Potential of Grape Extract in Comparison with Therapeutic Dosage of Antibiotics in Weaning Piglets: Effects on Performance, Digestibility and Microbial Metabolites of the Ileum and Colon
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Animals, and Housing
2.2. Experimental Diets
2.3. Growth Performance
2.4. Euthanasia
2.5. Sampling
2.6. Analyses
2.6.1. Chemical Analyses
2.6.2. Statistical Analysis
3. Results
3.1. Feed Analyses and Growth Performance
3.2. Apparent Total Tract Digestibility
3.3. Microbial Metabolites in Ileal and Colonic Digesta
3.3.1. Concentration of Intestinal SCFA and Lactic Acid (LA)
3.3.2. Concentration of Intestinal Ammonia and Biogenic Amines (BA)
4. Discussion
4.1. Performance
4.2. Apparent Total Tract Digestibility
4.3. Microbial Metabolites
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burch, D.G.S.; Sperling, D. Amoxicillin-current use in swine medicine. J. Vet. Pharmacol. Ther. 2018, 41, 356–368. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson, B.; Greko, C. Antibiotic resistance—Consequences for animal health, welfare, and food production. Upsala J. Med. Sci. 2014, 119, 96–102. [Google Scholar] [CrossRef]
- Moeser, A.J.; Pohl, C.S.; Rajput, M. Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs. Anim. Nutr. 2017, 3, 313–321. [Google Scholar] [CrossRef]
- Hopwood, D.E.; Hampson, D.J. Interactions between the Intestinal Microflora, Diet and Diarrhoea, and Their Influences on Piglet Health in the Immediate Post-Weaning Period. In Weaning the Pig: Concepts and Consequences; Pluske, J.R., Le Dividich, J., Verstegen, M.W.A., Eds.; Academic Publishers: Wageningen, The Netherlands, 2003; pp. 199–217. [Google Scholar]
- Heo, J.M.; Opapeju, F.O.; Pluske, J.R.; Kim, J.C.; Hampson, D.J.; Nyachoti, C.M. Gastrointestinal health and function in weaned pigs: A review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. J. Anim. Physiol. Anim. Nutr. 2013, 97, 207–237. [Google Scholar] [CrossRef] [PubMed]
- Girard, M.; Bee, G. Invited review: Tannins as a potential alternative to antibiotics to prevent coliform diarrhea in weaned pigs. Animal 2020, 14, 95–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collier, C.T.; Smiricky-Tjardes, M.R.; Albin, D.M.; Wubben, J.E.; Gabert, V.M.; Deplancke, B.; Bane, D.; Anderson, D.B.; Gaskins, H.R. Molecular ecological analysis of porcine ileal microbiota responses to antimicrobial growth promoters. J. Anim. Sci. 2003, 81, 3035–3045. [Google Scholar] [CrossRef] [PubMed]
- Soler, C.; Goossens, T.; Bermejo, A.; Migura-García, L.; Cusco, A.; Francino, O.; Fraile, L. Digestive microbiota is different in pigs receiving antimicrobials or a feed additive during the nursery period. PLoS ONE 2018, 13, e0197353. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Action Plan on Antimicrobial Resistance. Available online: http://www.who.int/drugresistance/global_action_plan/en/ (accessed on 24 April 2020).
- Holmes, A.H.; Moore, L.S.P.; Sundsfjord, A.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P.J.; Piddock, L.J.V. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 2016, 387, 176–187. [Google Scholar] [CrossRef]
- Commission Notice: Guidelines for the Prudent Use of Antimicrobials in Veterinary Medicine; European Commission: Bruxelles, Belgium, 2015.
- WHO. Critically Important Antimicrobials for Human. Available online: www.who.int/foodsafety/publications/antimicrobials-fifth/en/ (accessed on 24 April 2020).
- More, S.J. European perspectives on efforts to reduce antimicrobial usage in food animal production. Ir. Vet. J. 2020, 73, 2. [Google Scholar] [CrossRef] [Green Version]
- Callens, B.; Persoons, D.; Maes, D.; Laanen, M.; Postma, M.; Boyen, F.; Haesebrouck, F.; Butaye, P.; Catry, B.; Dewulf, J. Prophylactic and metaphylactic antimicrobial use in Belgian fattening pig herds. Prev. Vet. Med. 2012, 106, 53–62. [Google Scholar] [CrossRef]
- Ahmed, S.T.; Hossain, M.E.; Kim, G.M.; Hwang, J.A.; Ji, H.; Yang, C.J. Effects of resveratrol and essential oils on growth performance, immunity, digestibility and fecal microbial shedding in challenged piglets. Asian-Australas. J. Anim. Sci. 2013, 26, 683–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devi, S.M.; Lee, S.I.; Kim, I.H. Effect of phytogenics on growth performance, fecal score, blood profiles, fecal noxious gas emission, digestibility, and intestinal morphology of weanling pigs challenged with Escherichia coli K88. Pol. J. Vet. Sci. 2015, 18, 557–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Windisch, W.; Schedle, K.; Plitzner, C.; Kroismayr, A. Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci. 2008, 86, E140–E148. [Google Scholar] [CrossRef]
- Mahfuz, S.; Shang, Q.; Piao, X. Phenolic compounds as natural feed additives in poultry and swine diets: A review. J. Anim. Sci. Biotechnol. 2021, 12, 48. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, X.; Zhao, G.; Hu, T.; Wang, Y. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Anim. Nutr. 2018, 4, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Xu, X.; Zhang, Q.; Li, P.; Zhao, P.; Li, Q.; Liu, J.; Piao, X. Effects of essential oil supplementation of a low-energy diet on performance, intestinal morphology and microflora, immune properties and antioxidant activities in weaned pigs. Anim. Sci. J. 2015, 86, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Wenk, C. Herbs and botanicals as feed additives in monogastric animals. Asian-Australas. J. Anim. Sci. 2003, 16, 282–289. [Google Scholar] [CrossRef]
- Xia, E.Q.; Deng, G.F.; Guo, Y.J.; Li, H.B. Biological activities of polyphenols from grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef]
- Muhl, A.; Liebert, F. Growth and parameters of microflora in intestinal and faecal samples of piglets due to application of a phytogenic feed additive. J. Anim. Physiol. Anim. Nutr. 2007, 91, 411–418. [Google Scholar] [CrossRef]
- Upadhaya, S.D.; Kim, I.H. Efficacy of phytogenic feed additive on performance, production and health status of monogastric animals—A review. Ann. Anim. Sci. 2017, 17, 929–948. [Google Scholar] [CrossRef] [Green Version]
- Molan, A.L.; Attwood, G.T.; Min, B.R.; McNabb, W.C. The effect of condensed tannins from Lotus pedunculatus and Lotus corniculatus on the growth of proteolytic rumen bacteria in vitro and their possible mode of action. Can. J. Microbiol. 2001, 47, 626–633. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.B.; Rahu, N.; Rupasinghe, V. Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Filocamo, A.; Bisignano, C.; Mandalari, G.; Navarra, M. In vitro antimicrobial activity and effect on biofilm production of a white grape juice (Vitis vinifera) extract. Evid. Based Complement. Altern. Med. 2015, 856243. [Google Scholar] [CrossRef] [Green Version]
- Duda-Chodak, A.; Tarko, T.; Satora, P.; Sroka, P. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: A review. Eur. J. Nutr. 2015, 54, 325–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zorraquín, I.; Sánchez-Hernández, E.; Ayuda-Durán, B.; Silva, M.; González-Paramás, A.M.; Santos-Buelga, C.; Moreno-Arribas, M.V.; Bartolomé, B. Current and future experimental approaches in the study of grape and wine polyphenols interacting gut microbiota. J. Sci. Food Agric. 2020, 100, 3789–3802. [Google Scholar] [CrossRef] [PubMed]
- Lau, D.W.; King, A.J. Pre- and post-mortem use of grape seed extract in dark poultry meat to inhibit development of thiobarbituric acid reactive substances. J. Agric. Food Chem. 2003, 51, 1602–1607. [Google Scholar] [CrossRef]
- Brenes, A.; Viveros, A.; Goñi, I.; Centeno, C.; Saura-Calixto, F.; Arija, I. Effect of grape seed extract on growth performance, protein and polyphenol digestibilities, and antioxidant activity in chickens. Span. J. Agric. Res. 2010, 8, 326–333. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Kim, I.H. Effect of dietary grape pomace fermented by saccharomyces boulardii on the growth performance, nutrient digestibility and meat quality in finishing pigs. Asian Australas. J. Anim. Sci 2011, 24, 1763–1770. [Google Scholar] [CrossRef]
- Fiesel, A.; Gessner, D.K.; Most, E.; Eder, K. Effects of dietary polyphenol-rich plant products from grape or hop on pro-inflammatory gene expression in the intestine, nutrient digestibility and faecal microbiota of weaned pigs. BMC Vet. Res. 2014, 196, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, C.; Schinwald, K.; Ringhofer, I.L.; Leitgeb, R.; Gierus, M. Increasing concentrations of a grape extract in broiler diets: Impact on histology and antioxidative status in the ileum. In Proceedings of the Society of Nutrition Physiology, 72nd Conference, Göttingen, Germany, 13–15 March 2018; Society of Nutrition Physiology, Ed.; DLG Verlag: Frankfurt am Main, Germany, 2018; Volume 27, p. 116. [Google Scholar]
- Choy, Y.Y.; Quifer-Rada, P.; Holstege, D.M.; Frese, S.A.; Calvert, C.C.; Mills, D.A.; Lamuela-Raventos, R.; Waterhouse, A.L. Phenolic metabolites and substantial microbiome changes in pig feces by ingesting grape seed proanthocyanidins. Food Funct. 2014, 5, 2298–2308. [Google Scholar] [CrossRef]
- Clifford, M.N. Diet-derived phenols in plasma and tissues and their implications for health. Planta Med. 2004, 70, 1103–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krautkramer, K.A.; Fan, J.; Bäckhed, F. Gut microbial metabolites as multi-kingdom intermediates. Nat. Rev. Microbiol. 2021, 19, 77–94. [Google Scholar] [CrossRef]
- GfE. Gesellschaft für Ernährungsphysiologie/Ausschuß für Bedarfsnormen. In Empfehlungen zur Energie- und Nährstoffversorgung von Schweinen 2006; Deutsche Landwirtschafts-Gesellschaft Verlag: Frankfurt, Germany, 2006. [Google Scholar]
- Naumann, C.; Bassler, R. Methodenbuch, Band III. Die chemische Untersuchung von Futtermitteln; VDLUFA-Verlag: Darmstadt, Germany, 2012. [Google Scholar]
- Hansen, B. Determination of nitrogen as elementary-N, an alternative to Kjeldahl. Acta Agric. Scand. 1989, 39, 113–118. [Google Scholar] [CrossRef]
- Jagger, S.; Wiseman, J.; Cole, D.J.; Craigon, J. Evaluation of inert markers for the determination of ileal and faecal apparent digestibility values in the pig. Brit. J. Nutr. 1992, 68, 729–739. [Google Scholar] [CrossRef]
- Terrill, T.H.; Rowan, A.M.; Douglas, G.B.; Barry, T.N. Determination of extractable and bound condensed tannin concentrations in forage plants, protein-concentrate meals and cereal-grains. J. Sci. Food Agric. 1992, 58, 321–329. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Kardel, M.; Taube, F.; Schulz, H.; Schütze, W.; Gierus, M. Different approaches to evaluate tannin content and structure of selected plant extracts—Review and new aspects. J. Appl. Bot. Food Qual. 2013, 86, 154–166. [Google Scholar] [CrossRef]
- Zhao, G.; Nyman, M.; Jönsson, J.A. Rapid determination of short-chain fatty acids in colonic contents and faeces of humans and rats by acidified water-extraction and direct-injection gas chromatography. Biomed. Chromatogr. 2006, 20, 674–682. [Google Scholar] [CrossRef]
- Saarinen, M.T. Determination of biogenic amines as dansyl derivatives in intestinal digesta and feces by reversed phase HPLC. Chromatographia 2002, 55, 297–300. [Google Scholar] [CrossRef]
- Guevarra, R.B.; Lee, J.H.; Lee, S.H.; Seok, M.-J.; Kim, D.W.; Na Kang, B.; Johnson, T.J.; Isaacson, R.E.; Kim, H.B. Piglet gut microbial shifts early in life: Causes and effects. J. Anim. Sci. Biotechnol. 2019, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Allen, H.K.; Levine, U.Y.; Looft, T.; Bandrick, M.; Casey, T.A. Treatment, promotion, commotion: Antibiotic alternatives in food-producing animals. Trends Microbiol. 2013, 21, 111–113. [Google Scholar] [CrossRef] [Green Version]
- Amezcua, R.; Friendship, R.M.; Dewey, C.E.; Gyles, C.; Fairbrother, J.M. Presentation of postweaning Escherichia coli diarrhoea in southern Ontario, prevalence of hemolytic E. coli serogroups involved, and their antimicrobial resistance patterns. Can. J. Vet. Res. 2002, 66, 73–78. [Google Scholar]
- Martínez-Miró, S.; Tecles, F.; Ramón, M.; Escribano, D.; Hernández, F.; Madrid, J.; Orengo, J.; Martínez-Subiela, S.; Manteca, X.; Cerón, J.J. Causes, consequences and biomarkers of stress in swine: An update. BMC Vet. Res. 2016, 12, 171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pluske, J.R.; Hampson, D.J.; Williams, I.H. Factors influencing the structure and function of the small intestine in the weaned pig: A review. Livest. Prod. Sci. 1997, 51, 215–236. [Google Scholar] [CrossRef]
- Kafantaris, I.; Stagos, D.; Kotsampasi, B.; Hatzis, A.; Kypriotakis, A.; Gerasopoulos, K.; Makri, S.; Goutzourelas, N.; Mitsagga, C.; Giavasis, I.; et al. Grape pomace improves performance, antioxidant status, fecal microbiota and meat quality of piglets. Animal 2018, 12, 246–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gessner, D.K.; Fiesel, A.; Most, E.; Dinges, J.; Wen, G.; Ringseis, R.; Eder, K. Supplementation of a grape seed and grape marc meal extract decreases activities of the oxidative stress-responsive transcription factors NF-κB and Nrf2 in the duodenal mucosa of pigs. Acta Vet. Scand. 2013, 55, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verhelst, R.; Schroyen, M.; Buys, N.; Niewold, T. Dietary polyphenols reduce diarrhea in enterotoxigenic Escherichia coli (ETEC) infected post-weaning piglets. Livest. Sci. 2014, 160, 138–140. [Google Scholar] [CrossRef]
- Lichovnikova, M.; Kalhotka, L.; Adam, V.; Klejdus, B.; Anderle, V. The effects of red grape pomace inclusion in grower diet on amino acid digestibility, intestinal microflora, and sera and liver antioxidant activity in broilers. Turk. J. Vet. Anim. Sci. 2015, 39, 406–412. [Google Scholar] [CrossRef]
- Jensen, G.M.; Lykkesfeldt, J.; Frydendahl, K.; Møller, K.; Svendsen, O. Pharmacokinetics of amoxicillin administered in drinking water to recently weaned 3- to 4-week-old pigs with diarrhea experimentally induced by Escherichia coli O149:F4. Am. J. Vet. Res. 2006, 67, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Bosi, P.; Merialdi, G.; Scandurra, S.; Messori, S.; Bardasi, L.; Nisi, I.; Russo, D.; Casini, L.; Trevisi, P. Feed supplemented with 3 different antibiotics improved food intake and decreased the activation of the humoral immune response in healthy weaned pigs but had differing effects on intestinal microbiota. J. Anim. Sci. 2011, 89, 4043–4053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boudry, G.; Péron, V.; Luron, I.; Lallès, J.-P.; Sève, B. Weaning induces both transient and long-lasting modifications of absorptive, secretory, and barrier properties of piglet intestine. J. Nutr. 2004, 134, 2256–2262. [Google Scholar] [CrossRef] [PubMed]
- Jensen, B.B. The impact of feed additives on the microbial ecology of the gut in young pigs. J. Anim. Feed. Sci. 1998, 7, 45–64. [Google Scholar] [CrossRef]
- Weström, B.; Sureda, E.A.; Pierzynowska, K.; Pierzynowski, S.G.; Pérez-Cano, F.J. The immature gut barrier and its importance in establishing immunity in newborn mammals. Front. Immunol. 2020, 11, 1153. [Google Scholar] [CrossRef]
- Goñi, I.; Brenes, A.; Centeno, C.; Viveros, A.; Saura-Calixto, F.; Rebolé, A.; Arija, I.; Estevez, R. Effect of dietary grape pomace and Vitamin E on growth performance, nutrient digestibility, and susceptibility to meat lipid oxidation in chickens. Poult. Sci. 2007, 86, 508–516. [Google Scholar] [CrossRef]
- Mariscal-Landín, G.; Avellaneda, J.H.; Reis de Souza, T.C.; Aguilera, A.; Borbolla, G.A.; Mar, B. Effect of tannins in sorghum on amino acid ileal digestibility and on trypsin (E.C.2.4.21.4) and chymotrypsin (E.C.2.4.21.1) activity of growing pigs. Anim. Feed. Sci. Technol. 2004, 117, 245–264. [Google Scholar] [CrossRef]
- Barton, M.D. Antibiotic use in animal feed and its impact on human healt. Nutr. Res. Rev. 2000, 13, 279–299. [Google Scholar] [CrossRef] [Green Version]
- Hays, V.W. The hays report: Effectiveness of Feed Additive Usage of Antimicrobial Agents in Swine and Poultry Production. In Long Beach, California: Rachelle Laboratories; Report 12476-01; Scialert: Deira, Dubai, 1981; p. 91. [Google Scholar]
- Scalbert, A. Antimicrobial properties of tannins. Phytochemistry 1991, 30, 3875–3883. [Google Scholar] [CrossRef]
- Huigens, R.W.; Abouelhassan, Y.; Yang, H. Phenazine antibiotic-inspired discovery of bacterial biofilm-eradicating agents. Chembiochem 2019, 20, 2885–2902. [Google Scholar] [CrossRef]
- Kim, S.; Covington, A.; Pamer, E.G. The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunol. Rev. 2017, 279, 90–105. [Google Scholar] [CrossRef] [PubMed]
- Ianiro, G.; Tilg, H.; Gasbarrini, A. Antibiotics as deep modulators of gut microbiota: Between good and evil. Gut 2016, 65, 1906–1915. [Google Scholar] [CrossRef]
- Morgun, A.; Dzutsev, A.; Dong, X.; Greer, R.L.; Sexton, D.J.; Ravel, J.; Schuster, M.; Hsiao, W.; Matzinger, P.; Shulzhenko, N. Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks. Gut 2015, 64, 1732–1743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohlke, R.A.; Thaler, R.C.; Stein, H.H. Calcium, phosphorus, and amino acid digestibility in low-phytate corn, normal corn, and soybean meal by growing pigs. J. Anim. Sci. 2005, 83, 2396–2403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humer, E.; Wetscherek, W.; Schwarz, C.; Schedle, K. Effects of maize conservation techniques on the apparent total tract nutrient and mineral digestibility and microbial metabolites in the faeces of growing pigs. Anim. Feed. Sci. Technol. 2014, 197, 176–184. [Google Scholar] [CrossRef]
- Dersjant-Li, Y.; Dusel, G. Increasing the dosing of a Buttiauxella phytase improves phytate degradation, mineral, energy, and amino acid digestibility in weaned pigs fed a complex diet based on wheat, corn, soybean meal, barley, and rapeseed meal1. J. Anim. Sci. 2019, 97, 2524–2533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Adeola, O. True is more additive than apparent total tract digestibility of calcium in limestone and dicalcium phosphate for twenty-kilogram pigs fed semipurified diets. J. Anim. Sci. 2017, 95, 5466–5473. [Google Scholar] [CrossRef] [Green Version]
- Dou, S.; Gadonna-Widehem, P.; Rome, V.; Hamoudi, D.; Rhazi, L.; Lakhal, L.; Larcher, T.; Bahi-Jaber, N.; Pinon-Quintana, A.; Guyonvarch, A.; et al. Characterisation of early-life fecal microbiota in susceptible and healthy pigs to post-weaning diarrhoea. PLoS ONE 2017, 12, e0169851. [Google Scholar] [CrossRef] [PubMed]
- Huyghebaert, G.; Ducatelle, R.; van Immerseel, F. An update on alternatives to antimicrobial growth promoters for broilers. Vet. J. 2011, 187, 182–188. [Google Scholar] [CrossRef] [Green Version]
- García-Ruiz, A.; Bartolomé, B.; Martínez-Rodríguez, A.J.; Pueyo, E.; Martín-Álvarez, P.J.; Moreno-Arribas, M.V. Potential of phenolic compounds for controlling lactic acid bacteria growth in wine. Food Control. 2008, 19, 835–841. [Google Scholar] [CrossRef]
- Vaquero, I.; Marcobal, A.; Muñoz, R. Tannase activity by lactic acid bacteria isolated from grape must and wine. Int. J. Food Microbiol. 2004, 96, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.C.; Jenner, A.M.; Low, C.S.; Lee, Y.K. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res. Microbiol. 2006, 157, 876–884. [Google Scholar] [CrossRef]
- Mena, P.; Bresciani, L.; Brindani, N.; Ludwig, I.A.; Pereira-Caro, G.; Angelino, D.; Llorach, R.; Calani, L.; Brighenti, F.; Clifford, M.N.; et al. Phenyl-γ-valerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-ols: Synthesis, analysis, bioavailability, and bioactivity. Nat. Prod. Rep. 2019, 36, 714–752. [Google Scholar] [CrossRef]
- Hamer, H.M.; Jonkers, D.; Venema, K.; Vanhoutvin, S.; Troost, F.J.; Brummer, R.-J. Review article: The role of butyrate on colonic function. Aliment. Pharmacol. Ther. 2008, 27, 104–119. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, N.; Song, P.; He, T.; Levesque, C.; Bai, Y.; Zhang, A.; Ma, X. Grape seed proanthocyanidin affects lipid metabolism via changing gut microflora and enhancing propionate production in weaned pigs. J. Nutr. 2019, 149, 1523–1532. [Google Scholar] [CrossRef]
- Han, M.; Song, P.; Huang, C.; Rezaei, A.; Farrar, S.; Brown, M.A.; Ma, X. Dietary grape seed proanthocyanidins (GSPs) improve weaned intestinal microbiota and mucosal barrier using a piglet model. Oncotarget 2016, 7, 80313–80326. [Google Scholar] [CrossRef] [Green Version]
- Bourriaud, C.; Robins, R.; Martin, L.; Kozlowski, F.; Tenailleau, E.; Cherbut, C.; Michel, C. Lactate is mainly fermented to butyrate by human intestinal microfloras but inter-individual variation is evident. J. Appl. Microbiol. 2005, 99, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Holota, Y.; Dovbynchuk, T.; Kaji, I.; Vareniuk, I.; Dzyubenko, N.; Chervinska, T.; Zakordonets, L.; Stetska, V.; Ostapchenko, L.; Serhiychuk, T.; et al. The long-term consequences of antibiotic therapy: Role of colonic short-chain fatty acids (SCFA) system and intestinal barrier integrity. PLoS ONE 2019, 14, e0220642. [Google Scholar] [CrossRef]
- Pieper, R.; Tudela, C.V.; Taciak, M.; Bindelle, J.; Pérez, J.F.; Zentek, J. Health relevance of intestinal protein fermentation in young pigs. Anim. Health Res. Rev. 2016, 17, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Biagia, G.; Cipollini, I.; Paulicks, B.R.; Roth, F.X. Effect of tannins on growth performance and intestinal ecosystem in weaned piglets. Arch. Anim. Nutr. 2010, 64, 121–135. [Google Scholar] [CrossRef]
- Colombino, E.; Ferrocino, I.; Biasato, I.; Cocolin, L.S.; Prieto-Botella, D.; Zduńczyk, Z.; Jankowski, J.; Milala, J.; Kosmala, M.; Fotschki, B.; et al. Dried fruit pomace inclusion in poultry diet: Growth performance, intestinal morphology and physiology. J. Anim. Sci. Biotechnol. 2020, 11, 63. [Google Scholar] [CrossRef]
- Ravindran, V. Feed-induced specific ileal endogenous amino acid losses: Measurement and significance in the protein nutrition of monogastric animals. Anim. Feed. Sci. Technol. 2016, 221, 304–313. [Google Scholar] [CrossRef] [Green Version]
Ingredient (%) | Starter (Day 1–Day 13) | Grower (Day 14–Day 56) |
---|---|---|
Wheat (winter) | 23.04 | 26.50 |
Maize | 18.00 | 20.00 |
Maize (extruded) | 9.50 | - |
Barley | 20.00 | 30.00 |
Soybean meal without hulls | 9.00 | 18.10 |
Soy protein concentrate | 5.00 | - |
Vegetable oil | 0.50 | 0.60 |
Potato protein | 2.50 | - |
Lactose | 2.50 | - |
Whey powder | 6.00 | - |
L-lysine (HCl) | 0.61 | 0.55 |
DL- methionine | 0.29 | 0.27 |
L-threonine | 0.25 | 0.32 |
L-tryptophan | 0.07 | 0.04 |
Monocalcium phosphate | 0.75 | 1.00 |
Calcium carbonate | 0.88 | 1.10 |
Salt | 0.31 | 0.42 |
Titanium dioxide | - | 0.30 |
Vitamin and trace element premix 1 | 0.30 | 0.30 |
Maize premix, ground 2 | 0.50 | 0.50 |
Chemical composition | ||
ME (MJ/kg) 3 | 14.00 | 13.40 |
Crude protein (%) | 18.10 | 17.90 |
Crude fibre (%) | 2.70 | 3.30 |
Starch (%) | 43.90 | 45.40 |
Lysine (%) | 1.31 | 1.20 |
Methionine and cysteine (%) | 0.80 | 0.80 |
Threonine (%) | 0.88 | 0.92 |
Tryptophan (%) | 0.27 | 0.24 |
Calcium (%) | 0.70 | 0.81 |
Phosphorus (%) | 0.53 | 0.59 |
Sodium (%) | 0.20 | 0.20 |
SID lysine (%) | 1.17 | 1.05 |
SID methionine and cysteine (%) | 0.68 | 0.67 |
SID threonine (%) | 0.74 | 0.75 |
SID tryptophan (%) | 0.23 | 0.20 |
Starter (Day 1–Day 13) | Grower (Day 14–Day 56) | |||||
---|---|---|---|---|---|---|
Item 1 | NC | PC | GE | NC | PC | GE |
Analysed composition | ||||||
Dry matter (%) | 89.53 | 89.74 | 89.88 | 88.90 | 88.96 | 89.17 |
Ash (%) | 5.48 | 5.49 | 6.34 | 5.04 | 5.71 | 5.25 |
Crude protein (%) | 18.72 | 18.96 | 19.85 | 17.62 | 17.07 | 17.97 |
Hydrolyzed ether extract (%) | 3.94 | 3.94 | 4.16 | 3.85 | 3.86 | 3.76 |
Starch (%) | 43.37 | 42.89 | 41.29 | 47.02 | 46.08 | 45.62 |
Sugar (%) | 6.50 | 6.49 | 6.79 | 3.63 | 3.54 | 3.49 |
Crude fibre (%) | 2.15 | 2.52 | 2.01 | 2.57 | 2.87 | 2.34 |
ME (MJ/kg) 2 | 14.3 | 14.2 | 14.3 | 14.1 | 13.8 | 14.1 |
Ca (%) | 0.99 | 0.99 | 1.13 | 0.63 | 0.67 | 0.59 |
P (%) | 0.57 | 0.55 | 0.56 | 0.60 | 0.58 | 0.62 |
Total phenols 3, g GAE/100 g 4 DM | 0.41 | 0.38 | 0.38 | 0.34 | 0.34 | 0.34 |
Condensed tannins, mg CT/100 g DM | 4.82 | 4.78 | 7.06 | 8.17 | 7.07 | 8.87 |
Item | Treatment Group (tg) 2 | Sex | SEM 3 | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
NC | PC | GE | m | w | tg | Sex | tg × Week | tg × Sex | ||
BW (kg/piglet) | ||||||||||
day 0 | 6.89 | 6.91 | 6.90 | 6.97 | 6.83 | 0.1 | 0.99 | 0.17 | 0.99 | |
day 13 | 7.87 b | 8.50 a | 8.02 b | 8.17 | 8.09 | 0.1 | 0.002 | 0.57 | 0.52 | |
day 24 | 10.1 | 14.0 | 10.7 | 10.7 | 12.5 | 1.6 | 0.17 | 0.30 | 0.47 | |
day 56 | 23.8 (b) | 26.3 (a) | 25.4 (ab) | 24.8 | 25.5 | 0.8 | 0.080 | 0.48 | 0.48 | |
ADFI (g/day/piglet) | ||||||||||
Starter (day 1–day 13) | 107 b | 134 a | 102 b | 112 | 117 | 4.4 | <0.001 | 0.36 | 0.020 | 0.93 |
Early grower (day 14–day 24) | 333 | 383 | 353 | 351 | 361 | 17 | 0.12 | 0.61 | 0.003 | 0.89 |
Late grower (day 25–day 56) | 863 | 943 | 905 | 904 | 903 | 32 | 0.21 | 0.98 | <0.001 | 0.55 |
Total (day 1–day 56) | 541 | 601 | 566 | 569 | 571 | 19 | 0.11 | 0.89 | 0.31 | 0.64 |
ADG (g/day/piglet) | ||||||||||
Starter (day 1–day 13) | 116 | 134 | 124 | 123 | 124 | 8.6 | 0.18 | 0.91 | 0.55 | 0.68 |
Early grower (day 14–day 24) | 234 b | 296 a | 270 ab | 262 | 271 | 14 | 0.006 | 0.60 | 0.075 | 0.72 |
Late grower (day 25–day 56) | 530 | 578 | 558 | 554 | 556 | 20 | 0.23 | 0.94 | 0.46 | 0.47 |
Total (day 1–day 56) | 348 (b) | 388 (a) | 373 (ab) | 371 | 375 | 12 | 0.05 | 0.77 | 0.47 | 0.52 |
FCR (g/g) | ||||||||||
Starter (day 1–day 13) | 1.12 | 1.07 | 1.21 | 1.25 | 1.04 | 0.08 | 0.62 | 0.031 | 0.083 | 0.16 |
Early grower (day 14–day 24) | 1.50 | 1.38 | 1.36 | 1.43 | 1.40 | 0.05 | 0.10 | 0.65 | 0.55 | 0.28 |
Late grower (day 25–day 56) | 1.62 | 1.64 | 1.62 | 1.62 | 1.63 | 0.02 | 0.76 | 0.48 | 0.48 | 0.34 |
Total (day 1–day 56) | 1.47 | 1.42 | 1.46 | 1.48 | 1.42 | 0.02 | 0.77 | 0.054 | 0.030 | 0.40 |
Item 4 | Treatment Group (tg) 2 | Sex | SEM 3 | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
NC | PC | GE | m | f | tg | Sex | T | tg × Sex | tg × T | ||
DM (%) | |||||||||||
Overall | 86.3 c | 87.3 b | 88.3 a | 86.9 | 87.7 | 0.2 | <0.001 | 0.004 | <0.001 | 0.073 | 0.31 |
T1 | 85.2 b | 86.7 a | 87.6 a | 86.1 | 87.0 | 0.3 | <0.001 | 0.029 | 0.23 | ||
T2 | 87.3 b | 88.0 b | 88.9 a | 87.8 | 88.4 | 0.3 | 0.001 | 0.068 | 0.30 | ||
OM (%) | |||||||||||
Overall | 88.3 c | 89.2 b | 90.0 a | 88.9 | 89.5 | 0.2 | <0.001 | 0.013 | <0.001 | 0.087 | 0.58 |
T1 | 87.4 b | 88.5 ab | 89.4 a | 88.1 | 88.8 | 0.3 | 0.001 | 0.064 | 0.29 | ||
T2 | 89.2 b | 89.7 ab | 90.7 a | 89.6 | 90.1 | 0.3 | 0.003 | 0.10 | 0.30 | ||
Ash (%) | |||||||||||
Overall | 66.0 b | 71.5 a | 72.2 a | 69.9 | 69.9 | 0.4 | <0.001 | 0.95 | 0.90 | 0.56 | 0.008 |
T1 | 65.0 b | 71.6 a | 73.0 a | 69.8 | 70.7 | 0.7 | <0.001 | 0.76 | 0.80 | ||
T2 | 67.1 b | 71.5 a | 71.3 a | 70.0 | 69.9 | 0.5 | <0.001 | 0.74 | 0.66 | ||
Gross energy (%) | |||||||||||
Overall | 85.1 c | 86.2 b | 87.5 a | 86.0 | 86.6 | 0.3 | <0.001 | 0.086 | <0.001 | 0.08 | 0.30 |
T1 | 83.6 b | 85.1 ab | 86.6 a | 84.8 | 85.4 | 0.5 | 0.001 | 0.34 | 0.23 | ||
T2 | 86.7 b | 87.4 ab | 88.4 a | 87.2 | 87.8 | 0.3 | 0.002 | 0.10 | 0.32 | ||
CP (%) | |||||||||||
Overall | 82.9 b | 84.0 b | 86.3 a | 84.0 | 84.7 | 0.4 | <0.001 | 0.19 | <0.001 | 0.041 | 0.080 |
T1 | 81.1 b | 82.6 b | 85.9 a | 82.9 | 83.5 | 0.7 | <0.001 | 0.50 | 0.20 | ||
T2 | 84.7 b | 85.3 ab | 86.6 a | 85.2 | 85.9 | 0.5 | 0.022 | 0.19 | 0.19 | ||
HEE (%) | |||||||||||
Overall | 57.0 b | 60.9 a | 64.3 a | 60.2 | 61.3 | 1.0 | <0.001 | 0.34 | <0.001 | 0.18 | 0.12 |
T1 | 50.0 b | 55.8 ab | 60.2 a | 55.1 | 55.6 | 1.8 | 0.002 | 0.84 | 0.20 | ||
T2 | 64.1 b | 65.9 ab | 68.4 a | 65.2 | 67.1 | 1.0 | 0.019 | 0.11 | 0.22 | ||
Ca (%) | |||||||||||
Overall | 72.4 | 73.6 | 75.0 | 74.0 | 73.4 | 1.1 | 0.23 | 0.66 | <0.001 | 0.36 | 0.027 |
T1 | 76.4 b | 80.8 ab | 83.0 a | 80.0 | 80.1 | 1.4 | 0.008 | 0.98 | 0.34 | ||
T2 | 68.4 | 66.5 | 67.1 | 67.9 | 66.7 | 1.6 | 0.69 | 0.54 | 0.69 | ||
P (%) | |||||||||||
Overall | 83.9 c | 85.3 b | 87.8 a | 85.6 | 85.7 | 0.4 | <0.001 | 0.95 | <0.001 | 0.87 | 0.002 |
T1 | 81.4 c | 84.1 b | 87.2 a | 84.4 | 84.1 | 0.7 | <0.001 | 0.72 | 0.98 | ||
T2 | 86.4 b | 86.5 b | 88.3 a | 86.9 | 87.2 | 0.2 | <0.001 | 0.26 | 0.15 |
Item 4 | Treatment Group (tg) 2 | Sex | SEM 3 | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
NC | PC | GE | m | f | tg | Sex | T | tg × Sex | tg × T | ||
Total SCFA | |||||||||||
Overall | 22.6 | 22.6 | 21.0 | 22.8 | 21.3 | 1.9 | 0.80 | 0.50 | <0.001 | 0.72 | 0.63 |
T1 | 15.4 | 17.7 | 14.0 | 16.5 | 14.9 | 2.4 | 0.55 | 0.56 | 0.65 | ||
T2 | 29.8 | 27.4 | 28.1 | 29.1 | 27.7 | 3.0 | 0.85 | 0.70 | 0.50 | ||
Acetic acid | |||||||||||
Overall | 16.1 | 15.3 | 14.3 | 15.8 | 14.6 | 1.7 | 0.74 | 0.53 | <0.001 | 0.76 | 0.84 |
T1 | 10.4 | 10.9 | 8.6 | 10.7 | 9.24 | 1.7 | 0.62 | 0.46 | 0.75 | ||
T2 | 21.8 | 19.8 | 19.9 | 20.9 | 20.0 | 2.9 | 0.86 | 0.78 | 0.58 | ||
Propionic acid | |||||||||||
Overall | 4.04 | 4.60 | 4.04 | 4.42 | 4.02 | 0.4 | 0.57 | 0.42 | 0.27 | 0.99 | 0.27 |
T1 | 3.54 | 4.88 | 3.42 | 4.23 | 3.66 | 0.8 | 0.37 | 0.55 | 0.91 | ||
T2 | 4.53 | 4.31 | 4.65 | 4.61 | 4.38 | 0.3 | 0.68 | 0.48 | 0.45 | ||
Valeric acid | |||||||||||
Overall | 1.78 | 2.05 | 2.06 | 1.91 | 2.02 | 0.2 | 0.43 | 0.56 | 0.46 | 0.025 | 0.75 |
T1 | 1.76 | 2.16 | 2.20 | 1.91 | 2.18 | 0.3 | 0.56 | 0.46 | 0.049 | ||
T2 | 1.82 | 1.95 | 1.92 | 1.92 | 1.87 | 0.2 | 0.82 | 0.78 | 0.15 | ||
Heptanoic acid | |||||||||||
Overall | - | - | - | - | - | - | - | - | - | - | - |
T1 | n.d. | n.d. | n.d. | n.d. | n.d. | - | - | - | - | ||
T2 | 1.66 | 1.59 | 1.62 | 1.62 | 1.63 | 0.1 | 0.99 | 0.99 | 0.49 | ||
Lactic acid | |||||||||||
Overall | 42.3 | 44.6 | 41.6 | 42.4 | 43.4 | 6.2 | 0.94 | 0.89 | 0.83 | 0.50 | 0.59 |
T1 | 36.5 | 45.3 | 44.5 | 41.2 | 43.0 | 6.7 | 0.59 | 0.81 | 0.36 | ||
T2 | 46.8 | 44.0 | 38.8 | 43.6 | 43.7 | 11 | 0.82 | 0.99 | 0.88 |
Item 4 | Treatment Group (tg) 2 | Sex | SEM 3 | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
NC | PC | GE | m | f | tg | Sex | T | tg × Sex | tg × T | ||
Total SCFA | |||||||||||
Overall | 194 | 189 | 177 | 189 | 188 | 8.4 | 0.33 | 0.93 | 0.001 | 0.82 | 0.50 |
T1 | 178 | 165 | 167 | 171 | 172 | 11 | 0.65 | 0.92 | 0.50 | ||
T2 | 210 | 213 | 187 | 204 | 203 | 11 | 0.22 | 0.91 | 0.98 | ||
Acetic acid | |||||||||||
Overall | 106 | 101 | 95.8 | 99.1 | 103 | 4.3 | 0.32 | 0.45 | 0.001 | 0.93 | 0.58 |
T1 | 99.0 | 89.3 | 89.1 | 92.9 | 92.0 | 5.3 | 0.34 | 0.88 | 0.41 | ||
T2 | 112 | 114 | 103 | 105 | 114 | 6.8 | 0.49 | 0.28 | 0.84 | ||
Propionic acid | |||||||||||
Overall | 51.5 | 48.2 | 45.0 | 49.7 | 46.9 | 2.4 | 0.21 | 0.34 | <0.001 | 0.61 | 0.56 |
T1 | 44.4 | 41.3 | 41.5 | 42.9 | 41.9 | 3.0 | 0.71 | 0.79 | 0.76 | ||
T2 | 58.7 | 55.1 | 48.5 | 56.3 | 51.9 | 4.0 | 0.23 | 0.34 | 0.55 | ||
Isobutyric acid | |||||||||||
Overall | 3.41 | 3.25 | 3.29 | 3.17 | 3.47 | 0.3 | 0.91 | 0.38 | 0.066 | 0.60 | 0.50 |
T1 | 3.31 | 2.68 | 3.03 | 2.72 | 3.30 | 0.4 | 0.52 | 0.20 | 0.34 | ||
T2 | 3.52 | 3.82 | 3.55 | 3.62 | 3.64 | 0.4 | 0.81 | 0.97 | 0.99 | ||
Butyric acid | |||||||||||
Overall | 23.9 | 26.2 | 23.6 | 25.1 | 24.1 | 1.7 | 0.50 | 0.62 | 0.038 | 0.40 | 0.49 |
T1 | 21.7 | 22.6 | 23.0 | 22.0 | 22.9 | 2.3 | 0.92 | 0.73 | 0.30 | ||
T2 | 26.0 | 29.7 | 24.7 | 28.1 | 25.2 | 2.0 | 0.18 | 0.26 | 0.45 | ||
Isovaleric acid | |||||||||||
Overall | 1.85 | 1.82 | 1.81 | 1.64 | 2.01 | 0.2 | 0.99 | 0.18 | 0.67 | 0.47 | 0.78 |
T1 | 1.98 | 1.75 | 1.91 | 1.62 | 2.15 | 0.3 | 0.89 | 0.17 | 0.44 | ||
T2 | 1.72 | 1.89 | 1.69 | 1.67 | 1.87 | 0.2 | 0.73 | 0.42 | 0.75 | ||
Valeric acid | |||||||||||
Overall | 8.02 | 8.18 | 7.18 | 8.25 | 7.33 | 0.8 | 0.67 | 0.34 | 0.90 | 0.38 | 0.54 |
T1 | 7.59 | 7.71 | 7.88 | 7.23 | 8.22 | 1.2 | 0.99 | 0.47 | 0.31 | ||
T2 | 8.43 | 8.66 | 6.44 | 9.24 | 6.45 | 0.8 | 0.17 | 0.01 | 0.12 | ||
Lactic acid | |||||||||||
Overall | 1.25 | 1.35 | 1.40 | 1.27 | 1.40 | 0.1 | 0.62 | 0.28 | 0.18 | 0.90 | 0.064 |
T1 | 1.13 (b) | 1.57 (a) | 1.56 (a) | 1.40 | 1.44 | 0.1 | 0.059 | 0.78 | 0.52 | ||
T2 | 1.38 | 1.13 | 1.25 | 1.14 | 1.36 | 0.2 | 0.56 | 0.24 | 0.33 |
Item 4 | Treatment Group (tg) 2 | Sex | SEM 3 | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
NC | PC | GE | m | f | tg | Sex | T | tg × Sex | tg × T | ||
Ammonia | |||||||||||
Overall | 179 | 165 | 169 | 172 | 170 | 8.0 | 0.47 | 0.87 | 0.055 | 0.52 | 0.11 |
T1 | 180 (a) | 159 (ab) | 147 (b) | 163 | 161 | 10 | 0.084 | 0.85 | 0.95 | ||
T2 | 177 | 171 | 192 | 180 | 180 | 12 | 0.48 | 0.96 | 0.45 | ||
Total BA | |||||||||||
Overall | 4.02 | 4.48 | 4.38 | 4.34 | 4.24 | 0.5 | 0.79 | 0.87 | 0.039 | 0.88 | 0.77 |
T1 | 4.33 | 5.13 | 5.21 | 4.85 | 4.93 | 0.8 | 0.67 | 0.93 | 0.21 | ||
T2 | 3.69 | 3.83 | 3.54 | 3.82 | 3.56 | 0.6 | 0.95 | 0.72 | 0.29 | ||
Ethanolamine | |||||||||||
Overall | 0.26 | 0.22 | 0.26 | 0.26 | 0.23 | 0.04 | 0.78 | 0.54 | 0.72 | 0.61 | 0.71 |
T1 | 0.28 | 0.20 | 0.24 | 0.26 | 0.22 | 0.04 | 0.36 | 0.38 | 0.53 | ||
T2 | 0.24 | 0.25 | 0.28 | 0.27 | 0.25 | 0.08 | 0.94 | 0.83 | 0.27 | ||
Putrescin | |||||||||||
Overall | 0.32 | 0.38 | 0.40 | 0.38 | 0.36 | 0.07 | 0.69 | 0.73 | 0.001 | 0.95 | 0.37 |
T1 | 0.39 | 0.54 | 0.59 | 0.53 | 0.49 | 0.1 | 0.46 | 0.79 | 0.54 | ||
T2 | 0.26 | 0.22 | 0.21 | 0.24 | 0.22 | 0.06 | 0.82 | 0.81 | 0.24 | ||
Cadaverin | |||||||||||
Overall | 2.05 | 2.48 | 2.21 | 2.22 | 2.27 | 0.4 | 0.73 | 0.92 | 0.010 | 0.95 | 0.70 |
T1 | 2.45 | 3.19 | 2.89 | 2.73 | 3.00 | 0.6 | 0.68 | 0.75 | 0.35 | ||
T2 | 1.66 | 1.77 | 1.52 | 1.72 | 1.59 | 0.5 | 0.94 | 0.83 | 0.33 | ||
Histamine | |||||||||||
Overall | 0.38 | 0.50 | 0.59 | 0.53 | 0.45 | 0.1 | 0.39 | 0.55 | 0.71 | 0.75 | 0.55 |
T1 | 0.39 | 0.45 | 0.70 | 0.55 | 0.47 | 0.2 | 0.43 | 0.70 | 0.56 | ||
T2 | 0.36 | 0.55 | 0.48 | 0.50 | 0.43 | 0.1 | 0.59 | 0.63 | 0.50 | ||
Spermidine | |||||||||||
Overall | 0.51 | 0.49 | 0.48 | 0.51 | 0.48 | 0.04 | 0.90 | 0.62 | 0.007 | 0.066 | 0.98 |
T1 | 0.43 | 0.42 | 0.41 | 0.43 | 0.41 | 0.05 | 0.97 | 0.71 | 0.041 | ||
T2 | 0.58 | 0.57 | 0.54 | 0.58 | 0.55 | 0.07 | 0.92 | 0.73 | 0.40 | ||
Spermine | |||||||||||
Overall | 0.48 | 0.48 | 0.49 | 0.49 | 0.48 | 0.04 | 0.94 | 0.71 | 0.014 | 0.37 | 0.85 |
T1 | 0.44 | 0.41 | 0.44 | 0.44 | 0.42 | 0.05 | 0.89 | 0.75 | 0.13 | ||
T2 | 0.51 | 0.54 | 0.55 | 0.54 | 0.53 | 0.05 | 0.89 | 0.83 | 0.46 |
Item 4 | Treatment Group (tg) 2 | Sex | SEM 3 | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
NC | PC | GE | m | f | tg | Sex | T | tg × Sex | tg × T | ||
Ammonia | |||||||||||
Overall | 371 | 322 | 358 | 361 | 340 | 28.5 | 0.46 | 0.52 | 0.004 | 0.30 | 0.18 |
T1 | 464 | 353 | 383 | 385 | 416 | 44.6 | 0.21 | 0.56 | 0.48 | ||
T2 | 278 | 291 | 333 | 337 | 264 | 35.4 | 0.52 | 0.085 | 0.41 | ||
Total BA | |||||||||||
Overall | 4.82 | 4.99 | 4.53 | 5.08 | 4.49 | 0.4 | 0.70 | 0.18 | 0.23 | 0.79 | 0.58 |
T1 | 4.84 | 5.57 | 4.76 | 5.02 | 4.24 | 0.6 | 0.59 | 0.72 | 0.84 | ||
T2 | 4.81 | 4.42 | 4.33 | 4.98 | 4.06 | 0.4 | 0.73 | 0.083 | 0.92 | ||
Ethanolamine | |||||||||||
Overall | 0.58 | 0.55 | 0.51 | 0.57 | 0.53 | 0.04 | 0.45 | 0.33 | 0.001 | 0.023 | 0.61 |
T1 | 0.53 | 0.46 | 0.41 | 0.48 | 0.46 | 0.05 | 0.32 | 0.77 | 0.22 | ||
T2 | 0.62 | 0.64 | 0.61 | 0.66 | 0.59 | 0.05 | 0.92 | 0.28 | 0.085 | ||
Methylamin | |||||||||||
Overall | 0.14 | 0.12 | 0.11 | 0.11 | 0.14 | 0.02 | 0.38 | 0.21 | 0.025 | 0.65 | 0.11 |
T1 | 0.19 | 0.16 | 0.10 | 0.16 | 0.14 | 0.03 | 0.15 | 0.50 | 0.92 | ||
T2 | 0.10 | 0.09 | 0.11 | 0.11 | 0.09 | 0.02 | 0.65 | 0.19 | 0.52 | ||
Pyrrolidin | |||||||||||
Overall | 0.09 | 0.09 | 0.10 | 0.09 | 0.09 | 0.008 | 0.68 | 0.59 | 0.002 | 0.29 | 0.65 |
T1 | 0.08 | 0.08 | 0.08 | 0.07 | 0.08 | 0.005 | 0.99 | 0.28 | 0.024 | ||
T2 | 0.11 | 0.09 | 0.11 | 0.11 | 0.10 | 0.01 | 0.62 | 0.30 | 0.27 | ||
Putrescin | |||||||||||
Overall | 0.63 | 0.64 | 0.60 | 0.67 | 0.58 | 0.06 | 0.80 | 0.22 | 0.14 | 0.82 | 0.59 |
T1 | 0.63 | 0.69 | 0.71 | 0.70 | 0.65 | 0.1 | 0.85 | 0.68 | 0.76 | ||
T2 | 0.64 | 0.59 | 0.47 | 0.63 | 0.50 | 0.08 | 0.24 | 0.13 | 0.99 | ||
Cadaverin | |||||||||||
Overall | 1.70 | 1.79 | 1.44 | 1.79 | 1.50 | 0.3 | 0.65 | 0.37 | 0.042 | 0.98 | 0.61 |
T1 | 1.84 | 2.33 | 1.78 | 2.07 | 1.89 | 0.5 | 0.66 | 0.75 | 0.79 | ||
T2 | 1.56 | 1.26 | 1.09 | 1.51 | 1.10 | 0.3 | 0.57 | 0.25 | 0.67 | ||
Histamine | |||||||||||
Overall | 0.37 | 0.44 | 0.39 | 0.41 | 0.38 | 0.04 | 0.44 | 0.55 | 0.009 | 0.95 | 0.15 |
T1 | 0.25 | 0.43 | 0.32 | 0.33 | 0.34 | 0.07 | 0.17 | 0.85 | 0.76 | ||
T2 | 0.48 | 0.44 | 0.46 | 0.50 | 0.43 | 0.05 | 0.83 | 0.20 | 0.66 | ||
Spermidine | |||||||||||
Overall | 1.16 | 1.19 | 1.26 | 1.23 | 1.17 | 0.07 | 0.56 | 0.41 | 0.55 | 0.20 | 0.76 |
T1 | 1.15 | 1.20 | 1.20 | 1.16 | 1.20 | 0.09 | 0.89 | 0.74 | 0.94 | ||
T2 | 1.17 | 1.19 | 1.32 | 1.31 | 1.12 | 0.09 | 0.48 | 0.14 | 0.025 | ||
Spermine | |||||||||||
Overall | 0.17 | 0.17 | 0.18 | 0.18 | 0.16 | 0.01 | 0.92 | 0.17 | <0.001 | 0.38 | 0.55 |
T1 | 0.21 | 0.22 | 0.21 | 0.22 | 0.21 | 0.02 | 0.90 | 0.44 | 0.86 | ||
T2 | 0.12 | 0.12 | 0.15 | 0.14 | 0.12 | 0.02 | 0.45 | 0.21 | 0.077 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajković, E.; Schwarz, C.; Tischler, D.; Schedle, K.; Reisinger, N.; Emsenhuber, C.; Ocelova, V.; Roth, N.; Frieten, D.; Dusel, G.; et al. Potential of Grape Extract in Comparison with Therapeutic Dosage of Antibiotics in Weaning Piglets: Effects on Performance, Digestibility and Microbial Metabolites of the Ileum and Colon. Animals 2021, 11, 2771. https://doi.org/10.3390/ani11102771
Rajković E, Schwarz C, Tischler D, Schedle K, Reisinger N, Emsenhuber C, Ocelova V, Roth N, Frieten D, Dusel G, et al. Potential of Grape Extract in Comparison with Therapeutic Dosage of Antibiotics in Weaning Piglets: Effects on Performance, Digestibility and Microbial Metabolites of the Ileum and Colon. Animals. 2021; 11(10):2771. https://doi.org/10.3390/ani11102771
Chicago/Turabian StyleRajković, Emina, Christiane Schwarz, David Tischler, Karl Schedle, Nicole Reisinger, Caroline Emsenhuber, Vladimira Ocelova, Nataliya Roth, Dörte Frieten, Georg Dusel, and et al. 2021. "Potential of Grape Extract in Comparison with Therapeutic Dosage of Antibiotics in Weaning Piglets: Effects on Performance, Digestibility and Microbial Metabolites of the Ileum and Colon" Animals 11, no. 10: 2771. https://doi.org/10.3390/ani11102771
APA StyleRajković, E., Schwarz, C., Tischler, D., Schedle, K., Reisinger, N., Emsenhuber, C., Ocelova, V., Roth, N., Frieten, D., Dusel, G., & Gierus, M. (2021). Potential of Grape Extract in Comparison with Therapeutic Dosage of Antibiotics in Weaning Piglets: Effects on Performance, Digestibility and Microbial Metabolites of the Ileum and Colon. Animals, 11(10), 2771. https://doi.org/10.3390/ani11102771