Effect of Autochthonous Nepalese Fruits on Nutrient Degradation, Fermentation Kinetics, Total Gas Production, and Methane Production in In-Vitro Rumen Fermentation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Treatments and Donor Animals
2.2. In-Vitro Fermentation
2.3. Dry Matter and Ash Analysis
2.4. Volatile Fatty Acid Determination
2.5. Methane Determination
2.6. Fiber Analysis
2.7. Calculations and Statistical Analysis
2.8. Statistical Analyses
2.8.1. “Groot” Model
2.8.2. Exponential Model with No Intercept (or Intercept = 0)
3. Results
4. Discussion
4.1. Nutrient Degradation and Total Gas Production
4.2. Methane Production and Volatile Fatty Acids
4.3. Limitations of the Study and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thornton, P.K. Livestock production: Recent trends, future prospects. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2853–2867. [Google Scholar] [CrossRef]
- Oltjen, J.W.; Beckett, J.L. Role of ruminant livestock in sustainable agricultural systems. J. Anim. Sci. 1996, 74, 1406–1409. [Google Scholar] [CrossRef]
- Varga, G.A.; Kolver, E.S. Microbial and Animal Limitations to Fiber Digestion and Utilization. J. Nutr. 1997, 127, 819S–823S. [Google Scholar] [CrossRef]
- Danielsson, R.; Dicksved, J.; Sun, L.; Gonda, H.; Müller, B.; Schnürer, A.; Bertilsson, J. Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure. Front. Microbiol. 2017, 8, 226. [Google Scholar] [CrossRef]
- Change, I.P. Climate change 2007: The physical science basis. Agenda 2007, 6, 333. [Google Scholar]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
- Kumar, S.; Treloar, B.P.; Teh, K.H.; McKenzie, C.M.; Henderson, G.; Attwood, G.T.; Waters, S.M.; Patchett, M.L.; Janssen, P.H. Sharpea and Kandleria are lactic acid producing rumen bacteria that do not change their fermentation products when co-cultured with a methanogen. Anaerobe 2018, 54, 31–38. [Google Scholar] [CrossRef]
- Ellis, J.L.; Bannink, A.; Hindrichsen, I.K.; Kinley, R.D.; Pellikaan, W.F.; Milora, N.; Dijkstra, J. The effect of lactic acid bacteria included as a probiotic or silage inoculant on in vitro rumen digestibility, total gas and methane production. Anim. Feed Sci. Technol. 2016, 211, 61–74. [Google Scholar] [CrossRef]
- Philippeau, C.; Lettat, A.; Martin, C.; Silberberg, M.; Morgavi, D.P.; Ferlay, A.; Berger, C.; Nozière, P. Effects of bacterial direct-fed microbials on ruminal characteristics, methane emission, and milk fatty acid composition in cows fed high-or low-starch diets. J. Dairy Sci. 2017, 100, 2637–2650. [Google Scholar] [CrossRef]
- Lan, W.; Yang, C. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Sci. Total Environ. 2019, 654, 1270–1283. [Google Scholar] [CrossRef]
- Vissers, A.M.; Pellikaan, W.F.; Bouwhuis, A.; Vincken, J.P.; Gruppen, H.; Hendriks, W.H. Laminaria digitata phlorotannins decrease protein degradation and methanogenesis during in vitro ruminal fermentation. J. Sci. Food Agric. 2018, 98, 3644–3650. [Google Scholar] [CrossRef]
- Roque, B.M.; Brooke, C.G.; Ladau, J.; Polley, T.; Marsh, L.J.; Najafi, N.; Pandey, P.; Singh, L.; Kinley, R.; Salwen, J.K.; et al. Effect of the macroalgae Asparagopsis taxiformis on methane production and rumen microbiome assemblage. Anim. Microbiome 2019, 1, 3. [Google Scholar] [CrossRef]
- Machado, L.; Magnusson, M.; Paul, N.A.; Kinley, R.; de Nys, R.; Tomkins, N. Dose-response effects of Asparagopsis taxiformis and Oedogonium sp. on in-vitro fermentation and methane production. J. Appl. Phycol. 2016, 28, 1443–1452. [Google Scholar] [CrossRef]
- Arowolo, M.A.; He, J. Use of probiotics and botanical extracts to improve ruminant production in the tropics: A review. Anim. Nutr. 2018, 4, 241–249. [Google Scholar] [CrossRef]
- Ramirez-Bribiesca, J.E.; McAllister, T.; Ungerfeld, E.; Ortega-Cerrilla, M.E. In-vitro rumen fermentation and effect of protein fractions of canola meals on methane production. Sci. Agric. 2018, 75, 12–17. [Google Scholar] [CrossRef]
- Durmic, Z.; Moate, P.J.; Eckard, R.; Revell, D.K.; Williams, R.; Vercoe, P.E. In vitro screening of selected feed additives, plant essential oils, and plant extracts for rumen methane mitigation. J. Sci. Food Agric. 2014, 94, 1191–1196. [Google Scholar] [CrossRef]
- Van Zijderveld, S.M.; Gerrits, W.J.; Apajalahti, J.A.; Newbold, J.R.; Dijkstra, J.; Leng, R.A.; Perdok, H.B. Nitrate and sulfate: Effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J. Dairy Sci. 2010, 93, 5856–5866. [Google Scholar] [CrossRef]
- Newbold, C.J.; López, S.; Nelson, N.; Ouda, J.O.; Wallace, R.J.; Moss, A.R. Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro. Br. J. Nutr. 2005, 94, 27–35. [Google Scholar] [CrossRef]
- Santos, N.W.; Zeoula, L.M.; Yoshimura, E.H.; Machado, E.; Macheboeuf, D.; Cornu, A. Brazilian propolis extract used as an additive to decrease methane emissions from the rumen microbial population in vitro. Trop. Anim. Health Prod. 2016, 48, 1051–1056. [Google Scholar] [CrossRef]
- Eun, J.S.; Beauchemin, K.A. Assessment of the potential of feed enzyme additives to enhance utilization of corn silage fibre by ruminants. Can. J. Anim. Sci. 2008, 88, 97–106. [Google Scholar] [CrossRef]
- Facchini, F.D.; Reis, V.R.; Roth, A.P.; Magalhães, K.A.; Peixoto-Nogueira, S.C.; Casagrande, D.R.; Reis, R.A.; Polizeli, M.D. Effects of Aspergillus spp. exogenous fibrolytic enzymes on in vitro fermentation of tropical forages. J. Sci. Food Agric. 2012, 92, 2569–2573. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Colombatto, D.; Morgavi, D.P.; Yang, W.Z.; Rode, L.M. Mode of action of exogenous cell wall degrading enzymes for ruminants. Can. J. Anim. Sci. 2004, 84, 13–22. [Google Scholar] [CrossRef]
- Pfundstein, B.; El Desouky, S.K.; Hull, W.E.; Haubner, R.; Erben, G.; Owen, R.W. Polyphenolic compounds in the fruits of Egyptian medicinal plants (Terminalia bellerica, Terminalia chebula and Terminalia horrida): Characterization, quantitation and determination of antioxidant capacities. Phytochemistry 2010, 71, 1132–1148. [Google Scholar] [CrossRef]
- Kolla, J.N.; Kulkarni, N.M.; Kura, R.R.; Theepireddy, S.K. Terminalia chebula Retz.—An important medicinal plant. Herba Polonica 2017, 63, 45–56. [Google Scholar] [CrossRef]
- Khan, A.; Ahmed, T.; Rizwan, M.; Khan, N. Comparative therapeutic efficacy of Phyllanthus emblica (Amla) fruit extract and procaine penicillin in the treatment of subclinical mastitis in dairy buffaloes. Microb. Pathog. 2018, 115, 8–11. [Google Scholar] [CrossRef]
- Liu, X.; Cui, C.; Zhao, M.; Wang, J.; Luo, W.; Yang, B.; Jiang, Y. Identification of phenolics in the fruit of emblica (Phyllanthus emblica L) and their antioxidant activities. Food Chem. 2008, 109, 909–915. [Google Scholar] [CrossRef]
- Anantasook, N.; Wanapat, M.; Gunun, P.; Cherdthong, A. Reducing methane production by supplementation of Terminalia chebula Retz. containing tannins and saponins. Anim. Sci. J. 2016, 87, 783–790. [Google Scholar] [CrossRef]
- Kumar, R.; Arora, R.; Agarwal, A.; Gupta, Y.K. Protective effect of Terminalia chebula against seizures, seizure-induced cognitive impairment and oxidative stress in experimental models of seizures in rats. J. Ethnopharmacol. 2018, 215, 124–131. [Google Scholar] [CrossRef]
- Hazra, B.; Sarkar, R.; Biswas, S.; Mandal, N. Comparative study of the antioxidant and reactive oxygen species scavenging properties in the extracts of the fruits of Terminalia chebula, Terminalia belerica and Emblica officinalis. BMC Complement. Altern. Med. 2010, 10, 20. [Google Scholar] [CrossRef]
- Parveen, R.; Shamsi, T.N.; Singh, G.; Athar, T.; Fatima, S. Phytochemical analysis and in-vitro biochemical characterization of aqueous and methanolic extract of Triphala, a conventional herbal remedy. Biotechnol. Rep. 2018, 17, 126–136. [Google Scholar] [CrossRef]
- Jayanegara, A.; Goel, G.; Makkar, H.P.; Becker, K. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in-vitro. Anim. Feed Sci. Technol. 2015, 209, 60–68. [Google Scholar] [CrossRef]
- Peterson, C.T.; Denniston, K.; Chopra, D. Therapeutic uses of Triphala in Ayurvedic medicine. J. Altern. Complement. Med. 2017, 23, 607–614. [Google Scholar] [CrossRef]
- Elghandour, M.M.; Salem, A.Z.; Castañeda, J.S.; Camacho, L.M.; Kholif, A.E.; Chagoyán, J.C. Direct-fed microbes: A tool for improving the utilization of low quality roughages in ruminants. J. Integr. Agric. 2015, 14, 526–533. [Google Scholar] [CrossRef]
- Rana, M.S.; Tyagi, A.; Hossain, S.A.; Tyagi, A.K. Effect of tanniniferous Terminalia chebula extract on rumen biohydrogenation, ∆ 9-desaturase activity, CLA content and fatty acid composition in longissimus dorsi muscle of kids. Meat Sci. 2012, 90, 558–563. [Google Scholar] [CrossRef]
- Inamdar, A.I.; Chaudhary, L.C.; Agarwal, N.; Kamra, D.N. Effect of Madhuca longifolia and Terminalia chebula on methane production and nutrient utilization in buffaloes. Anim. Feed Sci. Technol. 2015, 201, 38–45. [Google Scholar] [CrossRef]
- Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef]
- Vargas-Bello-Pérez, E.; Pedersen, N.C.; Khushvakov, J.; Ye, Y.; Dhakal, R.; Hansen, H.H.; Ahrné, L.; Khakimov, B. Effect of supplementing dairy goat diets with rapeseed oil or sunflower oil on performance, milk composition, milk fatty acid profile, and in- vitro fermentation kinetics. Front. Vet. Sci. 2022, 9, 899314. [Google Scholar] [CrossRef]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Ankom Technology. Neutral Detergent Fiber in Feeds Filter Bag Technique (for A200). 2006. Available online: www.ankom.com/analytical-methods-support/fiber-analyzer-a200 (accessed on 15 June 2020).
- Elghandour, M.M.; Salem, A.Z.; Gonzalez-Ronquillo, M.; Bórquez, J.L.; Gado, H.M.; Odongo, N.E.; Peñuelas, C.G. Effects of exogenous enzymes on in vitro gas production kinetics and ruminal fermentation of four fibrous feeds. Anim. Feed Sci. Technol. 2013, 179, 46–53. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-140. 2019. Available online: https://CRAN.R-project.org/package=nlme (accessed on 8 August 2020).
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-response analysis using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef]
- Groot, J.C.; Cone, J.W.; Williams, B.A.; Debersaques, F.M.; Lantinga, E.A. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim. Feed. Sci. Technol. 1996, 64, 77–89. [Google Scholar] [CrossRef]
- Getachew, G.; Robinson, P.H.; DePeters, E.J.; Taylor, S.J. Relationships between chemical composition, dry matter degradation and in-vitro gas production of several ruminant feeds. Anim. Feed Sci. Technol. 2004, 111, 57–71. [Google Scholar] [CrossRef]
- Niderkorn, V.; Barbier, E.; Macheboeuf, D.; Torrent, A.; Mueller-Harvey, I.; Hoste, H. In-vitro rumen fermentation of diets with different types of condensed tannins derived from sainfoin (Onobrychis viciifolia Scop.) pellets and hazelnut (Corylus avellana L.) pericarps. Anim. Feed Sci. Technol. 2020, 259, 114357. [Google Scholar] [CrossRef]
- Sharma, P.; Bhandari, C.; Kumar, S.; Sharma, B.; Bhadwal, P.; Agnihotri, N. Dietary Fibers: A Way to a Healthy Microbiome. In Diet, Microbiome and Health; Handbook of Food Bioengineering; Academic Press: London, UK, 2018; pp. 299–345. [Google Scholar] [CrossRef]
- Patra, A.K.; Kamra, D.N.; Agarwal, N. Effect of plant extracts on in-vitro methanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Anim. Feed Sci. Technol. 2006, 128, 276–291. [Google Scholar]
- Jayanegara, A.; Marquardt, S.; Wina, E.; Kreuzer, M.; Leiber, F. In-vitro indications for favourable non-additive effects on ruminal methane mitigation between high-phenolic and high-quality forages. Br. J. Nutr. 2013, 109, 615–622. [Google Scholar] [CrossRef]
- Mamuad, L.; Kim, S.H.; Jeong, C.D.; Choi, Y.J.; Jeon, C.O.; Lee, S.S. Effect of fumarate reducing bacteria on in-vitro rumen fermentation, methane mitigation and microbial diversity. J. Microbiol. 2014, 52, 120–128. [Google Scholar] [CrossRef]
- Lamba, J.S.; Wadhwa, M.; Bakshi, M.P. In-vitro methane production and in sacco degradability of processed wheat and rice straws. Indian J. Anim. Nutr. 2014, 31, 345–350. [Google Scholar]
- Moe, P.W.; Tyrrell, H.F. Methane production in dairy cows. J. Dairy Sci. 1979, 62, 1583–1586. [Google Scholar] [CrossRef]
- Patra, A.K.; Kamra, D.N.; Bhar, R.; Kumar, R.; Agarwal, N. Effect of Terminalia chebula and Allium sativum on in-vivo methane emission by sheep. J. Anim. Physiol. Anim. Nutr. 2011, 95, 187–191. [Google Scholar] [CrossRef]
- Blümmel, M.; Ørskov, E.R. Comparison of in-vitro gas production and nylon bag degradability of roughages in predicting feed intake in cattle. Anim. Feed Sci. Technol. 1993, 40, 109–119. [Google Scholar] [CrossRef]
- Krishnamoorthy, U.; Steingass, H.; Menke, K.H.; Menke, K.H. Preliminary observations on the relationship between gas production and microbial protein synthesis in-vitro. Archiv Für Tierernaehrung 1991, 41, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Janssen, P.H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol. 2010, 160, 1–22. [Google Scholar] [CrossRef]
- Van Lingen, H.J.; Plugge, C.M.; Fadel, J.G.; Kebreab, E.; Bannink, A.; Dijkstra, J. Thermodynamic driving force of hydrogen on rumen microbial metabolism: A theoretical investigation. PLoS ONE 2016, 11, e0161362. [Google Scholar] [CrossRef]
- Blümmel, M.; Makkar, H.P.; Becker, K. In-vitro gas production: A technique revisited. J. Anim. Physiol. Anim. Nutr. 1997, 77, 24–34. [Google Scholar] [CrossRef]
- Makar, H.P. Recent advances in the in-vitro gas method for evaluation of nutritional quality of feed resources. FAO Anim. Prod. Health Paper 2004, 160, 55–88. [Google Scholar]
- Aderao, G.N.; Sahoo, A.; Bhatt, R.S.; Kumawat, P.K.; Soni, L. In-vitro rumen fermentation kinetics, metabolite production, methane and substrate degradability of polyphenol rich plant leaves and their component complete feed blocks. J. Anim. Sci. Technol. 2018, 60, 26. [Google Scholar] [CrossRef]
- Aboagye, I.A.; Oba, M.; Castillo, A.R.; Koenig, K.M.; Iwaasa, A.D.; Beauchemin, K.A. Effects of hydrolyzable tannin with or without condensed tannin on methane emissions, nitrogen use, and performance of beef cattle fed a high-forage diet. J. Anim. Sci. 2018, 96, 5276–5286. [Google Scholar] [CrossRef]
- Getachew, G.; Pittroff, W.; Putnam, D.H.; Dandekar, A.; Goyal, S.; DePeters, E.J. The influence of addition of gallic acid, tannic acid, or quebracho tannins to alfalfa hay on in-vitro rumen fermentation and microbial protein synthesis. Anim. Feed Sci. Technol. 2008, 140, 444–461. [Google Scholar] [CrossRef]
- Correddu, F.; Lunesu, M.F.; Buffa, G.; Atzori, A.S.; Nudda, A.; Battacone, G.; Pulina, G. Can Agro-Industrial By-Products Rich in Polyphenols be Advantageously Used in the Feeding and Nutrition of Dairy Small Ruminants? Animals 2020, 10, 131. [Google Scholar] [CrossRef] [Green Version]
Name of the Treatments | Dose | Composition of the Treatment |
---|---|---|
Maize silage (MS) | 0 | 100% Maize silage (MS) |
Terminalia bellirica (BA) | 20 | 20% Terminalia bellirica + Maize silage (MS) |
40 | 40% Terminalia bellirica + Maize silage (MS) | |
100 | 100% Terminalia bellirica | |
Terminalia chebula (HA) | 20 | 20% Terminalia chebula + Maize silage (MS) |
40 | 40% Terminalia chebula + Maize silage (MS) | |
100 | 100% Terminalia chebula | |
Triphala Churna (TC) | 20 | 20% Triphala Churna + Maize silage (MS) |
40 | 40% Triphala Churna + Maize silage (MS) | |
100 | 100% Triphala Churna |
Analysis | Maize Silage | Terminalia bellirica | Terminalia chebula | Triphala Churna |
---|---|---|---|---|
Dry matter | 93.1 | 92.7 | 92.8 | 94.9 |
Neutral detergent fiber | 44.2 | 91.5 | 77.3 | 80.6 |
Acid detergent fiber | 24.1 | 3.7 | 6.8 | 8.1 |
Acid detergent lignin | 2.1 | 0.7 | 0.8 | 1.4 |
Ash | 4.3 | 2.8 | 2.7 | 4.4 |
Crude protein | 8.5 | 4.7 | 3.0 | 3.9 |
Polyphenols | - | 127.6 * | 133 * | 158.7 * |
GP Parameters | IVGP Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dose | A1 (mL Gas STP/g DM) | H1 (h) | Vmax (mL Gas STP/g DM Per min) | Tmax (min) | 6 hTGP/g DM | 9 hTGP/g DM | 12 h | 24 h | 48 h |
Terminalia bellirica (BA) | |||||||||
0 | 194.89 | 16.92 | 1.73 | 741.25 | 7.09 | 30.39 | 51.86 | 150.66 | 186.16 |
20 | 185.74 | 15.77 | 1.29 | 663.75 | 9.27 | 32.65 | 49.17 | 128.46 | 168.13 |
40 | 172.12 | 15.38 | 1.29 | 545 | 9.33 | 38.88 | 57.27 | 124.67 | 155.49 |
100 | 116.28 | 8.50 | 1.18 | 348.66 | 13.25 | 53.64 | 70.76 | 105.94 | 113.49 |
Linear | 0.46 | <0.001 | <0.001 | <0.001 | 0.91 | 0.66 | 0.76 | 0.01 | 0.15 |
Quadratic | <0.001 | 0.01 | <0.001 | <0.001 | 0.13 | 0.003 | 0.69 | <0.001 | <0.001 |
SEM | 3.68 | 0.57 | 0.13 | 37.73 | 1.67 | 1.54 | 2.81 | 6.31 | 5.87 |
Terminalia chebula (HA) | |||||||||
0 | 194.89 | 16.92 | 1.73 | 741.25 | 7.09 | 30.39 | 51.86 | 150.66 | 186.16 |
20 | 176.35 | 16.12 | 1.20 | 565 | 9.45 | 35.62 | 58.99 | 121.16 | 158.28 |
40 | 156.10 | 15.81 | 1.07 | 521.25 | 10.49 | 35.93 | 54.12 | 107.90 | 137.89 |
100 | 71.92 | 4.52 | 4.01 | 50.5 | 25.25 | 50.97 | 56.32 | 70.51 | 70.07 |
Linear | 0.71 | <0.001 | 0.02 | 0.7 | 0.29 | 0.63 | 0.85 | 0.007 | 0.10 |
Quadratic | <0.001 | <0.001 | 0.40 | <0.001 | 0.02 | 0.01 | 0.13 | <0.001 | <0.001 |
SEM | 5.53 | 0.42 | 0.51 | 42.4 | 1.98 | 3.22 | 3.40 | 5.50 | 6.42 |
Triphala Churna (TC) | |||||||||
0 | 194.89 | 16.92 | 1.73 | 741.25 | 7.09 | 30.39 | 51.86 | 150.66 | 186.16 |
20 | 196.89 | 15.77 | 1.27 | 636.25 | 9.11 | 35.60 | 53.84 | 129.94 | 172.45 |
40 | 177.37 | 14.97 | 1.24 | 531.25 | 11.24 | 41.56 | 62.77 | 127.66 | 161.83 |
100 | 127.53 | 9.28a | 2.81 | 97.5 | 24.05 | 62.21 | 73.8 | 106.22 | 121.97 |
Linear | 0.38 | 0.03 | 0.03 | 0.91 | 0.52 | 0.86 | 0.39 | 0.13 | 0.58 |
Quadratic | 0.05 | 0.95 | 0.74 | <0.001 | 0.03 | 0.004 | 0.34 | <0.001 | <0.001 |
SEM | 4.45 | 0.49 | 0.37 | 34.84 | 1.93 | 2.98 | 3.41 | 6.77 | 6.52 |
Dose. | pH | dDM1% | dNDF1% | dADF1% | PF48h | tVFA (mmol) | CH4% |
---|---|---|---|---|---|---|---|
Terminalia bellirica (BA) | |||||||
0 | 6.94 | 76.2 | 36.6 | 32.1 | 2.21 | 3.73 | 8.15 |
20 | 6.83 | 69.8 | 41.2 | 44.6 | 2.69 | 3.3 | 10.05 |
40 | 6.84 | 65.8 | 39.2 | 47.1 | 3.05 | 3.2 | 8.03 |
100 | 6.90 | 69.3 | 24.5 | 40.0 | 2.95 | 2.5 | 4.31 |
Linear | 0.03 | <0.001 | 0.001 | 0.001 | 0.03 | 0.03 | 0.19 |
Quadratic | 0.13 | <0.001 | 0.001 | 0.27 | 0.001 | <0.001 | 0.55 |
SEM | 0.07 | 0.69 | 1.33 | 2.51 | 0.31 | 0.10 | 1.24 |
Terminalia chebula (HA) | |||||||
0 | 6.94 | 76.2 | 36.8 | 32.1 | 2.21 | 3.73 | 8.15 |
20 | 6.84 | 69.1 | 43.6 | 35.0 | 2.77 | 3.05 | 8.78 |
40 | 6.85 | 69.5 | 36.7 | 24.6 | 3.54 | 2.72 | 7.83 |
100 | 6.69 | 84.1 | 13.7 | 9.8 | 5.84 | 1.55 | 1.76 |
Linear | 0.01 | <0.001 | <0.001 | 0.72 | 0.05 | <0.001 | 0.16 |
Quadratic | 0.24 | 0.03 | <0.001 | 0.01 | 0.002 | <0.001 | 0.32 |
SEM | 0.08 | 0.45 | 1.36 | 1.84 | 0.29 | 0.10 | 1.44 |
Triphala Churna (TC) | |||||||
0 | 6.94 | 76.2 | 36.8 | 32.1 | 2.21 | 3.73 | 8.15 |
20 | 6.85 | 72.5 | 40.8 | 31.9 | 2.57 | 3.34 | 9.11 |
40 | 6.84 | 70.6 | 36.2 | 23.9 | 2.87 | 3.23 | 8.03 |
100 | 6.90 | 79.2 | 20.7 | 13.9 | 3.34 | 2.54 | 4.58 |
Linear | 0.02 | <0.001 | 0.10 | 0.57 | 0.02 | 0.23 | 0.43 |
Quadratic | 0.25 | 0.99 | 0.05 | 0.07 | <0.001 | <0.001 | 0.68 |
SEM | 0.08 | 0.41 | 2.44 | 2.74 | 0.27 | 0.14 | 1.18 |
Dose | Total VFA (mmol/L) | Acetic Acid (mol/100 mol) | Propionic Acid (mol/100 mol) | Iso-Butyric Acid (mol/100 mol) | Butyric Acid (mol/100 mol) | Isovaleric Acid (mol/100 mol) | Valeric Acid (mol/100 mol) | Caproic Acid (mol/100 mol) |
---|---|---|---|---|---|---|---|---|
Terminalia bellirica (BA) | ||||||||
0 | 66.7 | 42.1 | 24.0 | 2.21 | 22.4 | 4.67 | 2.85 | 1.69 |
20 | 63.6 | 39.1 | 25.1 | 1.78 | 25.1 | 3.68 | 2.85 | 2.27 |
40 | 63.1 | 42 | 24.0 | 1.75 | 24.3 | 3.61 | 2.98 | 1.84 |
100 | 61.9 | 42.1 | 25.5 | 1.83 | 21.8 | 3.53 | 2.80 | 2.12 |
Linear | 0.74 | 0.67 | 0.75 | 0.09 | 0.16 | 0.14 | 0.54 | 0.65 |
Quadratic | 0.71 | 0.42 | 0.16 | 0.33 | 0.95 | 0.23 | 0.047 | 0.115 |
SEM | 6.90 | 1.80 | 1.02 | 0.18 | 1.40 | 0.45 | 0.97 | 0.3 |
Terminalia chebula (HA) | ||||||||
0 | 66.7 | 42.1 | 24.0 | 2.21 | 22.4 | 4.66 | 2.85 | 1.69 |
20 | 68.3 | 42.7 | 26.4 | 1.74 | 21.1 | 3.56 | 2.95 | 1.44 |
40 | 61.9 | 42.9 | 24.4 | 1.86 | 22.4 | 3.86 | 3.00 | 1.56 |
100 | 46.9 | 46.5 | 19.5 | 2.04 | 24.8 | 4.00 | 2.40 | 0.75 |
Linear | 0.53 | 0.88 | 0.21 | 0.12 | 0.67 | 0.25 | 0.35 | 0.73 |
Quadratic | 0.015 | 0.27 | 0.34 | 0.40 | 0.79 | 0.12 | 0.28 | 0.03 |
SEM | 2.89 | 2.03 | 1.45 | 0.19 | 2.17 | 0.43 | 0.24 | 0.24 |
Triphala Churna (TC) | ||||||||
0 | 66.7 | 42.1 | 24 | 2.21 | 22.4 | 4.67 | 2.85 | 1.69 |
20 | 67.2 | 40.9 | 24.5 | 1.85 | 24.4 | 3.90 | 2.86 | 1.66 |
40 | 67.9 | 42 | 23.9 | 1.67 | 24.6 | 3.47 | 2.72 | 1.57 |
100 | 58.6 | 50 | 20.2 | 1.73 | 20.6 | 3.32 | 2.82 | 1.23 |
Linear | 0.03 | 0.18 | 0.14 | 0.11 | 0.11 | 0.18 | 0.21 | 0.96 |
Quadratic | 0.003 | 0.04 | 0.01 | 0.44 | 0.45 | 0.34 | 0.36 | 0.42 |
SEM | 1.16 | 1.44 | 0.53 | 0.19 | 1.3 | 0.46 | 0.06 | 0.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhakal, R.; Ronquillo, M.G.; Vargas-Bello-Pérez, E.; Hansen, H.H. Effect of Autochthonous Nepalese Fruits on Nutrient Degradation, Fermentation Kinetics, Total Gas Production, and Methane Production in In-Vitro Rumen Fermentation. Animals 2022, 12, 2199. https://doi.org/10.3390/ani12172199
Dhakal R, Ronquillo MG, Vargas-Bello-Pérez E, Hansen HH. Effect of Autochthonous Nepalese Fruits on Nutrient Degradation, Fermentation Kinetics, Total Gas Production, and Methane Production in In-Vitro Rumen Fermentation. Animals. 2022; 12(17):2199. https://doi.org/10.3390/ani12172199
Chicago/Turabian StyleDhakal, Rajan, Manuel Gonzalez Ronquillo, Einar Vargas-Bello-Pérez, and Hanne Helene Hansen. 2022. "Effect of Autochthonous Nepalese Fruits on Nutrient Degradation, Fermentation Kinetics, Total Gas Production, and Methane Production in In-Vitro Rumen Fermentation" Animals 12, no. 17: 2199. https://doi.org/10.3390/ani12172199
APA StyleDhakal, R., Ronquillo, M. G., Vargas-Bello-Pérez, E., & Hansen, H. H. (2022). Effect of Autochthonous Nepalese Fruits on Nutrient Degradation, Fermentation Kinetics, Total Gas Production, and Methane Production in In-Vitro Rumen Fermentation. Animals, 12(17), 2199. https://doi.org/10.3390/ani12172199