Influence of Phytase Supplementation at Increasing Doses from 0 to 1500 FTU/kg on Growth Performance, Nutrient Digestibility, and Bone Status in Grower–Finisher Pigs Fed Phosphorus-Deficient Diets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Pigs
2.2. Experimental Design
2.3. Feed Analysis
2.4. Sampling and Measurements
2.5. Bone Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Humer, E.; Schwarz, C.; Schedle, K. Phytate in pig and poultry nutrition. J. Anim. Physiol. Anim. Nutr. 2015, 99, 605–625. [Google Scholar] [CrossRef]
- Oster, M.; Just, F.; Büsing, K.; Wolf, P.; Polley, C.; Vollmar, B.; Muráni, E.; Ponsuksili, S.; Wimmers, K. Toward improved phosphorus efficiency in monogastrics—Interplay of serum, minerals, bone, and immune system after divergent dietary phosphorus supply in swine. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 310, R917–R925. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, T.H.; Lewis, K.O.; Cooper, B.T. Phytase activity in the human and rat small intestine. Gut 1994, 35, 1233–1236. [Google Scholar] [CrossRef] [Green Version]
- Walz, O.P.; Pallauf, J. Microbial phytase combined with amino acid supplementation reduces P and N excretion of growing and finishing pigs without loss of performance. Int. J. Food Sci. Technol. 2002, 37, 835–848. [Google Scholar] [CrossRef]
- Woyengo, T.A.; Nyachoti, C.M. Anti-nutritional effects of phytic acid in diets for pigs and poultry—Current knowledge and directions for future research. Can. J. Anim. Sci. 2013, 93, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Kornegay, E.T.; Qian, H. Replacement of inorganic P by microbial phytase for young pigs fed on a maize-soybean-meal diet. Br. J. Nutr. 1996, 76, 563–578. [Google Scholar] [CrossRef] [Green Version]
- El-Hack, M.E.A.; Alagawany, M.E.; Arif, M.; Emam, M.; Saeed, M.M.; Arain, M.A.; Siyal, F.A.; Patra, A.; Elnesr, S.S.; Khan, R.U. The uses of microbial phytase as a feed additive in poultry nutrition—A review. Ann. Anim. Sci. 2018, 18, 639–658. [Google Scholar] [CrossRef] [Green Version]
- Augspurger, N.R.; Webel, D.M.; Lei, X.G.; Baker, D.H. Efficacy of an E. coli phytase expressed in yeast for releasing phytate-bound phosphorus in young chicks and pigs. J. Anim. Sci. 2003, 81, 474–483. [Google Scholar] [CrossRef] [Green Version]
- Adeola, O.; Olukosi, O.A.; Jendza, J.A.; Dilger, R.N.; Bedford, M.R. Response of growing pigs to Peniophora lycii- and Escherichia coli-derived phytases or varying ratios of calcium to total phosphorus. Anim. Sci. 2006, 82, 637–644. [Google Scholar] [CrossRef]
- Rey, C.; Combes, C.; Drouet, C.; Glimcher, M.J. Bone mineral: Update on chemical composition and structure. Ostoporos. Int. 2009, 20, 1013–1021. [Google Scholar]
- Tomaszewska, E.; Muszyński, S.; Dobrowolski, P.; Kamiński, D.; Czech, A.; Grela, E.R.; Wiącek, D.; Tomczyk-Warunek, A. Dried fermented post-extraction rapeseed meal given to sows as an alternative protein source for soybean meal during pregnancy improves bone development of their offspring. Livest. Sci. 2019, 224, 60–68. [Google Scholar] [CrossRef]
- Friendship, R.M.; Wilson, M.R.; Almond, G.W.; McMillan, I.; Hacker, R.R.; Pieper, R.; Swaminathan, S.S. Sow wastage: Reasons for and effect on productivity. Can. J. Vet. Res. 1986, 50, 205–208. [Google Scholar]
- Jensen, T.B.; Kristensen, H.H.; Toft, N. Quantifying the impact of lameness on welfare and profitability of finisher pigs using expert opinions. Livest. Sci. 2012, 149, 209–214. [Google Scholar] [CrossRef]
- EFSA. Scientific opinion on the safety and efficacy of Ronozyme® HiPhos M/L (6-phytase) as a feed additive for poultry and pigs. EFSA J. 2012, 10, 2527. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Swine, 11th ed.; National Academy Press: Washington, DC, USA, 2012. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 20th ed.; Association of Official Analytical Chemists International: Gaithersburg, MD, USA, 2016. [Google Scholar]
- Engelen, A.J.; van der Heeft, F.C.; Randsdorp, P.H.; Somers, W.A.; Schaefer, J.; van der Vat, B.J. Determination of phytase activity in feed by a colorimetric enzymatic method: Collaborative interlaboratory study. J. AOAC Int. 2001, 84, 629–633. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, E.Y.; Early, R.J. Analysis of chromic oxide in small samples of feeds and feces using chlorine bleach. Can. J. Anim. Sci. 1991, 71, 931–934. [Google Scholar] [CrossRef]
- Brestenský, M.; Nitrayová, S.; Heger, J.; Patráš, P. Chromic oxide and acid-insoluble ash as markers in digestibility studies with growing pigs and sows. J. Anim. Physiol. Anim. Nutr. 2017, 101, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Adeola, O. Digestion and balance techniques in pigs. In Swine Nutrition, 2nd ed.; Lewis, A.J., Southern, L.L., Eds.; CRC Press: Washington, DC, USA, 2001; pp. 903–916. [Google Scholar]
- Teixeira, A.O.; Anderson Corassa, A.; Moreira, L.M.; Nogueira, E.T.; Lopes, J.B.; Rocha, C.M., Jr.; Ferreira, V.P.A. Bone characteristics of pigs fed different sources of phosphorus. Rev. Colom. Cienc. Pecua 2016, 29, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Santos, T.T.; Walk, C.L.; Wilcock, P.; Cordero, G.; Chewning, J. Performance and bone characteristics of growing pigs fed diets marginally deficient in available phosphorus and a novel microbial phytase. Can. J. Anim. Sci. 2014, 94, 493–497. [Google Scholar] [CrossRef]
- Crenshaw, T.D.; Peo, E.R., Jr.; Lewis, A.J.; Moser, B.D.; Olson, D.G. Influence of age, sex and calcium and phosphorus levels on the mechanical properties of various bones in swine. J. Anim. Sci. 1981, 52, 1319–1329. [Google Scholar] [CrossRef] [Green Version]
- Saraiva, A.; Donzele, J.L.; Oliveira, R.F.M.; Abreu, M.L.T.; Silva, F.C.O.; Guimarães, S.E.F.; Kim, S.W. Phosphorus requirements for 60- to 100-kg pigs selected for high lean deposition under different thermal environments. J. Anim. Sci. 2012, 90, 1499–1505. [Google Scholar] [CrossRef]
- Storskrubb, A.; Sevón-Aimonen, M.L.; Uimari, P. Genetic parameters for bone strength, osteochondrosis and meat percentage in Finnish Landrace and Yorkshire pigs. Animal 2010, 4, 1319–1324. [Google Scholar] [CrossRef]
- Shaw, D.T.; Rozeboom, D.W.; Hill, G.M.; Orth, M.W.; Rosenstein, D.S.; Link, J.E. Impact of supplement withdrawal and wheat middling inclusion on bone metabolism, bone strength, and the incidence of bone fractures occurring at slaughter in pigs. J. Anim. Sci. 2006, 84, 1138–1146. [Google Scholar] [CrossRef] [Green Version]
- Pointillart, A.; Guéguen, L. Meal-feeding and phosphorus ingestion influence calcium bioavailability evaluated by calcium balance and bone breaking strength in pigs. Bone Miner. 1993, 21, 75–81. [Google Scholar] [CrossRef]
- Tomaszewska, E.; Dobrowolski, P.; Kwiecień, M.; Winiarska-Mieczan, A.; Tomczyk, A.; Muszyński, S.; Gładyszewska, B. Dose-dependent influence of dietary Cu-glycine complex on bone and hyaline cartilage development in adolescent rats. Ann. Anim. Sci. 2017, 17, 1089–1105. [Google Scholar] [CrossRef] [Green Version]
- Muszyński, S.; Kwiecień, M.; Tomaszewska, E.; Świetlicka, I.; Dobrowolski, P.; Kasperek, K.; Jeżewska-Witkowska, G. Effect of caponization on performance and quality characteristics of long bones in Polbar chickens. Poult. Sci. 2017, 96, 491–500. [Google Scholar] [CrossRef]
- Jee, W.S.S. Principles in bone physiology. J. Musculoskel. Neuron. Interact. 2000, 1, 11–13. [Google Scholar]
- Clarke, B. Normal bone anatomy and physiology. Clin. J. Am. Soc. Nephrol. 2008, 3, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Kühn, I.; Schollenberger, M.; Männer, K. Effect of dietary phytase level on intestinal phytate degradation and bone mineralization in growing pigs. J. Anim. Sci. 2016, 94, 264–267. [Google Scholar] [CrossRef]
- Kierończyk, B.; Rawski, M.; Józefiak, D.; Świątkiewicz, S. Infectious and non-infectious factors associated with leg disorders in poultry—A review. Ann. Anim. Sci. 2017, 17, 645–669. [Google Scholar]
- Dersjant-Lia, Y.; Wealleans, A.L.; Barnard, L.P.; Lane, S. Effect of increasing Buttiauxella phytase dose on nutrient digestibility and performance in weaned piglets fed corn or wheat based diets. Anim. Feed Sci. Technol. 2017, 234, 101–109. [Google Scholar] [CrossRef]
- Schlegel, P.; Gutzwiller, A. Dietary calcium to digestible phosphorus ratio for optimal growth performance and bone mineralization in growing and finishing pigs. Animals 2020, 10, 178. [Google Scholar] [CrossRef] [Green Version]
- Blavi, L.; Muñoz, C.J.; Broomhead, J.N.; Stein, H.H. Effects of a novel corn-expressed E. coli phytase on digestibility of calcium and phosphorous, growth performance, and bone ash in young growing pigs. J. Anim. Sci. 2019, 97, 3390–3398. [Google Scholar] [CrossRef]
- Tsai, T.C.; Dove, R.; Bedford, M.R.; Azain, M.J. Effect of phytase on phosphorous balance in 20-kg barrows fed low or adequate phosphorous diets. Anim. Nutr. J. 2020, 6, 9–15. [Google Scholar]
- Varley, P.F.; Flynn, B.; Callan, J.J.; O’Doherty, J.V. Effect of phytase level in a low phosphorus diet on performance and bone development in weaner pigs and the subsequent effect on finisher pig bone development. Livest. Sci. 2011, 138, 152–158. [Google Scholar] [CrossRef]
- Wiśniewska, M.; Nollet, L.; Lanckriet, A.; Vanderbeke, E.; Petkov, S.; Outchkourov, N.; Kasprowicz-Potocka, M.; Zaworska-Zakrzewska, A.; Kaczmarek, S.A. Effect of phytase derived from the E. coli AppA gene on weaned piglet performance, apparent total tract digestibility and bone mineralization. Animals 2020, 10, 121. [Google Scholar]
- Tomaszewska, E.; Kwiecień, M.; Muszyński, S.; Dobrowolski, P.; Kasperek, K.; Blicharski, T.; Jeżewska-Witkowska, G.; Grela, E.R. Long-bone properties and development are affected by caponisation and breed in Polish fowls. Br. Poult. Sci. 2017, 58, 312–318. [Google Scholar] [CrossRef]
- Tomaszewska, E.; Kwiecień, M.; Dobrowolski, P.; Klebaniuk, R.; Muszyński, S.; Olcha, M.; Blicharski, T.; Grela, E.R. Dose-dependent effects of probiotic supplementation on bone characteristic and mineralization in female turkeys. Anim. Prod. Sci. 2018, 58, 507–516. [Google Scholar] [CrossRef]
- Tomaszewska, E.; Muszyński, S.; Dobrowolski, P.; Kostro, K.; Jakubczak, A.; Taszkun, I.; Żmuda, A.; Blicharski, T.; Kędzia, P. Bentonite diminishes DON-induced changes in bone development in mink dams. J. Vet. Res. 2016, 60, 349–355. [Google Scholar] [CrossRef] [Green Version]
- Lawlor, P.G.; Cozannet, P.; Ryan, W.F.; Lynch, P.B. Effect of a combination phytase and carbohydrolase enzyme supplement on growth performance and bone mineralization of pigs from six weeks to slaughter at 105 kg. Livest. Sci. 2019, 223, 144–150. [Google Scholar] [CrossRef] [Green Version]
- de Faria, H.G.; Thomaz, M.C.; dos Santos Ruiz, U.; Robles-Huaynate, R.A.; Watanabe, P.H.; de Melo, G.M.P.; da Silva, S.Z. Effects of phytase on pig diets digestibilities, bone mineral deposition, performance and manure production. Semina Ciênc. Agrár. 2015, 36 (Suppl. 2), 4519–4530. [Google Scholar]
- Miesorski, M.; Gerlinger, C.; Borgelt, L.; Lieboldt, M.A.; Oster, M.; Wimmers, K.; Wolf, P. Bone mineralization as diagnostic parameter for the assessment of dietary phosphorous supply in pigs—Are there differences between bones? In Proceedings of the 22nd Congress of the European Society of Veterinary and Comparative Nutrition, Munich, Germany, 6–8 September 2018. [Google Scholar]
- Bernau, M.; Schrott, J.; Schwanitz, S.; Kreuzer, L.S.; Scholz, A.M. “Sex” and body region effects on bone mineralization in male pigs. Arch. Anim. Breed. 2020, 63, 103–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kääntee, E. The significance of the ash content of the third metacarpal bone for the diagnosis of Ca deficiency in the pig. Nord. Vet. Med. 1983, 35, 287–291. [Google Scholar] [PubMed]
- Badoux, D.M. An introduction to biomechanical principles in primate locomotion and structure. In Primate Locomotion; Jenkins, A., Jr., Ed.; Academic Press: New York, NY, USA, 1974; pp. 1–43. [Google Scholar]
- Rudyk, H.; Tomaszewska, E.; Kotsyumbas, I.; Muszyński, S.; Tomczyk-Warunek, A.; Szymańczyk, S.; Dobrowolski, P.; Wiącek, D.; Kamiński, D.; Brezvyn, O. Bone homeostasis in experimental fumonisins intoxication of rats. Ann. Anim. Sci. 2019, 19, 403–419. [Google Scholar] [CrossRef] [Green Version]
- Tomaszewska, E.; Muszyński, S.; Dobrowolski, P.; Wiącek, D.; Tomczyk-Warunek, A.; Świetlicka, I.; Pierzynowski, S.G. Maternal HMB treatment affects bone and hyaline cartilage development in their weaned piglets via the leptin/osteoprotegerin system. J. Anim. Physiol. Anim. Nutr. 2019, 103, 626–643. [Google Scholar] [CrossRef]
- Śliwa, E. 2-Oxoglutaric acid administration diminishes fundectomy-induced osteopenia in pigs. J. Anim. Physiol. Anim. Nutr. 2010, 84, e86–e95. [Google Scholar] [CrossRef]
- Hart, N.H.; Nimphius, S.; Rantalainen, T.; Ireland, A.; Siafarikas, A.; Newton, R.U. Mechanical basis of bone strength: Influence of bone material, bone structure and muscle action. J. Musculoskelet. Neuronal Interac. 2017, 17, 114–139. [Google Scholar]
- Ferretti, J.L.; Capozza, R.F.; Mondelo, N.; Zanchetta, J.R. Interrelationships between densitometric, geometric, and mechanical properties of rat femora: Inferences concerning mechanical regulation of bone modeling. J. Bone Miner. Res. 1993, 8, 1389–1396. [Google Scholar] [CrossRef]
- Tomaszewska, E.; Muszyński, S.; Dobrowolski, P.; Kwiecień, M.; Klebaniuk, R.; Szymańczyk, S.; Tomczyk, A.; Kowalik, S.; Milczarek, A.; Świetlicka, I. The influence of dietary replacement of soybean meal with high-tannin faba beans on gut-bone axis and metabolic response in broiler chickens. Ann. Anim. Sci. 2018, 18, 801–824. [Google Scholar] [CrossRef] [Green Version]
- van der Meulen, M.C.H.; Jepsen, K.J.; Mikić, B. Understanding bone strength: Size isn’t everything. Bone 2011, 29, 101–104. [Google Scholar] [CrossRef]
- Milgrom, C.; Giladi, M.; Simkin, A.; Rand, N.; Kedem, R.; Kashtan, H.; Stein, M.; Gomori, M. The area moment of inertia of the tibia: A risk factor for stress fractures. J. Biomech. 1989, 22, 1243–1248. [Google Scholar] [CrossRef]
- Flis, M.; Gugała, D.; Muszyński, S.; Dobrowolski, P.; Kwiecień, M.; Grela, E.R.; Tomaszewska, E. The influence of the partial replacing of inorganic salts of calcium, zinc, iron and copper with amino acid complexes on bone development in male pheasants from aviary breeding. Animals 2019, 9, 237. [Google Scholar] [CrossRef] [Green Version]
Ingredient (%) | Grower (~35–70 kg) | Finisher (~70–110 kg) | ||
---|---|---|---|---|
NC | PC | NC | PC | |
Barley | 34.98 | 35.09 | 39.94 | 40.07 |
Wheat | 29.00 | 28.00 | 28.60 | 27.50 |
Triticale | 15.00 | 15.00 | 15.00 | 15.00 |
Soybean meal, 45% CP | 16.90 | 17.10 | 13.70 | 13.90 |
Di-calcium phosphate | 0.50 | 1.05 | 0.25 | 0.80 |
Limestone | 0.58 | 0.52 | 0.63 | 0.56 |
Methionine | 0.05 | 0.05 | 0.04 | 0.04 |
L-lysine HCl | 0.32 | 0.32 | 0.28 | 0.27 |
Sodium chloride | 0.47 | 0.47 | 0.47 | 0.47 |
Soybean oil | 1.60 | 1.80 | 0.50 | 0.80 |
L-threonine | 0.10 | 0.10 | 0.09 | 0.09 |
Mineral-vitamin premix * | 0.50 | 0.50 | 0.50 | 0.50 |
Total | 100.00 | 100.00 | 100.00 | 100.00 |
Treatment 1 | NC | NC + 250 | NC + 500 | NC + 1000 | NC + 1500 | PC |
---|---|---|---|---|---|---|
Grower | ||||||
Dry matter | 876.5 | 873.0 | 879.8 | 880.3 | 882.3 | 87.93 |
Crude ash | 41.1 | 41.2 | 41.5 | 39.8 | 40.2 | 41.1 |
Crude protein | 180.4 | 177.6 | 179.9 | 179.5 | 179.7 | 180.1 |
Ether extract | 34.2 | 33.4 | 32.6 | 29.8 | 32.8 | 30.5 |
Crude fibre | 17.2 | 18.0 | 16.3 | 15.7 | 15.8 | 15.8 |
Nitrogen free extract | 603.6 | 602.8 | 609.5 | 615.5 | 613.8 | 611.8 |
Calcium | 5.51 | 5.45 | 5.47 | 5.49 | 5.57 | 6.62 |
Total phosphorus | 4.82 | 4.74 | 4.75 | 4.78 | 4.83 | 5.69 |
Phytase activity (FTU/kg) | 187 | 411 | 639 | 1081 | 1574 | 195 |
Finisher | ||||||
Dry matter | 871.6 | 867.7 | 869.2 | 871.3 | 868.9 | 869.7 |
Crude ash | 42.6 | 43.2 | 42.8 | 43.9 | 40.1 | 43.6 |
Crude protein | 163.2 | 162.5 | 162.6 | 161.3 | 161.1 | 162.8 |
Ether extract | 28.9 | 25.0 | 21.0 | 23.8 | 22.5 | 22.3 |
Crude fibre | 19.9 | 19.7 | 20.2 | 21.2 | 21.9 | 21.6 |
Nitrogen free extract | 617.0 | 617.3 | 622.6 | 621.1 | 623.3 | 619.4 |
Calcium | 4.94 | 4.92 | 4.98 | 4.95 | 4.94 | 6.09 |
Total phosphorus | 4.25 | 4.23 | 4.29 | 4.27 | 4.31 | 5.27 |
Phytase activity (FTU/kg) | 209 | 394 | 699 | 1160 | 1577 | 205 |
Treatment 1 | FI Grower, kg | FI Finisher, kg | FI Mean, kg | ADG Grower, kg/Day | ADG Finisher, kg/Day | ADG Mean, kg/Day | FCR Grower, kg/kg | FCR Finisher, kg/kg | FCR Mean, kg/kg |
---|---|---|---|---|---|---|---|---|---|
NC 2 | 1.98 | 2.61 | 2.35 | 0.789 a | 0.835 a | 0.815 a | 2.51 b | 3.12 b | 2.85 b |
250 3 | 1.99 | 2.40 | 2.24 | 0.820 ab | 0.846 ab | 0.836 ab | 2.42 ab | 3.02 ab | 2.75 ab |
500 3 | 1.97 | 2.55 | 2.31 | 0.851 ab | 0.845 ab | 0.849 ab | 2.31 a | 2.98 ab | 2.68 a |
1000 3 | 1.96 | 2.54 | 2.30 | 0.864 b | 0.874 b | 0.870 b | 2.27 a | 2.89 a | 2.60 a |
1500 3 | 1.98 | 2.56 | 2.37 | 0.849 ab | 0.849 ab | 0.849 ab | 2.32 a | 3.00 ab | 2.77 ab |
PC 4 | 1.96 | 2.55 | 2.31 | 0.862 b | 0.852 ab | 0.856 b | 2.27 a | 2.99 ab | 2.68 a |
SEM 5 | 0.16 | 0.14 | 0.09 | 0.046 | 0.023 | 0.024 | 0.12 | 0.14 | 0.10 |
p-value | |||||||||
TRT 6 | 0.999 | 0.116 | 0.276 | 0.015 | 0.044 | 0.001 | <0.001 | 0.052 | <0.001 |
PHY 7 | 0.999 | 0.120 | 0.232 | 0.033 | 0.022 | 0.003 | 0.001 | 0.033 | <0.001 |
Linear 8 | 0.929 | 0.752 | 0.885 | 0.005 | 0.035 | 0.029 | <0.001 | 0.024 | <0.001 |
Quadratic 8 | 0.959 | 0.149 | 0.116 | 0.106 | 0.175 | 0.032 | 0.030 | 0.047 | 0.004 |
Treatment 1 | OMDC Grower | OMDC Finisher | Ca Grower | Ca Finisher | Ca Mean | P Grower | P Finisher | P Mean |
---|---|---|---|---|---|---|---|---|
NC 2 | 84.1 | 85.0 | 52.8 a | 62.9 a | 57.8 a | 39.4 a | 49.1 a | 44.2 a |
250 3 | 84.2 | 85.2 | 53.8 ab | 64.2 ab | 59.0 ab | 46.3 b | 56.2 b | 51.2 b |
500 3 | 84.5 | 85.7 | 53.4 ab | 64.7 b | 59.1 ab | 50.1 cd | 62.4 c | 56.3 c |
1000 3 | 84.7 | 85.7 | 55.1 bc | 65.1 b | 60.1 b | 52.7 de | 66.9 d | 59.7 d |
1500 3 | 84.7 | 85.6 | 55.1 bc | 64.9 b | 60.0 b | 54.7 e | 68.1 d | 61.4 d |
PC 4 | 84.3 | 85.4 | 55.6 c | 64.5 b | 60.1 b | 48.5 c | 64.4 c | 56.5 c |
SEM 5 | 0.5 | 0.6 | 1.2 | 0.9 | 0.8 | 1.7 | 1.5 | 1.2 |
p-value | ||||||||
TRT 6 | 0.156 | 0.211 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
PHY 7 | 0.141 | 0.123 | 0.003 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Linear 8 | 0.012 | 0.020 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Quadratic 8 | 0.769 | 0.296 | 0.096 | 0.011 | 0.187 | <0.001 | <0.001 | <0.001 |
Treatment 1 | Ash, % | Ca, g/kg | P, g/kg | Ca:P |
---|---|---|---|---|
NC 2 | 42.8 | 168 | 72.0 a | 2.34 b |
250 3 | 43.8 | 170 | 73.7 ab | 2.30 ab |
500 3 | 43.7 | 171 | 75.0 bc | 2.29 ab |
1000 3 | 44.0 | 172 | 77.2 c | 2.23 a |
1500 3 | 44.0 | 171 | 76.6 c | 2.24 ab |
PC 4 | 43.7 | 172 | 75.9 bc | 2.26 ab |
SEM 5 | 1.1 | 3 | 1.6 | 0.07 |
p-value | ||||
TRT 6 | 0.314 | 0.048 | <0.001 | 0.024 |
PHY 7 | 0.227 | 0.038 | <0.001 | 0.028 |
Linear 8 | 0.062 | 0.005 | <0.001 | 0.002 |
Quadratic 8 | 0.319 | 0.135 | 0.096 | 0.623 |
Treatment 1 | Weight, g | Length, cm | Cortical index, % | CSA, mm2 | CSMI, cm4 | BMD, g/cm2 | BMC, g | Ash, % |
---|---|---|---|---|---|---|---|---|
NC 2 | 261 a | 18.4 ab | 41.0 bc | 295 bc | 1.38 a | 1.05 | 73.5 | 64.8 a |
250 3 | 276 ab | 18.5 ab | 40.2 abc | 321 c | 1.81 b | 1.07 | 79.2 | 66.6 b |
500 3 | 263 a | 18.5 ab | 41.7 bc | 326 c | 1.86 b | 1.09 | 78.3 | 68.2 c |
1000 3 | 265 a | 18.8 ab | 33.5 a | 230 a | 1.04 a | 1.19 | 85.4 | 68.4 c |
1500 3 | 306 b | 19.2 b | 39.2 ab | 264 ab | 1.21 a | 1.14 | 90.5 | 67.5 bc |
PC 4 | 259 a | 18.3 a | 46.9 c | 296 bc | 1.23 a | 1.14 | 80.8 | 67.0 bc |
SEM 5 | 23 | 5.6 | 4.7 | 35.9 | 0.36 | 0.20 | 16.2 | 1.0 |
p-value | ||||||||
TRT 6 | <0.001 | 0.027 | <0.001 | <0.001 | <0.001 | 0.773 | 0.387 | <0.001 |
PHY 7 | <0.001 | 0.013 | 0.011 | <0.001 | <0.001 | 0.716 | 0.288 | <0.001 |
Linear 8 | 0.001 | 0.001 | 0.060 | <0.001 | 0.007 | 0.223 | 0.094 | <0.001 |
Quadratic 8 | 0.001 | 0.151 | 0.576 | 0.061 | 0.005 | 0.862 | 0.754 | <0.001 |
Treatment 1 | Stiffness, kN/mm | Yield Force, kN | Breaking Force, kN | Young’s Modulus, GPa | Yield Strain, % | Yield Stress, MPa | Breaking Strain, % | Breaking Stress, MPa |
---|---|---|---|---|---|---|---|---|
NC 2 | 1.76 ab | 4.25 | 5.04 b | 0.74 a | 9.58 c | 70.0 ab | 12.34 b | 83.4 a |
250 3 | 1.91 ab | 4.18 | 5.37 b | 0.74 a | 8.23 bc | 58.6 a | 15.9 b | 74.4 a |
500 3 | 1.92 ab | 4.40 | 4.12 a | 0.79 ab | 5.83 a | 64.5 a | 8.51 a | 74.1 a |
1000 3 | 2.16 b | 4.50 | 5.22 b | 1.45 c | 6.77 ab | 92.2 b | 8.63 a | 108.7 b |
1500 3 | 1.67 a | 4.35 | 4.69 ab | 1.21 bc | 6.91 ab | 81.1 ab | 9.16 a | 89.5 ab |
PC 4 | 2.05 ab | 4.42 | 5.30 b | 1.28 bc | 6.64 ab | 80.9 ab | 9.29 a | 95.9 b |
SEM 5 | 0.28 | 0.44 | 0.59 | 352 | 1.15 | 15.8 | 1.77 | 19.0 |
p-value | ||||||||
TRT 6 | 0.013 | 0.630 | <0.001 | <0.001 | <0.001 | 0.001 | <0.001 | 0.005 |
PHY 7 | 0.011 | 0.581 | 0.002 | <0.001 | <0.001 | 0.001 | <0.001 | 0.005 |
Linear 8 | 0.809 | 0.280 | 0.196 | <0.001 | <0.001 | 0.002 | <0.001 | 0.034 |
Quadratic 8 | 0.005 | 0.637 | 0.420 | 0.778 | <0.001 | 0.261 | 0.562 | 0.559 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grela, E.R.; Muszyński, S.; Czech, A.; Donaldson, J.; Stanisławski, P.; Kapica, M.; Brezvyn, O.; Muzyka, V.; Kotsyumbas, I.; Tomaszewska, E. Influence of Phytase Supplementation at Increasing Doses from 0 to 1500 FTU/kg on Growth Performance, Nutrient Digestibility, and Bone Status in Grower–Finisher Pigs Fed Phosphorus-Deficient Diets. Animals 2020, 10, 847. https://doi.org/10.3390/ani10050847
Grela ER, Muszyński S, Czech A, Donaldson J, Stanisławski P, Kapica M, Brezvyn O, Muzyka V, Kotsyumbas I, Tomaszewska E. Influence of Phytase Supplementation at Increasing Doses from 0 to 1500 FTU/kg on Growth Performance, Nutrient Digestibility, and Bone Status in Grower–Finisher Pigs Fed Phosphorus-Deficient Diets. Animals. 2020; 10(5):847. https://doi.org/10.3390/ani10050847
Chicago/Turabian StyleGrela, Eugeniusz R., Siemowit Muszyński, Anna Czech, Janine Donaldson, Piotr Stanisławski, Małgorzata Kapica, Oksana Brezvyn, Viktor Muzyka, Ihor Kotsyumbas, and Ewa Tomaszewska. 2020. "Influence of Phytase Supplementation at Increasing Doses from 0 to 1500 FTU/kg on Growth Performance, Nutrient Digestibility, and Bone Status in Grower–Finisher Pigs Fed Phosphorus-Deficient Diets" Animals 10, no. 5: 847. https://doi.org/10.3390/ani10050847
APA StyleGrela, E. R., Muszyński, S., Czech, A., Donaldson, J., Stanisławski, P., Kapica, M., Brezvyn, O., Muzyka, V., Kotsyumbas, I., & Tomaszewska, E. (2020). Influence of Phytase Supplementation at Increasing Doses from 0 to 1500 FTU/kg on Growth Performance, Nutrient Digestibility, and Bone Status in Grower–Finisher Pigs Fed Phosphorus-Deficient Diets. Animals, 10(5), 847. https://doi.org/10.3390/ani10050847