Botanical Composition and Diet Quality of the Vicuñas (Vicugna vicugna Mol.) in Highland Range of Parinacota, Chile
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Botanical Composition and Grassland Cover
2.2. Botanical Composition of the Diet
2.3. Diet Diversity
2.4. Selectivity Index
2.5. Fecal Nitrogen Content [NF]
2.6. Experimental Design and Statistical Analysis
3. Results
3.1. Grassland Botanical Composition and Cover
3.2. Diet’s Botanical Composition
3.3. Diet’s Relative Diversity Index (J)
3.4. Selectivity of the Main Consumed Species (Ei, Ivlev’s Index)
3.5. Fecal Nitrogen [NF]
4. Discussion
4.1. Grassland’s Botanical Composition and Cover
4.2. Diet’s Botanical Composition
4.3. Diet’s Relative Diversity Index (J)
4.4. Selectivity of the Main Consumed Species (Ivlev’s Index)
4.5. Fecal Nitrogen [NF]
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Qué Comen los Herbívoros? Desde la Patagonia Difundiendo Saberes, A. 1(1): 2–7. Available online: http://www.desdelapatagoniads.com.ar/pdf/numero1/Hervíboros.pdf (accessed on 24 November 2011).
- Holechek, J.L.; Pieper, R.D.; Herbel, C.H. Range Management, Principles and Practices, 6th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2011; p. 444. [Google Scholar]
- Castellaro, G.; Urra, H.; Hidalgo, J.; Orellana, C.; Escanilla, J.P. Sheep and goat grazing diets on an annual Mediterranean grassland containing tall wheatgrass (Thinopyrum ponticum (PODP.)). Cien. Inv. Agr. 2018, 45, 240–250. [Google Scholar] [CrossRef]
- Borgnia, M.; Vilá, B.; Cassini, M. Foraging ecology of Vicuña (Vicugna vicugna), in dry Puna of Argentina. Small. Rumin. Res. 2010, 88, 44–53. [Google Scholar] [CrossRef]
- Mosca, M.; Puig, S. Seasonal diet of vicuñas in the Los Andes protected area (Salta, Argentina). J. Arid. Environ. 2009, 74, 450–457. [Google Scholar] [CrossRef]
- Mènard, N. Le règime alimentaire des vigognes (Lama vicugna) pendant une pèriode de sècheresse. Mammalia 1984, 48, 529–539. [Google Scholar] [CrossRef]
- Koford, C. The vicuna and the Puna. Ecol. Monogr. 1957, 27, 152–219. [Google Scholar] [CrossRef]
- Cajal, J.L. Uso de hábitat por vicuñas y guanacos en la Reserva de Biósfera San Guillermo. Vida. Silvestre. Neotropical. 1989, 2, 21–31. [Google Scholar]
- Aguilar, M.Y.; Neumann, R. Junto a las Vicuñas. 1995. Available online: http://www.fao.org/DOCREP/ARTICLE/AGRIPPA/X9500E07.HTM (accessed on 5 April 2010).
- Miranda, E.; Cortes, A.; Miranda, E. Composición de la dieta de la Vicuña (Vicugna vicugna) en el altiplano del norte de Chile. In Proceedings of the VI Congreso Mundial de Camélidos Sudamericanos, Arica, Chile, 21–23 November 2012. [Google Scholar]
- Castellaro, G.; Squella, F.; León, F.; Raggi, A. Botanical composition of alpaca (Lama pacos Linn.) diet in a central mediterranean range of Chile. Chil. J. Agric. Res. 2008, 68, 136–145. [Google Scholar] [CrossRef] [Green Version]
- Leslie, D.; Starkey, E. Fecal indices to dietary quality of cervids in old–growth forests. J. Wildlife Manag. 1985, 49, 142–146. [Google Scholar] [CrossRef] [Green Version]
- Orellana, C.; Parraguez, V.H.; Arana, W.; Escanilla, J.; Zavaleta, M.; Castellaro, G. Use of Fecal Indices as a Non–Invasive Tool for Nutritional Evaluation in Extensive–Grazing Sheep. Animals 2020, 10, 46. [Google Scholar] [CrossRef] [Green Version]
- Wofford, H.; Holechek, J.; Galyean, M.; Wallace, J.; Cardenas, M. Evaluation of Fecal Indices to Predict Cattle Diet Quality. J. Range Manag. 1985, 38, 450–454. [Google Scholar] [CrossRef]
- Jianzhang, M.; Junsheng, L.; Zhaowen, J.; Mingbo, G. Nitrogen and fiber concentration in rumen contents and feces contents of Mongolian gazelles. J. Forestry. Res. 1999, 10. [Google Scholar] [CrossRef]
- Validez Del Nitrógeno Fecal Como Indicador de la Calidad de Dieta de Ganado Vacuno en Pastos de Montaña del País Vasco. Available online: https://www.academia.edu/22280299/Validez_Del_Nitr%C3%B3geno_Fecal_Como_Indicador_De_La_Calidad_De_Dieta_Del_Ganado_Vacuno_en_Pastos_De_Monta%C3%B1a_Del_Pa%C3%ADs_Vasco (accessed on 5 April 2020).
- Cain, J.W.; Avery, M.M.; Caldwell, C.A.; Abbott, L.B.; Holechek, J.L. Diet composition, quality and overlap of sympatric American pronghorn and gemsbok. Wildlife Biol. 2017. [Google Scholar] [CrossRef] [Green Version]
- Holechek, J.; Vavra, M.Y.; Pieper, R. Botanical composition determination of range rerbivore diets: A review. J. Range Manag. 1982, 35, 309–315. [Google Scholar] [CrossRef]
- Aldezabal, A.; Garin, I.; Garcia–Gonzales, R. Concentración de Nitrógeno fecal en ungulados estivantes en los pastos supra forestales del parque nacional de Ordesa y Monte perdido. Revista. PASTOS 1993, 23, 101–114. [Google Scholar]
- San-Martín, F.; Bryant, C. Nutrition of domesticated South American llamas and sheep. Small. Rumin. Res. 1989, 2, 191–216. [Google Scholar]
- López, A.; Maiztegui, J.; Cabrera, R. Voluntary intake and digestibility of forages with different nutritional quality in alpacas (Lama pacos). Small Rumin. Res. 1998, 29. [Google Scholar] [CrossRef]
- Borgnia, M.; Vilá, B.L.; Cassini, M.H. Interaction between wild camelids and livestock in an Andean semi–desert. J. Arid. Environ. 2008, 2150–2158. [Google Scholar] [CrossRef]
- Köeppen, W. Climatología. Fondo de Cultura Económica; Carretera Picacho-ajusco: Ajusco, México, 1948; p. 478. [Google Scholar]
- United States Department of Agriculture (USDA). In Keys to Soil Taxonomy, 10th ed.; Department of Agriculture. Soil Survey Staff; Natural Resource Conservation Service: Washington, DC, USA, 2006; p. 333.
- Troncoso, R. Caracterización Ambiental del Ecosistema Bofedal de Parinacota y su Relación con la Vegetación. Tesis Ingeniero Agrónomo; Universidad de Chile; Facultad de Ciencias Agrarias y Forestales: Santiago, Chile, 1983; p. 252. [Google Scholar]
- Castellaro, G.; Araya, R. Manejo de Praderas Altiplánicas. Antecedentes, Descripción, Evaluación y Manejo; Fundación para la Innovación Agraria: Santiago, Chile, 2012; p. 65. [Google Scholar]
- Castellaro, G. Manejo nutritivo de la vicuña en condiciones de pastoreo. Capítulo 2005, 7, 221–246. [Google Scholar]
- Frost, B.; Ruyle, G. Range Management Terms/Definitions; Russell, G., Ruyle, G., Rice, R., Eds.; Arizona Cooperative Extension: Tucson, AZ, USA, 1993. [Google Scholar]
- Bonham, C. Measurements for Terrestrial Vegetation; John Wiley and Sons: Hoboken, NJ, USA, 1989; p. 338. [Google Scholar]
- Sparks, D.R.; Malechek, J.C. Estimating percentage dry weight in diets using a microscope technique. J. Range Manag. 1968, 21, 264–265. [Google Scholar] [CrossRef] [Green Version]
- Holechek, J.; Gross, B. Evaluation of different calculation procedures for microhistological analysis. J. Range Manag. 1982, 35, 721–726. [Google Scholar] [CrossRef] [Green Version]
- Garnick, S.; Barboza, P.S.; Walker, J.W. Assessment of Animal–Based Methods Used for Estimating and Monitoring Rangeland Herbivore Diet Composition. Rangel. Ecol. Manag. 2018, 71, 449–457. [Google Scholar] [CrossRef]
- Castellaro, G.; Squella, F.; Ullrich, T.; Leon, F.; Raggi, A. Algunas técnicas microhistológicas utilizadas en la determinación de la composición botánica de la dieta de herbívoros. Agric. Tec. (Chile). 2007, 67, 86–93. [Google Scholar]
- Manual de Técnica Microhistológica. Available online: https://www.academia.edu/38919986/Modificaci%C3%B3n_de_la_t%C3%A9cnica_microhistol%C3%B3gica (accessed on 3 April 2020).
- Krebs, C.J. Ecological Methodology; Harper Collins Publisher: New York, NY, USA, 1989; p. 654. [Google Scholar]
- Smith, R.L.; T.M.Smith, T.M. Ecology, 8th ed.; Addison Wesley Longman: Boston, MA, USA, 2012; p. 683. [Google Scholar]
- Stuth, J.W. Foraging Behavior. Cap; Heitschmidt, R.K., Stuth, J.W., Eds.; Grazing Management. An Ecological Perspective; Timber Press: Portland, OR, USA, 1991; p. 259. [Google Scholar]
- A.O.A.C. Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 1980; p. 1018. [Google Scholar]
- Kaps, M.; Lamberson, W. Estimation of Parameters; Biostatistics for Animal Science Chap 5; CABI Publishing: Cambridge, MA, USA, 2004; p. 439. [Google Scholar]
- Castellaro, G.; Gajardo, C.; Parraguez, V.H.; Rojas, R.; Terroba, J.; Raggi, L.A. Productividad de un Rebaño de Camélidos Sudamericanos Domésticos (CSA) en un Sector de la Provincia de Parinacota: I. Variación estacional de la composición botánica, disponibilidad de materia seca, valor pastoral y valor nutritivo de los bofedales. Agric. Téc. (Chile) 1998, 58, 191–204. [Google Scholar]
- Tirado, C.; Cortés, A.; Carretero, M.A.; Bozinovic, F. Does the presence of livestock alter the trophic behaviour of sympatric populations of wild camelids Vicugna vicugna Molina 1782 and Lama guanicoe Müller 1976 (Artiodactyla: Camelidae)? Evidence from Central Andes. Gayana 2016, 80, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Castellaro, G.; Ullrich, T.; Wackwitz, B.; Raggi, A. Composición botánica de la dieta de alpacas (Lama pacos) y llamas (Lama glama L.) en dos estaciones del año, en praderas altiplánicas de un sector de la Provincia de Parinacota. Agric. Téc. (Chile) 2004, 64, 353–364. [Google Scholar] [CrossRef]
- Selectividad de la Alpaca Durante la época Seca en las Praderas Naturales del sur del Perú. Available online: http://sisbib.unmsm.edu.pe/BVRevistas/rcs/n02_1986/pdf/a03.pdf (accessed on 8 March 2018).
- Bryant, F.; Farfan, R. Dry season forage selection by alpaca (Lama pacos) in Southern Peru. J. Range Manag. 1984, 37, 330–333. [Google Scholar] [CrossRef] [Green Version]
- Reiner, R.; Bryant, F.C. Botanical composition and nutritional quality of alpaca diets in two andean rangeland communities. J. Range Manag. 1986, 39, 424–427. [Google Scholar] [CrossRef]
- Benítez, V.; Borgnia, M.; Cassini, M.H. Ecología Nutricional de la vicuña (Vicugna vicugna): Un Caso de Estudio en la Reserva Laguna Blanca, Catamarca. Cap; Vilá, B., Ed.; Proyecto MACS–Argentina: Buenos Aires, Argentina, 2006; p. 208. [Google Scholar]
- Hanley, T. The Nutritional Basis for Food Selection by Ungulates. J. Range Manag. 1982, 35, 146–151. [Google Scholar] [CrossRef]
- Tirado, C.; Cortés, A.; Miranda–Urbina, E.; Carretero, M.A. Trophic preferences in an assemblage of mammal herbivores from Andean Puna (Northern Chile). J. Arid. Environ. 2012, 79, 8–12. [Google Scholar] [CrossRef]
- Ganadería Sustentable en la Patagonia Austral. Available online: https://www.researchgate.net/publication/284894492_El_ambiente_en_la_Patagonia_Austral_En_Ganaderia_ovina_sustentable_en_la_Patagonia_Austral (accessed on 7 April 2020).
- Selectividad de las Principales Especies Vegetales de Pastizales Hidromórficos de alta Cordillera en la Región de Coquimbo, Pastoreados por tres Herbívoros, Equus Caballus, Lepus Europaeus y Thinocorus Orbignyianus. Available online: https://www.engormix.com/equinos/articulos/selectividad-principales-especies-vegetales-t31069.htm (accessed on 7 April 2020).
- Stephens, D.; Krebs, J. Foraging Theory; Princeton University Press: Princeton, NJ, USA, 1986; p. 247. [Google Scholar]
- Stamps, J.; Tanaka, S.; Krishnan, V. The relationship between selectivity and food abundance in a juvenile lizard. Ecology 1981, 64, 1079–1092. [Google Scholar] [CrossRef]
- Kamler, J.; Homolka, M. Faecal nitrogen: A potential indicator of red and roe deer diet quality in forest habitat. Folia. Zool. 2005, 54, 89–98. [Google Scholar]
- Pierrick, B.; Festa–Bianchet, M.; Gallard, J.M.; Jorgenson, J. A Test of Long–Term Fecal Nitrogen Monitoring to Evaluate Nutritional Status in Bighorn Sheep. 2003. Available online: www.jstor.org/pss/3802705 (accessed on 28 November 2011).
- Ihl, C. Percentage of faecal moss in artic ungulates as an indicator of wintering area quality. J. Wildlife Manag. 2010, 74, 690–697. [Google Scholar] [CrossRef]
- Robbins, C.T. Wildlife Feeding and Nutrition; Academic Press: New York, NY, USA, 1983; p. 343. [Google Scholar]
- Santos, J.P.V.; Vicente, J.; Carvalho, J.; Queirós, J.; Villamuelas, M.; Albanell, E.; Acevedo, P.; Gortázar, C.; López–Olvera, J.R.; Fonseca, C. Determining changes in the nutritional condition of red deer in Mediterranean ecosystems: Effects of environmental, management and demographic factors. Ecol. Indic. 2018, 87, 261–271. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academic Press: Washington, DC, USA, 2007; p. 362. [Google Scholar]
- Van Saun, R.J. Nutritional Requirements and Assessing Nutritional Status in Camelids. Vet. Clin. Food Anim. 2009, 25, 265–279. [Google Scholar] [CrossRef]
- Norambuena, C.; Mussa, K.; Hernández, F.; Alfar, J.; Velasco, M. Energy balance of pregnant vicuñas (Vicugna vicugna) in the Chilean High Andes. Austral. J. Vet. Sci. 2019, 51, 33–36. [Google Scholar] [CrossRef] [Green Version]
Plant Species | January | July |
---|---|---|
Grasses | ||
Festuca orthophylla Pilg. | 31.5 | 31.5 |
Festuca nardifolia Griseb. | 23.4 | 26.8 |
Deyeuxia curvula Wedd. | 10.8 | 14.7 |
Deyeuxia jamesonii (Steud.) Munro ex Wedd. | 0.4 | 0.0 |
Graminoids | ||
Oxychloe andina Phil. | 10.0 | 20.3 |
Disticha muscoides Nees and Meyen | 7.8 | 3.6 |
Carex incurva Lightf. | 4.9 | 1.9 |
Eleocharis sp. | 0.7 | 0.0 |
Dicotyledonous herbs | ||
Werneria pygmaea Gillies | 5.3 | 0.0 |
Lachemilla pinnata (Ruiz and Pav.) Rothm. | 1.2 | 0.0 |
Arenaria rivularis Phil. | 0.4 | 0.4 |
Hypochaeris taraxacoides (Walp.) Benth. | 2.7 | 0.7 |
Plantago sp. | 0.8 | 0.0 |
Total | 100.0 | 100.0 |
Ground Cover | 71.6 | 69.0 |
Mosses and lichens | 0.0 | 0.0 |
Bare soil | 13.2 | 11.0 |
Stones | 4.1 | 4.1 |
Rocks | 1.3 | 1.3 |
Litter | 9.9 | 14.7 |
Plant Species | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | Annual Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wet–grassland grasses | |||||||||||||
Deschampsia caespitosa | 14.90 | 12.15 | 20.33 | 10.86 | 11.34 | 13.87 | 10.93 | 13.31 | 25.44 | 14.71 | 20.48 | 16.60 | 15.41 |
Deyeuxia curvula | 5.55 | 3.17 | 3.06 | 17.83 | 17.58 | 24.59 | 22.73 | 20.00 | 6.26 | 4.92 | 3.26 | 5.44 | 11.20 |
Festuca nardifolia | 11.93 | 14.18 | 9.58 | 3.05 | 3.21 | 3.44 | 3.99 | 4.50 | 4.86 | 10.41 | 3.62 | 4.61 | 6.45 |
Deyeuxia chrysantha | 0.56 | 0.31 | 0.16 | 9.59 | 10.65 | 4.17 | 6.02 | 3.88 | 3.01 | 0.50 | 0.26 | 0.51 | 3.30 |
Agrostis tolucencis | 0.26 | 0.04 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.51 | 0.05 | 0.06 | 0.00 | 0.08 |
Deyeuxia jamesonii | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.28 | 0.00 | 0.00 | 0.00 | 0.03 |
Sub–total | 33.2 | 29.9 | 33.1 | 41.4 | 42.8 | 46.1 | 43.7 | 41.7 | 40.4 | 30.6 | 27.7 | 27.2 | 36.5 |
Dry –grassland grasses | |||||||||||||
Deyeuxia deserticola | 21.05 | 23.76 | 23.69 | 20.14 | 20.11 | 20.64 | 22.05 | 19.79 | 15.03 | 25.12 | 29.20 | 23.31 | 21.99 |
Festuca ortophylla | 12.46 | 13.30 | 18.36 | 0.90 | 1.16 | 2.86 | 3.16 | 5.47 | 8.12 | 8.97 | 12.88 | 11.41 | 8.25 |
Deyeuxia heterophylla | 14.86 | 12.13 | 10.26 | 2.48 | 1.06 | 0.38 | 1.65 | 1.70 | 6.19 | 7.88 | 9.31 | 9.15 | 6.42 |
Deyeuxia antoniana | 0.00 | 0.00 | 0.00 | 0.48 | 0.14 | 0.18 | 0.00 | 0.58 | 0.33 | 0.05 | 0.00 | 0.00 | 0.15 |
Deyeuxia breviaristata | 0.00 | 0.06 | 0.04 | 0.62 | 0.77 | 0.93 | 0.31 | 0.32 | 0.17 | 0.00 | 0.00 | 0.00 | 0.27 |
Poa lilloi | 0.58 | 1.50 | 2.25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.28 | 0.00 | 0.21 | 0.44 | 0.44 |
Stipa leptostachia | 0.41 | 0.08 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.45 | 0.43 | 0.17 | 0.44 | 0.17 |
Sub–total | 49.4 | 50.8 | 54.7 | 24.6 | 23.2 | 25.0 | 27.2 | 27.9 | 30.6 | 42.5 | 51.8 | 44.7 | 37.7 |
Graminoids | |||||||||||||
Oxychloe andina | 3.81 | 3.58 | 1.61 | 7.79 | 10.06 | 11.58 | 10.24 | 11.60 | 7.13 | 4.81 | 5.24 | 3.56 | 6.75 |
Distichia muscoides | 4.10 | 4.52 | 1.10 | 3.69 | 2.58 | 0.96 | 3.32 | 2.65 | 7.24 | 4.68 | 2.99 | 7.06 | 3.74 |
Carex incurvula | 4.12 | 5.25 | 2.54 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 3.86 | 9.32 | 4.57 | 5.77 | 2.96 |
Scirpus sp. | 0.00 | 0.00 | 0.00 | 0.54 | 1.18 | 0.48 | 0.70 | 0.13 | 0.44 | 0.60 | 0.12 | 0.05 | 0.35 |
Juncus sp. | 0.00 | 0.00 | 0.00 | 0.50 | 1.69 | 0.12 | 0.53 | 0.18 | 0.09 | 0.11 | 0.00 | 0.00 | 0.27 |
Eleocharis pseudoalbibracteata | 0.00 | 0.00 | 0.00 | 0.48 | 0.80 | 0.50 | 0.34 | 0.41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.21 |
Sub–total | 12.0 | 13.4 | 5.2 | 13.0 | 16.3 | 13.6 | 15.1 | 15.0 | 18.8 | 19.5 | 12.9 | 16.4 | 14.3 |
Dicotyledonous herbs | |||||||||||||
Gentiana prostrata | 0.00 | 0.00 | 0.00 | 10.81 | 9.35 | 7.71 | 9.30 | 9.65 | 0.24 | 0.00 | 0.05 | 0.00 | 3.92 |
Lilaeopsis andina | 3.09 | 5.12 | 5.96 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 7.00 | 5.30 | 4.39 | 7.27 | 3.18 |
Aa nervosa | 0.00 | 0.00 | 0.00 | 5.09 | 2.86 | 2.19 | 2.26 | 2.21 | 0.11 | 0.48 | 0.10 | 0.05 | 1.28 |
Cotula mexicana | 1.50 | 0.05 | 0.12 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.94 | 0.87 | 2.33 | 2.91 | 0.73 |
Miriophyllum acuaticum | 0.22 | 0.00 | 0.00 | 0.87 | 1.39 | 1.85 | 0.62 | 0.19 | 0.35 | 0.20 | 0.00 | 0.32 | 0.50 |
Ranunculus uniflorus | 0.11 | 0.68 | 0.74 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.56 | 0.43 | 0.61 | 1.06 | 0.35 |
Hypochaeris etchegarai | 0.00 | 0.00 | 0.04 | 0.31 | 0.33 | 0.47 | 0.09 | 0.06 | 0.17 | 0.00 | 0.00 | 0.00 | 0.12 |
Pratia repens | 0.45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.25 | 0.00 | 0.00 | 0.00 | 0.06 |
Alchemilla diplophylla | 0.05 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.30 | 0.00 | 0.00 | 0.00 | 0.03 |
Plantago barbata | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.12 | 0.05 | 0.00 | 0.05 | 0.02 |
Werneria pygmaea | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.05 | 0.00 | 0.01 |
Pacezia pygmaea | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 |
Alchemilla pinnata | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.01 |
Astragalus sp. | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.01 |
Sub–total | 5.4 | 5.9 | 6.9 | 17.1 | 13.9 | 12.2 | 12.3 | 12.1 | 10.1 | 7.4 | 7.5 | 11.7 | 10.2 |
Woody species | |||||||||||||
Parastrephia lucida | 0.00 | 0.00 | 0.00 | 3.86 | 3.73 | 3.08 | 1.77 | 3.32 | 0.08 | 0.00 | 0.10 | 0.00 | 1.33 |
Plant Species | |||||
---|---|---|---|---|---|
Month | F. orthophylla | D. curvula | C. incurva | O. andina | D. muscoides |
January | –0.44 ± 0.09 | –0.36 ± 0.23 | –0.16 ± 0.30 | –0.47 ± 0.18 | –0.35 ± 0.26 |
February | –0.41 ± 0.11 | –0.57 ± 0.22 | –0.10 ± 0.43 | –0.50 ± 0.22 | –0.34 ± 0.32 |
March | –0.27 ± 0.10 | –0.50 ± 0.24 | –0.35 ± 0.21 | –0.74 ± 0.16 | –0.78 ± 0.19 |
April | –0.95 ± 0.05 | 0.09 ± 0.08 | –1.00 | –0.46 ± 0.13 | –0.20 ± 0.54 |
May | –0.93 ± 0.04 | 0.08 ± 0.07 | –1.00 | –0.35 ± 0.16 | –0.33 ± 0.48 |
June | –0.84 ± 0.07 | 0.25 ± 0.03 | –1.00 | –0.28 ± 0.10 | –0.71 ± 0.40 |
July | –0.82 ± 0.06 | 0.21 ± 0.05 | –1.00 | –0.35 ± 0.17 | –0.27 ± 0.54 |
August | –0.71 ± 0.08 | 0.15 ± 0.07 | –0.95 ± 0.16 | –0.28 ± 0.09 | –0.28 ± 0.46 |
September | –0.61 ± 0.19 | –0.43 ± 0.22 | 0.21 ± 0.43 | –0.49 ± 0.12 | 0.22 ± 0.31 |
October | –0.56 ± 0.11 | –0.51 ± 0.14 | 0.49 ± 0.50 | –0.63 ± 0.14 | –0.03 ± 0.49 |
November | –0.43 ± 0.11 | –0.65 ± 0.15 | 0.38 ± 0.14 | –0.61 ± 0.18 | –0.13 ± 0.23 |
December | –0.49 ± 0.22 | –0.36 ± 0.20 | 0.03 ± 0.22 | –0.50 ± 0.21 | –0.10 ± 0.25 |
Mean | –0.62 ± 0.24 | –0.22 ± 0.37 | –0.37 ± 0.62 | –0.47 ± 0.20 | –0.28 ± 0.46 |
Woody Species | Wet–Grassland Grasses | Dry–Grassland Grasses | Graminoids | Herbs | |
---|---|---|---|---|---|
N Fecal Nitrogen | –0.2768 | –0.3555 | 0.4031 | –0.2434 | –0.2231 |
n | 144 | 144 | 144 | 144 | 144 |
p-Value | 0.0009 | 0.0001 | 0.0001 | 0.0036 | 0.0076 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castellaro, G.; Orellana, C.; Escanilla, J.; Bastías, C.; Cerpa, P.; Raggi, L. Botanical Composition and Diet Quality of the Vicuñas (Vicugna vicugna Mol.) in Highland Range of Parinacota, Chile. Animals 2020, 10, 1205. https://doi.org/10.3390/ani10071205
Castellaro G, Orellana C, Escanilla J, Bastías C, Cerpa P, Raggi L. Botanical Composition and Diet Quality of the Vicuñas (Vicugna vicugna Mol.) in Highland Range of Parinacota, Chile. Animals. 2020; 10(7):1205. https://doi.org/10.3390/ani10071205
Chicago/Turabian StyleCastellaro, Giorgio, Carla Orellana, Juan Escanilla, Camilo Bastías, Patrich Cerpa, and Luis Raggi. 2020. "Botanical Composition and Diet Quality of the Vicuñas (Vicugna vicugna Mol.) in Highland Range of Parinacota, Chile" Animals 10, no. 7: 1205. https://doi.org/10.3390/ani10071205
APA StyleCastellaro, G., Orellana, C., Escanilla, J., Bastías, C., Cerpa, P., & Raggi, L. (2020). Botanical Composition and Diet Quality of the Vicuñas (Vicugna vicugna Mol.) in Highland Range of Parinacota, Chile. Animals, 10(7), 1205. https://doi.org/10.3390/ani10071205