Comparative Proteomic Analysis of Young and Adult Bull (Bos taurus) Cryopreserved Semen
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Semen Collection
2.2. Extraction of Proteins from Bull Semen
2.3. Analysis of Sperm Motility, Viability and Oxidative Stress
2.4. 2D-DIGE and Mass Spectrometry Analysis
2.5. Statistical Analysis
3. Results
3.1. Bull Semen Parameters
3.2. Cryopreserved Semen Proteome Changes between Young and Adult Bulls
3.3. Functional Analysis of Differentially Abundant Semen Proteins of Young and Adult Bulls
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bailey, J.; Morrier, A.; Cormier, N. Semen cryopreservation: Successes and persistent problems in farm species. Can. J. Anim. Sci. 2003, 83, 393–401. [Google Scholar] [CrossRef]
- Murphy, E.M.; Kelly, A.K.; O’Meara, C.; Eivers, B.; Lonergan, P.; Fair, S. Influence of bull age, ejaculate number, and season of collection on semen production and sperm motility parameters in Holstein Friesian bulls in a commercial artificial insemination centre. J. Anim. Sci. 2018, 96, 2408–2418. [Google Scholar] [CrossRef] [PubMed]
- Almquist, J.O.; Branas, R.J.; Barber, K.A. Postpuberal Changes in Semen Production of Charolais Bulls Ejaculated at High Frequency and the Relation between Testicular Measurements and Sperm Output. J. Anim. Sci. 1976, 42, 670–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stälhammar, E.-M.; Janson, L.; Philipsson, J. Genetic studies on fertility in A.I. bulls. I. Age, season and genetic effects on semen characteristics in young bulls. Anim. Reprod. Sci. 1989, 19, 1–17. [Google Scholar] [CrossRef]
- Brito, L.F.C.; Silva, A.E.D.F.; Rodrigues, L.H.; Vieira, F.V.; Deragon, L.A.G.; Kastelic, J.P. Effect of age and genetic group on characteristics of the scrotum, testes and testicular vascular cones, and on sperm production and semen quality in AI bulls in Brazil. Theriogenology 2002, 58, 1175–1186. [Google Scholar] [CrossRef]
- Hallap, T.; Håård, M.; Jaakma, Ü.; Larsson, B.; Rodriguez-Martinez, H. Variations in quality of frozen-thawed semen from Swedish Red and White AI sires at 1 and 4 years of age. Int. J. Androl. 2004, 27, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Balić, I.M.; Milinković-Tur, S.; Samardžija, M.; Vince, S. Effect of age and environmental factors on semen quality, glutathione peroxidase activity and oxidative parameters in simmental bulls. Theriogenology 2012, 78, 423–431. [Google Scholar] [CrossRef]
- Amann, R.P.; Seidel, G.E., Jr.; Mortimer, R.G. Fertilizing potential in vitro of semen from young beef bulls containing a high or low percentage of sperm with a proximal droplet. Theriogenology 2000, 54, 1499–1515. [Google Scholar] [CrossRef]
- Mandal, D.K.; Kumar, M.; Tyagi, S. Effect of age on spermiogram of Holstein Friesian × Sahiwal crossbred bulls. Animal 2009, 4, 595–603. [Google Scholar] [CrossRef]
- Carreira, J.T.; Trevizan, J.T.; Carvalho, I.R.; Kipper, B.; Rodrigues, L.H.; Silva, C.; Perri, S.H.V.; Drevet, J.; Koivisto, M.B. Does sperm quality and DNA integrity differ in cryopreserved semen samples from young, adult, and aged Nellore bulls? Basic Clin. Androl. 2017, 27, 12. [Google Scholar] [CrossRef] [Green Version]
- Trevizan, J.T.; Carreira, J.T.; Carvalho, I.R.; Kipper, B.H.; Nagata, W.B.; Perri, S.H.V.; Oliveira, M.E.F.; Pierucci, J.C.; De Koivisto, M.B. Does lipid peroxidation and oxidative DNA damage differ in cryopreserved semen samples from young, adult and aged Nellore bulls? Anim. Reprod. Sci. 2018, 195, 8–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peddinti, D.; Nanduri, B.; Kaya, A.; Feugang, J.M.; Burgess, S.C.; Memili, E. Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility. BMC Syst. Biol. 2008, 2, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, V.C.; Kuy, S.; Palmer, D.J.; Xu, Z.; Davis, S.R.; Cooper, G.J. Characterization of bovine seminal plasma by proteomics. Proteomics 2006, 6, 5826–5833. [Google Scholar] [CrossRef] [PubMed]
- Rego, J.P.A.; Crisp, J.M.; Moura, A.A.; Nouwens, A.S.; Li, Y.; Venus, B.; Corbet, N.J.; Corbet, D.H.; Burns, B.M.; Boe-Hansen, G.B.; et al. Seminal plasma proteome of electroejaculated Bos indicus bulls. Anim. Reprod. Sci. 2014, 148, 1–17. [Google Scholar] [CrossRef]
- Westfalewicz, B.; Dietrich, M.A.; Mostek, A.; Partyka, A.; Bielas, W.; Niżański, W.; Ciereszko, A. Analysis of bull (Bos taurus) seminal vesicle fluid proteome in relation to seminal plasma proteome. J. Dairy Sci. 2017, 100, 2282–2298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moura, A.A.; Souza, C.E.; Stanley, B.A.; Chapman, D.A.; Killian, G.J. Proteomics of cauda epididymal fluid from mature Holstein bulls. J. Proteom. 2010, 73, 2006–2020. [Google Scholar] [CrossRef]
- Belleannee, C.; Labas, V.; Teixeira-Gomes, A.-P.; Gatti, J.L.; Dacheux, J.-L.; Dacheux, F. Identification of luminal and secreted proteins in bull epididymis. J. Proteom. 2011, 74, 59–78. [Google Scholar] [CrossRef]
- Westfalewicz, B.; Dietrich, M.A.; Mostek, A.; Partyka, A.; Bielas, W.; Niżański, W.; Ciereszko, A. Identification and functional analysis of bull (Bos taurus) cauda epididymal fluid proteome. J. Dairy Sci. 2017, 100, 6707–6719. [Google Scholar] [CrossRef] [PubMed]
- D’Amours, O.; Frenette, G.; Fortier, M.; Leclerc, P.; Sullivan, R. Proteomic comparison of detergent-extracted sperm proteins from bulls with different fertility indexes. Reproduction 2010, 139, 545–556. [Google Scholar] [CrossRef] [Green Version]
- Odhiambo, J.F.; Dailey, R.A. Characterization of proteins in cryopreserved and non-cryopreserved seminal plasma of dairy bulls of differing fertility. Open J. Anim. Sci. 2011, 1, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Kumar, D.; Singh, I.; Yadav, P.S. Seminal plasma proteome: Promising biomarkers for bull fertility. Agric. Res. 2012, 1, 78–86. [Google Scholar] [CrossRef] [Green Version]
- D’Amours, O.; Calvo, É.; Bourassa, S.; Vincent, P.; Blondin, P.; Sullivan, R. Proteomic markers of low and high fertility bovine spermatozoa separated by Percoll gradient. Mol. Reprod. Dev. 2019, 86, 999–1012. [Google Scholar] [CrossRef]
- Kasimanickam, R.; Kasimanickam, V.; Arangasamy, A.; Kastelic, J. Sperm and seminal plasma proteomics of high- versus low-fertility Holstein bulls. Theriogenology 2019, 126, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Ollero, M.; Bescós, O.; Cebrián-Pérez, J.Á.; Muiño-Blanco, T. Loss of plasma membrane proteins of bull spermatozoa through the freezing -thawing process. Theriogenology 1998, 49, 547–555. [Google Scholar] [CrossRef]
- Jobim, M.I.M.; Oberst, E.R.; Salbego, C.G.; Souza, D.O.; Wald, V.B.; Tramontina, F.; Mattos, R.C. Two-dimensional polyacrylamide gel electrophoresis of bovine seminal plasma proteins and their relation with semen freezability. Theriogenology 2004, 61, 255–266. [Google Scholar] [CrossRef]
- Westfalewicz, B.; Dietrich, M.A.; Ciereszko, A. Impact of cryopreservation on bull (Bos taurus) semen proteome1. J. Anim. Sci. 2015, 93, 5240–5253. [Google Scholar] [CrossRef] [PubMed]
- Peris-Frau, P.; Soler, A.J.; Iniesta-Cuerda, M.; Martín-Maestro, A.; Sánchez-Ajofrín, I.; Medina-Chávez, D.A.; Fernández-Santos, M.R.; García-Álvarez, O.; Maroto-Morales, A.; Montoro, V.; et al. Sperm Cryodamage in Ruminants: Understanding the Molecular Changes Induced by the Cryopreservation Process to Optimize Sperm Quality. Int. J. Mol. Sci. 2020, 21, 2781. [Google Scholar] [CrossRef]
- Szczęśniak-Fabiańczyk, B.; Bochenek, M.; Gogol, P.; Smorąg, Z. Modified cryopreservation of semen of young bulls with reduced freezability. Med. Weter. 2020, 76, 423–428. [Google Scholar] [CrossRef]
- Gomes, F.P.; Park, R.; Viana, A.G.; Fernandez-Costa, C.; Topper, E.; Kaya, A.; Memili, E.; Yates, J.R.; Moura, A.A. Protein signatures of seminal plasma from bulls with contrasting frozen-thawed sperm viability. Sci. Rep. 2020, 10, 14661. [Google Scholar] [CrossRef]
- Mostek, A.; Dietrich, M.A.; Słowińska, M.; Ciereszko, A. Cryopreservation of bull semen is associated with carbonylation of sperm proteins. Theriogenology 2017, 92, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Westfalewicz, B.; Dietrich, M.; Słowińska, M.; Judycka, S.; Ciereszko, A. Seasonal changes in the proteome of cryopreserved bull semen supernatant. Theriogenology 2019, 126, 295–302. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; et al. STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015, 43, D447–D452. [Google Scholar] [CrossRef]
- Beer-Ljubić, B.; Aladrović, J.; Marenjak, T.S.; Laškaj, R.; Majić-Balić, I.; Milinković-Tur, S. Cholesterol concentration in seminal plasma as a predictive tool for quality semen evaluation. Theriogenology 2009, 72, 1132–1140. [Google Scholar] [CrossRef]
- Druart, X.; Rickard, J.P.; Tsikis, G.; de Graaf, S.P. Seminal plasma proteins as markers of sperm fertility. Theriogenology 2019, 137, 30–35. [Google Scholar] [CrossRef]
- Desnoyers, L.; Manjunath, P. Major proteins of bovine seminal plasma exhibit novel interactions with phospholipid. J. Biol. Chem. 1992, 267, 10149–10155. [Google Scholar] [CrossRef]
- Ardon, F.; Suarez, S.S. Cryopreservation increases coating of bull sperm by seminal plasma binder of sperm proteins BSP1, BSP3, and BSP5. Reproduction 2013, 146, 111–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sylvester, S.R.; Morales, C.; Oko, R.; Griswold, M.D. Localization of Sulfated Glycoprotein-2 (Clusterin) on Spermatozoa and in the Reproductive Tract of the Male Rat1. Biol. Reprod. 1991, 45, 195–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dostálová, Z.; Calvete, J.J.; Sanz, L.; Hettel, C.; Riedel, D.; Schöneck, C.; Einspanier, R.; Töpfer-Petersen, E. Immunolocalization and Quantitation of Acidic Seminal Fluid Protein (aSFP) in Ejaculated, Swim-up, and Capacitated Bull Spermatozoa. Biol. Chem. Hoppe-Seyler 1994, 375, 457–462. [Google Scholar] [CrossRef]
- Ibrahim, N.M.; Gilbert, G.R.; Loseth, K.J.; Crabo, B.G. Correlation between clusterin-positive spermatozoa determined by flow cytometry in bull semen and fertility. J. Androl. 2000, 21, 887–894. [Google Scholar] [PubMed]
- D’Alessio, G.; Riordan, J. Ribonucleases: Structures and Functions; Academic Press: Waltham, MA, USA, 1997; pp. 237–238. [Google Scholar]
- Töpfer-Petersen, E.; Romero, A.; Varela, P.F.; Ekhlasi-Hundrieser, M.; Dostàlovà, Z.; Sanz, L.; Calvete, J. Spermadhesins: A new protein family. Facts, hypotheses and perspectives. Andrologia 2009, 30, 217–224. [Google Scholar] [CrossRef]
- McCauley, T.; Zhang, H.; Bellin, M.; Ax, R. Identification of a heparin-binding protein in bovine seminal fluid as tissue inhibitor of metalloproteinases-2. Mol. Reprod. Dev. 2001, 58, 336–341. [Google Scholar] [CrossRef]
- Li, C.; Sun, Y.; Yi, K.; Ma, Y.; Zhang, W.; Zhou, X. Detection of nerve growth factor (NGF) and its specific receptor (TrkA) in ejaculated bovine sperm, and the effects of NGF on sperm function. Theriogenology 2010, 74, 1615–1622. [Google Scholar] [CrossRef]
- Byrne, K.; Leahy, T.; McCulloch, R.; Colgrave, M.L.; Holland, M.K. Comprehensive mapping of the bull sperm surface proteome. Proteomics 2012, 12, 3559–3579. [Google Scholar] [CrossRef]
- Rickard, J.; De Graaf, S. Sperm surface changes and their consequences for sperm transit through the female reproductive tract. Theriogenology 2020, 150, 96–105. [Google Scholar] [CrossRef]
- Stafuzza, N.B.; da Costa e Silva, E.V.; de Oliveira Silva, R.M.; da Costa Filho, L.C.C.; Battistoni Barbosa, F.; Macedo, G.G.; Lobo, R.B.; Baldi, F. Genome-wide association study for age at puberty in young Nelore bulls. J. Anim. Breed. Genet. 2019, 137, 234–244. [Google Scholar] [CrossRef]
- Liou, H.-L.; Dixit, S.S.; Xu, S.; Tint, G.; Stock, A.; Lobel, P. NPC2, the Protein deficient in niemann-pick C2 disease, consists of multiple glycoforms that bind a variety of sterols. J. Biol. Chem. 2006, 281, 36710–36723. [Google Scholar] [CrossRef] [Green Version]
- Chard, T.; Parslow, J.; Rehmann, T.; Dawnay, A. The concentrations of transferrin, β2-microglobulin, and albumin in seminal plasma in relation to sperm count. Fertil. Steril. 1991, 55, 211–213. [Google Scholar] [CrossRef]
- O’Flaherty, C. Peroxiredoxins: Hidden players in the antioxidant defence of human spermatozoa. Basic Clin. Androl. 2014, 24, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilodeau, J.-F.; Chatterjee, S.; Sirard, M.-A.; Gagnon, C. Levels of antioxidant defenses are decreased in bovine spermatozoa after a cycle of freezing and thawing. Mol. Reprod. Dev. 2000, 55, 282–288. [Google Scholar] [CrossRef]
- Yatsenko, A.N.; O’Neil, D.S.; Roy, A.; Arias-Mendoza, P.A.; Chen, R.; Murthy, L.J.; Lamb, D.J.; Matzuk, M.M. Association of mutations in the zona pellucida binding protein 1 (ZPBP1) gene with abnormal sperm head morphology in infertile men. Mol. Hum. Reprod. 2011, 18, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Munoz, M.; Jeremias, J.; Witkin, S. Immunology: The 60 kDa heat shock protein in human semen: Relationship with antibodies to spermatozoa and Chlamydia trachomatis. Hum. Reprod. 1996, 11, 2600–2603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storey, B.T.; Kane, F.J. Energy metabolism of spermatozoa. VI. Direct intramitochondrial lactate oxidation by rabbit sperm mitochondria. Biol. Reprod. 1975, 16, 549–556. [Google Scholar]
- Kierszenbaum, A.L. Sperm axoneme: A tale of tubulin posttranslation diversity. Mol. Reprod. Dev. 2002, 62, 1–3. [Google Scholar] [CrossRef]
- Soung, N.-K.; Kang, Y.H.; Kim, K.; Kamijo, K.; Yoon, H.; Seong, Y.-S.; Kuo, Y.-L.; Miki, T.; Kim, S.R.; Kuriyama, R.; et al. Requirement of hCenexin for proper mitotic functions of polo-like kinase 1 at the centrosomes. Mol. Cell. Biol. 2006, 26, 8316–8335. [Google Scholar] [CrossRef] [Green Version]
- Windoffer, R.; Beil, M.; Magin, T.M.; Leube, R.E. Cytoskeleton in motion: The dynamics of keratin intermediate filaments in epithelia. J. Cell Biol. 2011, 194, 669–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kierszenbaum, A.L.; Rivkin, E.; Fefer-Sadler, S.; Mertz, J.R.; Tres, L.L. Purification, partial characterization, and localization of Sak57, an acidic intermediate filament keratin present in rat spermatocytes, spermatids, and sperm. Mol. Reprod. Dev. 1996, 44, 382–394. [Google Scholar] [CrossRef]
- Cao, W.; Ijiri, T.W.; Huang, A.P.; Gerton, G.L. Characterization of a Novel Tektin Member, TEKT5, in Mouse Sperm. J. Androl. 2011, 32, 55–69. [Google Scholar] [CrossRef] [Green Version]
- De Nijs, L.; Léon, C.; Nguyen, L.; LoTurco, J.J.; Delgado-Escueta, A.V.; Grisar, T.; Lakaye, B. EFHC1 interacts with microtubules to regulate cell division and cortical development. Nat. Neurosci. 2009, 12, 1266–1274. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, B.; Aravinda, S.; Pawshe, C.H.; Totey, S.M.; Nagpal, S.; Salunke, D.M.; Shaha, C. Studies on glutathione S-transferases important for sperm function: Evidence of catalytic activity-independent functions. Biochem. J. 1998, 329, 231–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameters | Young | Adult |
---|---|---|
Viability (%) | 37.85 ± 11.45 | 39.79 ± 8.61 |
Oxidation (%) | 72.86 ± 12.84 | 71.58 ± 10.88 |
Motility (%) | 43.79 ± 12.52 | 38.33 ± 6.47 |
VCL (μm/s) | 89.17 ± 4.99 | 105.53 ± 17.31 |
VAP (μm/s) | 51.86 a ± 5.65 | 62.41 b ± 11.53 |
VSL (μm/s) | 22.02 ± 3.16 | 30.87 ± 13.82 |
LIN (%) | 17.53 ± 1.60 | 22.30 ± 7.36 |
ALH (μm) | 1.80 ± 0.67 | 2.66 ± 1.49 |
Protein Spot No. | Protein Name | Gene Name | MW 1 | Calc. pI 2 | Protein Score | Sequence Coverage (%) 3 | Ident. Peptides 4 | p-Value | FC 5 Adult/Young |
---|---|---|---|---|---|---|---|---|---|
1 | Peroxiredoxin-5, mitochondrial | PRDX5 | 17,522 | 5.92 | 524 | 72 | 6 | 0.0280 | 1.11 |
2 | Protein/nucleic acid deglycase DJ-1 | PARK7 | 20,194 | 6.84 | 80 | 33 | 2 | 0.0250 | 1.18 |
3 | Superoxide dismutase [Cu-Zn] | SODC | 24,794 | 8.70 | 120 | 31 | 2 | 0.0200 | 1.12 |
4 | Glutathione S-transferase, mu 3 | GSTM3 | 27,174 | 6.83 | 766 | 82 | 8 | 0.0310 | −1.42 |
5 | Glutathione S-transferase omega 2 | GSTO2 | 28,869 | 7.49 | 269 | 43 | 3 | 0.0043 | 1.14 |
6 | Fructose-bisphosphate aldolase A | ALDOA | 39,925 | 8.45 | 457 | 44 | 4 | 0.0260 | 1.10 |
7 | Zona pellucida-binding protein 1 | ZPBP1 | 37,559 | 9.28 | 365 | 28 | 5 | 0.0220 | 1.17 |
8 | Zona pellucida-binding protein 1 | ZPBP1 | 37,559 | 9.28 | 313 | 50 | 3 | 0.0330 | 1.14 |
9 | Tektin-5 | TEKT5 | 56,302 | 7.74 | 214 | 47 | 2 | 0.0250 | −1.17 |
10 | Pyruvate kinase PKM | PKM | 58,482 | 7.96 | 210 | 27 | 2 | 0.0300 | 1.21 |
11 | Very long-chain specific acyl-CoA dehydrogenase. mitochondrial | ACADVL | 71,003 | 8.74 | 204 | 26 | 2 | 0.0150 | 1.27 |
12 | EF-hand domain-containing protein 1 | EFHC1 | 74,441 | 5.78 | 312 | 41 | 4 | 0.0120 | −1.22 |
13 | Tubulin beta-2B chain | TBB2B | 50,377 | 4.78 | 360 | 27 | 4 | 0.0052 | −1.46 |
14 | Tubulin beta-2B chain | TBB2B | 50,377 | 4.78 | 213 | 28 | 2 | 0.0078 | −1.38 |
15 | Outer dense fiber protein 2 | ODF2 | 76,249 | 7.52 | 513 | 37 | 5 | 0.0230 | −1.10 |
16 | Keratin, type II cytoskeletal 59 kDa, component IV | K2C4 | 61,275 | 8.58 | 91 | 8 | 2 | 0.0060 | −1.16 |
17 | 60 kDa heat shock protein, mitochondrial | HSPD1 | 61,110 | 5.71 | 317 | 39 | 3 | 0.0310 | 1.16 |
Protein Spot No. | Protein Name | Gene Name | MW 1 | Calc. pI 2 | Protein Score | Sequence Coverage (%) 3 | Ident. Peptides 4 | p-Value | FC 5 Adult/Young |
---|---|---|---|---|---|---|---|---|---|
1 | Spermadhesin-1 | SPADH1 | 13,141 | 5.04 | 540 | 97 | 5 | 0.0180 | 1.41 |
2 | Spermadhesin-1 | SPADH1 | 13,141 | 5.04 | 479 | 71 | 4 | 0.0280 | 1.36 |
3 | Binder of sperm protein 1 | BSP1 | 13,244 | 5.08 | 207 | 53 | 1 | 0.0410 | 1.30 |
4 | Binder of sperm protein 1 | BSP1 | 13,244 | 5.08 | 379 | 53 | 2 | 0.0340 | 1.30 |
5 | Binder of sperm protein 1 | BSP1 | 13,244 | 5.08 | 145 | 22 | 1 | 0.0120 | 1.42 |
6 | spermadhesin Z13 precursor | SPADH2 | 15,496 | 5.92 | 386 | 52 | 3 | 0.0110 | 1.29 |
7 | spermadhesin Z13 precursor | SPADH2 | 15,496 | 5.92 | 307 | 52 | 2 | 0.0052 | 1.42 |
8 | Prostaglandin-H2 D-isomerase | PTGDS | 21,444 | 6.43 | 120 | 21 | 2 | 0.0037 | 1.54 |
9 | metalloproteinase inhibitor 2 | TIMP2 | 25,112 | 7.44 | 241 | 48 | 2 | 0.0077 | 1.42 |
10 | metalloproteinase inhibitor 2 | TIMP2 | 25,112 | 7.44 | 387 | 63 | 3 | 0.0150 | 1.37 |
11 | spermadhesin Z13 precursor | SPADH2 | 15,496 | 5.92 | 266 | 42 | 2 | 0.0160 | 1.24 |
12 | spermadhesin Z13 precursor | SPADH2 | 15,496 | 5.92 | 343 | 42 | 3 | 0.0027 | 1.41 |
13 | NPC intracellular cholesterol transporter 2 | NPC2 | 14,948 | 7.81 | 296 | 60 | 2 | 0.0290 | 1.25 |
14 | Beta-2-microglobulin | B2M | 11,151 | 7.08 | 137 | 81 | 2 | 0.0016 | 1.53 |
15 | Seminal ribonuclease | SRN | 14,173 | 9.04 | 95 | 61 | 1 | 0.0210 | 1.53 |
16 | Seminal ribonuclease | SRN | 14173 | 9.04 | 174 | 64 | 2 | 0.0170 | 1.61 |
17 | Beta-nerve growth factor | NGF | 26,995 | 9.72 | 298 | 51 | 4 | 0.0360 | 1.29 |
18 | clusterin preproprotein | CLU | 51,651 | 5.73 | 244 | 30 | 2 | 0.0320 | 1.37 |
19 | clusterin preproprotein | CLU | 51,651 | 5.73 | 306 | 26 | 3 | 0.0430 | 1.40 |
20 | clusterin preproprotein | CLU | 51,651 | 5.73 | 233 | 23 | 2 | 0.0250 | 1.49 |
21 | clusterin preproprotein | CLU | 51,651 | 5.73 | 243 | 23 | 2 | 0.0410 | 1.43 |
Function Name | p-Value Range | Number of Proteins |
---|---|---|
Thawed spermatozoa | ||
Energy Production | 3.23 × 10−2–6.99 × 10−7 | 5 |
Nucleic Acid Metabolism | 3.23 × 10−2–6.99 × 10−7 | 5 |
Small Molecule Biochemistry | 4.81 × 10−2–6.99 × 10−7 | 9 |
Free Radical Scavenging | 4.55 × 10−2–1.39 × 10−6 | 3 |
Molecular Transport | 4.81 × 10−2–1.39 × 10−6 | 6 |
Supernatant ofthawed semen | ||
Cell Morphology | 1.28 × 10−2–1.44 × 10−5 | 5 |
Cellular Movement | 1.47 × 10−2–1.57 × 10−5 | 3 |
Cellular Development | 1.47 × 10−2–1.57 × 10−5 | 4 |
Cellular Function and Maintenance | 8.93 × 10−2–1.57 × 10−5 | 5 |
Cellular growth and proliferation | 1.47 × 10−2–1.57 × 10−5 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Westfalewicz, B.; Słowińska, M.; Judycka, S.; Ciereszko, A.; Dietrich, M.A. Comparative Proteomic Analysis of Young and Adult Bull (Bos taurus) Cryopreserved Semen. Animals 2021, 11, 2013. https://doi.org/10.3390/ani11072013
Westfalewicz B, Słowińska M, Judycka S, Ciereszko A, Dietrich MA. Comparative Proteomic Analysis of Young and Adult Bull (Bos taurus) Cryopreserved Semen. Animals. 2021; 11(7):2013. https://doi.org/10.3390/ani11072013
Chicago/Turabian StyleWestfalewicz, Błażej, Mariola Słowińska, Sylwia Judycka, Andrzej Ciereszko, and Mariola A. Dietrich. 2021. "Comparative Proteomic Analysis of Young and Adult Bull (Bos taurus) Cryopreserved Semen" Animals 11, no. 7: 2013. https://doi.org/10.3390/ani11072013
APA StyleWestfalewicz, B., Słowińska, M., Judycka, S., Ciereszko, A., & Dietrich, M. A. (2021). Comparative Proteomic Analysis of Young and Adult Bull (Bos taurus) Cryopreserved Semen. Animals, 11(7), 2013. https://doi.org/10.3390/ani11072013