Lipofection-Mediated Introduction of CRISPR/Cas9 System into Porcine Oocytes and Embryos
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Oocyte Collection and In Vitro Maturation
2.3. IVF and Embryo Culture
2.4. Lipofection-Mediated Introduction of CRISPR/Cas9 System
2.5. Analysis of the Targeted Gene in Embryos
2.6. Experimental Design
2.6.1. Experiment 1: Lipofection-Mediated Introduction of CRISPR/Cas9 System into Oocytes during IVF
2.6.2. Experiment 2: Lipofection-Mediated Introduction of CRISPR/Cas9 System into Embryos
2.6.3. Experiment 3: Comparison of Lipofection-Mediated Gene-Editing Efficiency among Embryos at Different Cleavage Stages
2.7. Statistical Analyses
3. Results
3.1. Experiment 1
3.2. Experiment 2
3.3. Experiment 3
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, H.H.; Zhao, H.; Qing, Y.B.; Pan, W.R.; Jia, B.Y.; Zhao, H.Y.; Huang, X.X.; Wei, H.J. Porcine Zygote Injection with Cas9/sgRNA Results in DMD-Modified Pig with Muscle Dystrophy. Int. J. Mol. Sci. 2016, 17, 1668. [Google Scholar] [CrossRef]
- Wang, Y.; Du, Y.; Shen, B.; Zhou, X.; Li, J.; Liu, Y.; Wang, J.; Zhou, J.; Hu, B.; Kang, N.; et al. Efficient generation of gene-modified pigs via injection of zygote with Cas9/sgRNA. Sci. Rep. 2015, 5, 8256. [Google Scholar] [CrossRef]
- Wang, H.; Shen, L.; Chen, J.; Liu, X.; Tan, T.; Hu, Y.; Bai, X.; Li, Y.; Tian, K.; Li, N.; et al. Deletion of CD163 Exon 7 Confers Resistance to Highly Pathogenic Porcine Reproductive and Respiratory Viruses on Pigs. Int. J. Biol. Sci. 2019, 15, 1993–2005. [Google Scholar] [CrossRef] [PubMed]
- Tanihara, F.; Takemoto, T.; Kitagawa, E.; Rao, S.; Do, L.T.; Onishi, A.; Yamashita, Y.; Kosugi, C.; Suzuki, H.; Sembon, S.; et al. Somatic cell reprogramming-free generation of genetically modified pigs. Sci. Adv. 2016, 2, e1600803. [Google Scholar] [CrossRef]
- Abe, A.; Miyanohara, A.; Friedmann, T. Polybrene increases the efficiency of gene transfer by lipofection. Gene Ther. 1998, 5, 708–711. [Google Scholar] [CrossRef]
- Felgner, P.L.; Gadek, T.R.; Holm, M.; Roman, R.; Chan, H.W.; Wenz, M.; Northrop, J.P.; Ringold, G.M.; Danielsen, M. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 1987, 84, 7413–7417. [Google Scholar] [CrossRef] [PubMed]
- Young, A.; Lakey, J.; Murray, A.; Moore, R. Gene therapy: A lipofection approach for gene transfer into primary endothelial cells. Cell Transplant. 2002, 11, 573–582. [Google Scholar] [CrossRef]
- Lu, L.; Zeitlin, P.L.; Guggino, W.B.; Craig, R.W. Gene transfer by lipofection in rabbit and human secretory epithelial cells. Pflügers Arch. 1989, 415, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Lascombe, I.; Mougin, P.; Vuillermoz, C.; Adessi, G.; Jouvenot, M. Gene transfer into subcultured endometrial cells using lipofection. Biotechniques 1996, 20, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Bochelen, D.; Eclancher, F.; Kupferberg, A.; Privat, A.; Mersel, M. 7β-hydroxycholesterol and 7β-hydroxycholesteryl-3-esters reduce the extent of reactive gliosis caused by an electrolytic lesion in rat brain. Neuroscience 1992, 51, 827–834. [Google Scholar] [CrossRef]
- Yu, A.; Lee, Y.; Eng, L. Inhibition of GFAP synthesis by antisense RNA in astrocytes. J. Neurosci. Res. 1991, 30, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Yang, N.S.; Jiao, S.; Sun, J.; Cheng, L.; Wolff, J.; Duncan, I. Efficient and sustained transgene expression in mature rat oligodendrocytes in primary culture. J. Neurosci. Res. 1996, 43, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Brazolot, C.; Petitte, J.; Etches, R.; Gibbins, A.V. Efficient transfection of chicken cells by lipofection, and introduction of transfected blastodermal cells into the embryo. Mol. Reprod. Dev. 1991, 30, 304–312. [Google Scholar] [CrossRef]
- Holt, C.E.; Garlick, N.; Cornel, E. Lipofection of cDNAs in the embryonic vertebrate central nervous system. Neuron 1990, 4, 203–214. [Google Scholar] [CrossRef]
- McLenachan, S.; Sarsero, J.P.; Ioannou, P.A. Flow-cytometric analysis of mouse embryonic stem cell lipofection using small and large DNA constructs. Genomics 2007, 89, 708–720. [Google Scholar] [CrossRef] [PubMed]
- Zuris, J.A.; Thompson, D.B.; Shu, Y.; Guilinger, J.P.; Bessen, J.L.; Hu, J.H.; Maeder, M.L.; Joung, J.K.; Chen, Z.Y.; Liu, D.R. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 2015, 33, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.V.; Tanihara, F.; Do, L.; Sato, Y.; Taniguchi, M.; Takagi, M.; Van Nguyen, T.; Otoi, T. Chlorogenic acid supplementation during in vitro maturation improves maturation, fertilization and developmental competence of porcine oocytes. Reprod. Domest. Anim. 2017, 52, 969–975. [Google Scholar] [CrossRef]
- Brinkman, E.K.; Kousholt, A.N.; Harmsen, T.; Leemans, C.; Chen, T.; Jonkers, J.; van Steensel, B. Easy quantification of template-directed CRISPR/Cas9 editing. Nucleic Acids Res. 2018, 46, e58. [Google Scholar] [CrossRef] [PubMed]
- Tanihara, F.; Hirata, M.; Thi Nguyen, N.; Anh Le, Q.; Hirano, T.; Otoi, T. Generation of viable PDX1 gene-edited founder pigs as providers of nonmosaics. Mol. Reprod. Dev. 2020, 87, 471–481. [Google Scholar] [CrossRef]
- Tanihara, F.; Hirata, M.; Nguyen, N.T.; Sawamoto, O.; Kikuchi, T.; Doi, M.; Otoi, T. Efficient generation of GGTA1-deficient pigs by electroporation of the CRISPR/Cas9 system into in vitro-fertilized zygotes. BMC Biotechnol. 2020, 20, 40. [Google Scholar] [CrossRef]
- Akita, H.; Ito, R.; Khalil, I.; Futaki, S.; Harashima, H. Quantitative three-dimensional analysis of the intracellular trafficking of plasmid DNA transfected by a nonviral gene delivery system using confocal laser scanning microscopy. Mol. Ther. 2004, 9, 443–451. [Google Scholar] [CrossRef]
- Cardarelli, F.; Digiacomo, L.; Marchini, C.; Amici, A.; Salomone, F.; Fiume, G.; Rossetta, A.; Gratton, E.; Pozzi, D.; Caracciolo, G. The intracellular trafficking mechanism of Lipofectamine-based transfection reagents and its implication for gene delivery. Sci. Rep. 2016, 6, 25879. [Google Scholar] [CrossRef]
- Kim, J.; Sunshine, J.C.; Green, J.J. Differential polymer structure tunes mechanism of cellular uptake and transfection routes of poly (β-amino ester) polyplexes in human breast cancer cells. Bioconj. Chem. 2014, 25, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Maneiro, E.; Ron-Corzo, A.; Julve, J.; Goyanes, V.J. Surface area/volume ratio and growth equation of the human early embryo. Int. J. Dev. Biol. 2002, 35, 139–143. [Google Scholar]
- Pereira, R.; Marques, C. Animal oocyte and embryo cryopreservation. Cell Tissue Bank. 2008, 9, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Kosuke, M.; Koriyama, M.; Inada, E.; Saitoh, I.; Ohtsuka, M.; Nakamura, S.; Sakurai, T.; Watanabe, S.; Miyoshi, K. Timing of CRISPR/Cas9-related mRNA microinjection after activation as an important factor affecting genome editing efficiency in porcine oocytes. Theriogenology 2018, 108, 29–38. [Google Scholar] [CrossRef]
- Tao, L.; Yang, M.; Wang, X.; Zhang, Z.; Wu, Z.; Tian, J.; An, L.; Wang, S. Efficient biallelic mutation in porcine parthenotes using a CRISPR-Cas9 system. Biochem. Biophys. Res. Commun. 2016, 476, 225–229. [Google Scholar] [CrossRef]
- Gu, B.; Posfai, E.; Rossant, J. Efficient generation of targeted large insertions by microinjection into two-cell-stage mouse embryos. Nat. Biotechnol. 2018, 36, 632–637. [Google Scholar] [CrossRef] [PubMed]
- Plaza Reyes, A.; Lanner, F. Time Matters: Gene Editing at the Mouse 2-Cell Embryo Stage Boosts Knockin Efficiency. Cell Stem Cell 2018, 23, 155–157. [Google Scholar] [CrossRef]
- Hyttel, P.; Laurincik, J.; Rosenkranz, C.; Rath, D.; Niemann, H.; Ochs, R.L.; Schellander, K. Nucleolar proteins and ultrastructure in preimplantation porcine embryos developed in vivo. Biol. Reprod. 2000, 63, 1848–1856. [Google Scholar] [CrossRef]
- Ostrup, O.; Olbricht, G.; Ostrup, E.; Hyttel, P.; Collas, P.; Cabot, R. RNA profiles of porcine embryos during genome activation reveal complex metabolic switch sensitive to in vitro conditions. PLoS ONE 2013, 8, e61547. [Google Scholar] [CrossRef][Green Version]
- Ma, H.; Tu, L.C.; Naseri, A.; Huisman, M.; Zhang, S.; Grunwald, D.; Pederson, T. CRISPR-Cas9 nuclear dynamics and target recognition in living cells. J. Cell Biol. 2016, 214, 529–537. [Google Scholar] [CrossRef]
- Burkard, C.; Lillico, S.G.; Reid, E.; Jackson, B.; Mileham, A.J.; Ait-Ali, T.; Whitelaw, C.B.A.; Archibald, A.L. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathog. 2017, 13, e1006206. [Google Scholar] [CrossRef]
- Vera-Rodriguez, M.; Rubio, C. Assessing the true incidence of mosaicism in preimplantation embryos. Fertil. Steril. 2017, 107, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Vilarino, M.; Suchy, F.P.; Rashid, S.T.; Lindsay, H.; Reyes, J.; McNabb, B.R.; van der Meulen, T.; Huising, M.O.; Nakauchi, H.; Ross, P.J. Mosaicism diminishes the value of pre-implantation embryo biopsies for detecting CRISPR/Cas9 induced mutations in sheep. Transgenic Res. 2018, 27, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-H.; Abeydeera, L.R.; Han, Y.-M.; Prather, R.S.; Day, B.N. Morphologic evaluation and actin filament distribution in porcine embryos produced in vitro and in vivo. Biol. Reprod. 1999, 60, 1020–1028. [Google Scholar] [CrossRef] [PubMed]
- Le, Q.A.; Tanihara, F.; Wittayarat, M.; Namula, Z.; Sato, Y.; Lin, Q.; Takebayashi, K.; Hirata, M.; Otoi, T. Comparison of the effects of introducing the CRISPR/Cas9 system by microinjection and electroporation into porcine embryos at different stages. BMC Res. Notes 2021, 14, 7. [Google Scholar] [CrossRef]
- Tanihara, F.; Hirata, M.; Nguyen, N.T.; Le, Q.A.; Hirano, T.; Otoi, T. Effects of concentration of CRISPR/Cas9 components on genetic mosaicism in cytoplasmic microinjected porcine embryos. J. Reprod. Dev. 2019, 65, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Nishio, K.; Tanihara, F.; Nguyen, T.V.; Kunihara, T.; Nii, M.; Hirata, M.; Takemoto, T.; Otoi, T. Effects of voltage strength during electroporation on the development and quality of in vitro-produced porcine embryos. Reprod. Domest. Anim. 2018, 53, 313–318. [Google Scholar] [CrossRef]
gRNA †† | No. of Embryos Examined | No. (Mean ± SEM) of Embryos Developed to Blastocysts | No. of Blastocysts Examined | No. (Mean) of Blastocysts ††† | Mutation Efficiency (Mean ± SEM) †††† | ||
---|---|---|---|---|---|---|---|
WT | Biallelic | Mosaic | |||||
Control | 202 | 24 (11.9 ± 0.4) | - | - | - | - | - |
PDX1 | 395 | 44 (9.5 ± 2.6) | 35 | 32 (91.4) | 0 (0) | 3 (8.6) | 35.8 ±10.5 |
GGTA1 | 272 | 39 (13.8 ± 6.0) | 39 | 33 (84.6) | 0 (0) | 6 (15.4) | 17.8 ± 3.0 |
Post-IVF Exposure Period †† | No. of Embryos Examined | No. (Mean ± SEM) of Embryos Developed to Blastocysts | No. of Blastocysts Examined | No. (Mean) of Blastocysts ††† | Mutation Efficiency (Mean ± SEM) †††† | ||
---|---|---|---|---|---|---|---|
WT | Biallelic | Mosaic | |||||
Control | 210 | 45 (21.4 ± 2.2) a | - | - | - | - | - |
24–29 h | 250 | 21 (8.1 ± 1.5) b | 18 | 8 (44.4) | 0 (0) | 10 (55.6) | 45.3 ± 9.9 |
29–34 h | 250 | 20 (8.1 ± 0.9) b | 14 | 6 (42.9) | 1 (7.1) | 7 (50.0) | 40.8 ± 10.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirata, M.; Wittayarat, M.; Namula, Z.; Anh Le, Q.; Lin, Q.; Takebayashi, K.; Thongkittidilok, C.; Tanihara, F.; Otoi, T. Lipofection-Mediated Introduction of CRISPR/Cas9 System into Porcine Oocytes and Embryos. Animals 2021, 11, 578. https://doi.org/10.3390/ani11020578
Hirata M, Wittayarat M, Namula Z, Anh Le Q, Lin Q, Takebayashi K, Thongkittidilok C, Tanihara F, Otoi T. Lipofection-Mediated Introduction of CRISPR/Cas9 System into Porcine Oocytes and Embryos. Animals. 2021; 11(2):578. https://doi.org/10.3390/ani11020578
Chicago/Turabian StyleHirata, Maki, Manita Wittayarat, Zhao Namula, Quynh Anh Le, Qingyi Lin, Koki Takebayashi, Chommanart Thongkittidilok, Fuminori Tanihara, and Takeshige Otoi. 2021. "Lipofection-Mediated Introduction of CRISPR/Cas9 System into Porcine Oocytes and Embryos" Animals 11, no. 2: 578. https://doi.org/10.3390/ani11020578
APA StyleHirata, M., Wittayarat, M., Namula, Z., Anh Le, Q., Lin, Q., Takebayashi, K., Thongkittidilok, C., Tanihara, F., & Otoi, T. (2021). Lipofection-Mediated Introduction of CRISPR/Cas9 System into Porcine Oocytes and Embryos. Animals, 11(2), 578. https://doi.org/10.3390/ani11020578