. [Google Scholar] [CrossRef]
- Valkova, N.; Yunis, R.; Mak, S.K.; Kang, K.; Kültz, D. Nek8 mutation causes overexpression of galectin-1, sorcin, and vimentin and accumulation of the major urinary protein in renal cysts of jck mice. Mol. Cell. Proteom. 2005, 4, 1009–1018. [Google Scholar] [CrossRef]
- Dominko, T.; First, N.L. Timing of meiotic progression in bovine oocytes and its effect on early embryo development. Mol. Reprod. Dev. 1997, 47, 456–467. [Google Scholar] [CrossRef]
- Warzych, E.; Wrenzycki, C.; Peippo, J.; Lechniak, D. Maturation medium supplements affect transcript level of apoptosis and cell survival related genes in bovine blastocysts produced in vitro. Mol. Reprod. Dev. 2007, 74, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Warzych, E.; Peippo, J.; Szydlowski, M.; Lechniak, D. Supplements to in vitro maturation media affect the production of bovine blastocysts and their apoptotic index but not the proportions of matured and apoptotic oocytes. Anim. Reprod. Sci. 2007, 97, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Eckert, J.; Niemann, H. In vitro maturation, fertilization and culture to blastocysts of bovine oocytes in protein-free media. Theriogenology 1995, 43, 1211–1225. [Google Scholar] [CrossRef]
- Ali, A.; Sirard, M.A. Effect of the absence or presence of various protein supplements on further development of bovine oocytes during in vitro maturation. Biol. Reprod. 2002, 66, 901–905. [Google Scholar] [CrossRef] [PubMed]
- Collado, M.D.; Saraiva, N.Z.; Lopes, F.L.; Gaspar, R.C.; Padilha, L.C.; Costa, R.R.; Rossi, G.F.; Vantini, R.; Garcia, J.M. Influence of bovine serum albumin and fetal bovine serum supplementation during in vitro maturation on lipid and mitochondrial behaviour in oocytes and lipid accumulation in bovine embryos. Reprod. Fertil. Dev. 2015, 28, 1721–1732. [Google Scholar] [CrossRef]
- Lequarrea, A.; Vigneronb, C.; Ribaucoura, F.; Holmc, P.; Donnaya, I.; Dalbies-Tranb, R.; Callesenc, H.; Mermillod, B. Influence of antral follicle size on oocyte characteristics and embryo development in the bovine. Theriogenology 2000, 63, 841–859. [Google Scholar] [CrossRef]
- Nandi, S.; Girish Kumar, V.; Manjunatha, B.M.; Ramesh, H.S.; Gupta, P.S.P. Follicular fluid concentrations of glucose, lactate and pyruvate in buffalo and sheep, and their effects on cultured oocytes, granulosa and cumulus cells. Theriogenology 2008, 69, 186–196. [Google Scholar] [CrossRef]
- Song, J.L.; Wong, J.L.; Wessel, G.M. Oogenesis: Single cell development and differentiation. Dev. Biol. 2006, 300, 385–405. [Google Scholar] [CrossRef]
- Herrick, J.R.; Lane, M.; Gardner, D.K.; Behboodi, E.; Memili, E.; Blash, S.; Echelard, Y.; Krisher, R.L. Metabolism, protein content, and in vitro embryonic development of goat cumulus-oocyte complexes matured with physiological concentrations of glucose and L-lactate. Mol. Reprod. Dev. 2006, 73, 256–266. [Google Scholar] [CrossRef]
- Sasaki, R.; Nakayama, T.; Kato, T. Microelectrophoretic analysis of changes in protein expression patterns in mouse oocytes and preimplantation embryos. Biol. Reprod. 1999, 60, 1410–1418. [Google Scholar] [CrossRef] [PubMed]
- Luciano, A.M.; Goudet, G.; Perazzoli, F.; Lahuec, C.; Gérard, N. Glutathione content and glutathione peroxidase expression in in vivo and in vitro matured equine oocytes. Mol. Reprod. Dev. 2006, 73, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Guerin, P.; El Mouatassim, S.; Menezo, Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update 2001, 7, 175–189. [Google Scholar] [CrossRef] [PubMed]
- El Mouatassim, S.; Guerin, P.; Menezo, Y. Expression of genes encoding antioxidant enzymes in human and mouse oocytes during the final stages of maturation. Mol. Hum. Reprod. 1999, 5, 720–725. [Google Scholar] [CrossRef]
- Lonergan, P.; Gutierrez-Adan, A.; Rizos, D.; Pintado, B.; de la Fuente, J.; Boland, M.P. Relative messenger RNA abundance in bovine oocytes collected in vitro or in vivo before and 20 hr after the preovulatory luteinizing hormone surge. Mol. Reprod. Dev. 2003, 66, 297–305. [Google Scholar] [CrossRef]
- Yanar, K.; Aydın, S.; Cakatay, U.; Mengi, M.; Buyukpınarbaşılı, N.; Atukeren, P.; Sitar, M.E.; Sönmez, A.; Uslu, E. Protein and DNA oxidation in different anatomic regions of rat brain in a mimetic ageing model. Basic Clin. Pharmacol. Toxicol. 2011, 109, 423–433. [Google Scholar] [CrossRef]
- Chesne, S.; Rondeau, P.; Armenta, S.; Bourdon, E. Effects of oxidative modifications induced by the glycation of bovine serum albumin on its structure and on cultured adipose cells. Biochimie 2006, 88, 1467–1477. [Google Scholar] [CrossRef]
- Johnson, M. Fetal bovine serum. Mater. Methods 2013, 2, 117. [Google Scholar] [CrossRef]
- Nuttinck, F.; Charpigny, G.; Mermillod, P.; Loosfelt, H.; Meduri, G.; Freret, S.; Grimard, B.; Heyman, Y. Expression of components of the insulin-like growth factor system and gonadotropin receptors in bovine cumulus-oocyte complexes during oocyte maturation. Domest. Anim. Endocrinol. 2004, 27, 179–195. [Google Scholar] [CrossRef]
- Sen, U.; Kaya, Ö. Placental traits, and plasma concentration and placental mRNA expression of IGF-I in Bafra sheep breed with different birth type. Anadolu J. Agric. Sci. 2022, 37, 361–372. [Google Scholar] [CrossRef]
- Lonergan, P.; Gutiérrez-Adán, A.; Pintado, B.; Fair, T.; Ward, F.; Fuente, J.D.; Boland, M. Relationship between time of first cleavage and the expression of IGF-I growth factor, its receptor, and two housekeeping genes in bovine two-cell embryos and blastocysts produced in vitro. Mol. Reprod. Dev. 2000, 57, 146–152. [Google Scholar] [CrossRef]
- Moore, K.; Kramer, J.M.; Rodriguez-Sallaberry, C.J.; Yelich, J.V.; Drost, M. Insulin-like growth factor (IGF) family genes are aberrantly expressed in bovine conceptuses produced in vitro or by nuclear transfer. Theriogenology 2007, 68, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Niemann, H.; Wrenzycki, C. Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: Implications for subsequent development. Theriogenology 2000, 53, 21–34. [Google Scholar] [CrossRef]
Genes | Primer sequence (5′-3′) | AT (°C) | FS (bp) | GBAN |
---|---|---|---|---|
IGF1 | F-CATTCATTCAGCAGGCTTGTCTAA R-TGATGGAGAAGGGAGTGGGATA | 59 | 129 | X15726 |
IGF1R | F-CAACTGTCCTGACATGCTGTTTGAGC R-CCGCCTCCATCTCGTCCTTGAC | 64 | 113 | X54980 |
IGF2 | F-TCTACTTCAGCCGACCATCCA R-TTCGGAAGCAACACTCTTCCA | 60 | 72 | X53553 |
IGF2R | F-AGTGTGTGTGACTTCGTGTTTGAG R-TGGAGAGGCTGGACAGGTTG | 61 | 124 | X54980 |
β-actin | F-CGTGAGAAGATGACCCAGATCA R-GGGACAGCACAGCCTGGAT | 59 | 79 | U39357 |
CE | M-II | T-I | M-I | DG | ||||||
---|---|---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | n | % | n | % | |
BSA | 302 | 90.96 a | 110 | 72.36 a | 22 | 14.47 | 13 | 8.55 a | 7 | 4.61 a |
FCS | 302 | 93.50 a | 127 | 83.01 a | 13 | 8.50 | 9 | 5.88 a | 4 | 2.61 a |
PVA | 302 | 68.95 b | 87 | 56.87 b | 16 | 10.46 | 32 | 20.92 b | 18 | 11.77 b |
Control | 305 | 71.93 b | 74 | 48.68 b | 21 | 13.82 | 37 | 24.34 b | 20 | 13.15 b |
BSA | FCS | PVA | Control | |
---|---|---|---|---|
Protein (µg/mL) | 2.435 ± 0.166 ab | 3.619 ± 0.351 a | 2.165 ± 0.362 b | 2.009 ± 0.383 b |
Protein (µg/oocyte) | 0.098 ± 0.006 ab | 0.144 ± 0.014 a | 0.086 ± 0.014 b | 0.080 ± 0.015 b |
Time (s) | BSA | FCS | PVA | Control |
---|---|---|---|---|
0 | 14.5 ± 0.13 | 14.6 ± 0.20 | 14.0 ± 0.19 | 14.3 ± 0.55 |
30 | 14.5 ± 0.09 | 14.5 ± 0.20 | 14.0 ± 0.18 | 14.2 ± 0.31 |
60 | 14.3 ± 0.09 | 14.4 ± 0.20 | 14.0 ± 0.09 | 14.2 ± 0.31 |
90 | 14.3 ± 0.08 | 14.4 ± 0.20 | 13.9 ± 0.19 | 14.1 ± 0.32 |
120 | 14.2 ± 0.07 | 14.4 ± 0.20 | 13.9 ± 0.19 | 14.1 ± 0.34 |
150 | 14.2 ± 0.07 | 14.3 ± 0.20 | 13.9 ± 0.20 | 14.0 ± 0.35 |
180 | 13.9 ± 0.19 | 14.3 ± 0.20 | 13.8 ± 0.18 | 13.9 ± 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Şen, U.; Şirin, E.; Önder, H.; Özyürek, S.; Kolenda, M.; Sitkowska, B. Macromolecules Influence Cellular Competence and Expression Level of IGFs Genes in Bovine Oocytes In Vitro. Animals 2022, 12, 2604. https://doi.org/10.3390/ani12192604
Şen U, Şirin E, Önder H, Özyürek S, Kolenda M, Sitkowska B. Macromolecules Influence Cellular Competence and Expression Level of IGFs Genes in Bovine Oocytes In Vitro. Animals. 2022; 12(19):2604. https://doi.org/10.3390/ani12192604
Chicago/Turabian StyleŞen, Uğur, Emre Şirin, Hasan Önder, Selçuk Özyürek, Magdalena Kolenda, and Beata Sitkowska. 2022. "Macromolecules Influence Cellular Competence and Expression Level of IGFs Genes in Bovine Oocytes In Vitro" Animals 12, no. 19: 2604. https://doi.org/10.3390/ani12192604
APA StyleŞen, U., Şirin, E., Önder, H., Özyürek, S., Kolenda, M., & Sitkowska, B. (2022). Macromolecules Influence Cellular Competence and Expression Level of IGFs Genes in Bovine Oocytes In Vitro. Animals, 12(19), 2604. https://doi.org/10.3390/ani12192604