The Effect of Protozoa on the Bacterial Composition and Hydrolytic Activity of the Roe Deer Rumen
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal and Sample Collection
2.2. Determination of Protozoa Numbers
2.3. Bacterial Diversity Analysis
2.3.1. DNA Isolation
2.3.2. PCR Amplification
2.3.3. Restriction Enzyme Digestion of Amplicons
2.3.4. Exclusion Parameters for Analysis of Terminal Restriction Fragments (TRFs)
2.3.5. Analysis of Similarity Levels between TRF Patterns
2.4. Measurement of Hydrolytic Activity
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Hungate, R.E. The Rumen and its Microbes, 1st ed.; Academic Press. Inc.: New York, NY, USA, 1966. [Google Scholar]
- Chesson, A.; Forsberg, C.W. Polysaccharide degradation by rumen microorganisms. In The Rumen Microbial Ecosystem, 2nd ed.; Hobson, E., Stewart, C.S., Eds.; Blackie Academic and Professional: London, UK; Wheinheim, Germany; New York, NY, USA; Tokyo, Japan; Melbourne, Australia; Madras, India, 1997; pp. 329–381. [Google Scholar]
- Demeyer, D.; Doreau, M. Targets and procedures for altering ruminant meat and milk lipids. Proc. Nutr. Soc. 1999, 59, 593–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeVries, T.J.; Beauchemin, K.A.; Dohme, F.; Schwartzkopf-Genswein, K.S. Repeated ruminal acidosis challenges in lactating dairy cows at high and low risk for developing acidosis: Feeding, ruminating, and lying behavior. J. Dairy Sci. 2009, 92, 5067–5078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roche, J.R.; Friggens, N.; Kay, J.K.; Fisher, M.W.; Stafford, K.J.; Berry, D.P. Body condition score and its association with dairy cow productivity, health, and welfare. J. Dairy Sci. 2009, 92, 5769–5801. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.G.; Coleman, G.S. The Rumen Protozoa., 1st ed.; Springer-Verlag: New York, NY, USA; Berlin, Germany; Heidelberg, Germany; London, UK; Paris, France; Tokyo, Japan; Hong Kong, China; Barcelona, Spain; Budapest, Hungary, 1992. [Google Scholar]
- Dehority, B. Rumen microbiology, 1st ed.; Nottingham University Press: Nottingham, UK, 2003. [Google Scholar]
- Dehority, B.A.; Orpin, C.G. Development of, and natural fluctuactions in rumen microbial populations. In The Rumen Microbial Ecosystem, 2nd ed.; Hobson, P.N., Stewart, C.S., Eds.; Blackie Academic & Professional London: Weinheim, India; New York, NY, USA; Tokyo, Japan; Melbourne, Australia; Madras, India, 1997; pp. 196–235. [Google Scholar]
- Belanche, A.; de la Fuente, G.; Pinloche, E.; Newbold, C.J.; Balcells, J. Effect of diet and absence of protozoa on the rumen microbial community and on the representativeness of bacterial fractions used in the determination of microbial protein synthesis. J. Anim. Sci. 2012, 90, 3924–3936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miltko, R.; Bełżecki, G.; Herman, A.; Kowalik, B.; Skomiał, J. The effect of rumen ciliates on chitinolytic activity, chitin content and the number of fungal zoospores in the rumen fluid of sheep. Arch. Anim. Nutr. 2016, 70, 425–440. [Google Scholar] [CrossRef] [PubMed]
- Newbold, C.J.; de la Fuente, G.; Belanche, A.; Ramos-Morales, E.; McEwan, N.R. The role of ciliate protozoa in the rumen. Front Microbiol. 2015, 6, 1313. [Google Scholar] [CrossRef] [Green Version]
- Bełżecki, G.; McEwan, N.R.; Kowalik, B.; Michałowski, T.; Miltko, R. Effect of Entodinium caudatum on starch intake and glycogen formation by Eudiplodinium maggii in the rumen and reticulum. Eur. J. Protistol. 2017, 57, 38–49. [Google Scholar] [CrossRef] [Green Version]
- Miltko, R.; Bełżecki, G.; Kwiatkowska, E.; Michałowski, T. The ability of the rumen protozoan Eudiplodinium maggii to utilize chitin. Folia Microbiol. 2010, 55, 349–351. [Google Scholar] [CrossRef]
- Hofmann, R.R. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: Comparative view of their digestive system. Oecologia 1989, 78, 443–457. [Google Scholar] [CrossRef]
- Marcon, A.; Battocchio, D.; Apollonio, M.; Grignolio, S. Assessing precision and requirements of three methods to estimate roe deer density. PLoS ONE. 2019, 14, e0222349. [Google Scholar] [CrossRef]
- Andersen, R.; Duncan, P.; Linnell, J.D.C. The European Roe Deer: The Biology of Success; Scandinavian University Press: Oslo, Norwegian, 1998. [Google Scholar]
- Marinucci, M.T.; Capecci, A.; Riganelli, N.; Acuti, G.; Antonini, C.; Olivieri, O. Dietary preferences and ruminal protozoal populations in roe deer (Capreolus capreolus), fallow deer (Dama dama) and mouflon (Ovis musimon). Ital. J. Anim. Sci. 2005, 4, 401–403. [Google Scholar] [CrossRef]
- Cornelis, J.; Casaer, J.; Hermy, M. Impact of season, habitat and research techniques on diet composition of roe deer (Capreolus capreolus): A review. J. Zool. 1999, 248, 195–207. [Google Scholar] [CrossRef]
- Obidziński, A.; Kiełtyk, P.; Borkowski, J.; Bolibok, L. Autumn-winter diet overlap of fallow, red, and roe deer in forest ecosystems, Southern Poland. Cent. Eur. J. Biol. 2013, 8, 8–17. [Google Scholar] [CrossRef]
- Dogiel, V.A. Monographie der Familie Ophryoscolecidae. Arch. Protistenkde. 1927, 59, 1–288. [Google Scholar]
- Miltko, R.; Pietrzak, M.; Bełżecki, G.; Wereszka, K.; Michałowski, T.; Hackstein, J.H.P. Isolation and in vitro cultivation of the fibrolytic rumen ciliate Eremoplastron (Eudiplodinium) dilobum. Eur. J. Protistol. 2015, 51, 109–117. [Google Scholar] [CrossRef]
- Hongoh, Y.H.; Yuzawa, M.; Okhuma, M.; Kudo, T. Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment. FEMS Microbiol. Lett. 2003, 221, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Dunbar, J.; Ticknor, L.O.; Kuske, C.R. Phylogenetic Specificity and Reproducibility and New Method for Analysis of Terminal Restriction Fragment Profiles of 16S rRNA Genes from Bacterial Communities. Appl. Environ. Microbiol. 2001, 67, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Felsenstein, J. PHYLIP-Phylogeny inference package. Cladistics. 1989, 5, 164–166. [Google Scholar]
- Miltko, R.; Belzecki, G.; Kowalik, B.; Skomial, J. Presence of carbohydrate digesting enzymes throughout the digestive tract of sheep. Turk. J. Vet. Anim. Sci. 2016, 40, 271–277. [Google Scholar] [CrossRef]
- Drescher-Kaden, U.; Seifelnasr, E.A. Untersuchungen am verdauungstrakt von reh, damhirsch und mufflon. Mitteilung 3: Mikroorganismen im pansen von reh, damhirsch und mufflon. Z. Jagdwiss. 1977, 23, 64–69. [Google Scholar] [CrossRef]
- Enzinger, W.; Hartfiel, W. Auswirkungen gesteigerter Energie- und Proteingehalte des Futters auf Fermentationsprodukte, Fauna und Schleimhaut des Pansens von Wildwiederkäuern (Damhirsc /Reh) im Vergleich zu Hauswiederkäuern (Schaf/Ziege). Z. Jagdwiss. 1998, 44, 201–220. [Google Scholar] [CrossRef]
- Kamler, J. Infusorial concentration in rumen fluid of red deer, fallow deer, roe deer and moufflon. Acta Vet. Brno. 1999, 68, 247–252. [Google Scholar] [CrossRef]
- Deutch, A.; Lechner-Doll, M.; Wolf, G.A. Activity of cellulolytic enzymes in the contents of reticulorumen and caecocolon of roe deer (Capreolus capreolus). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 1998, 119, 925–930. [Google Scholar] [CrossRef]
- Dehority, B.A. Effect of pH on viability of Entodinium caudatum, Entodinium exiguum, Epidinium caudatum, and Ophryoscolex purkynjei in vitro. J. Eukaryot. Microbiol. 2005, 52, 339–342. [Google Scholar] [CrossRef] [PubMed]
- Behrend, A.; Lechner-Doll, M.; Streich, W.J.; Clauss, M. Seasonal faecal excretion, gut fill, liquid and particle marker retention in mouflon (Ovis ammon musimon), and a comparison with roe deer (Capreolus capreolus). Acta Theriol. 2004, 49, 503–515. [Google Scholar] [CrossRef] [Green Version]
- Dehority, B.A. In vitro determination of generation times for Entodinium exiguum, Ophryoscolex purkynjei and Eudiplodinium maggii. J. Eukaryot. Microbiol. 2004, 51, 333–338. [Google Scholar] [CrossRef]
- Clauss, M.; Müller, K.; Fickel, J.; Streich, W.J.; Hatt, J.-M.; Südekum, K.-H. Macroecology of the host determines microecology of endobionts: Protozoal faunas vary with wild ruminant feeding type and body mass. J. Zool. 2011, 283, 169–185. [Google Scholar] [CrossRef] [Green Version]
- De la Fuente, G.; Belanche, A.; Girdwood, S.E.; Pinloche, E.; Wilkinson, T.; Newbold, C.J. Pros and Cons of Ion-Torrent Next Generation Sequencing versus Terminal Restriction Fragment Length Polymorphism T-RFLP for studying the Rumen bacterial community. PLoS ONE 2014, 9, e101435. [Google Scholar] [CrossRef] [Green Version]
- Clauss, M.; Hofmann, R.R.; Fickel, J.; Streich, W.J.; Hummel, J. The intraruminal papillation gradient in wild ruminants of different feeding types: Implications for rumen physiology. J. Morphol. 2009, 270, 929–942. [Google Scholar] [CrossRef]
Item | Roe Deer with Protozoa | Roe Deer without Protozoa | ||||||
---|---|---|---|---|---|---|---|---|
Min | Max | Mean | SD | Min | Max | Mean | SD | |
Total protozoa (Entodinium spp.) 1 | 6.50 | 38.70 | 16.45 | 15.17 | - | - | - | - |
Amylolytic activity | 1.41 | 3.69 | 2.42 | 0.95 | 1.01 | 2.30 | 1.86 | 0.58 |
Celulolytic activity | 2.54 | 2.92 | 2.66 | 0.17 | 1.61 | 3.72 | 2.60 | 0.88 |
Xylanolytic activity | 3.00 | 4.28 | 3.47 | 0.59 | 3.27 | 4.46 | 3.85 | 0.58 |
Inulinolytic activity | 1.05 | 2.09 | 1.49 | 0.43 | 1.23 | 1.77 | 1.38 | 0.26 |
Pectinolytic activity | 3.49 | 4.43 | 3.92 | 0.50 | 2.85 | 4.06 | 3.76 | 0.65 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miltko, R.; Kowalik, B.; Majewska, M.P.; Kędzierska, A.; McEwan, N.R.; Bełżecki, G. The Effect of Protozoa on the Bacterial Composition and Hydrolytic Activity of the Roe Deer Rumen. Animals 2020, 10, 467. https://doi.org/10.3390/ani10030467
Miltko R, Kowalik B, Majewska MP, Kędzierska A, McEwan NR, Bełżecki G. The Effect of Protozoa on the Bacterial Composition and Hydrolytic Activity of the Roe Deer Rumen. Animals. 2020; 10(3):467. https://doi.org/10.3390/ani10030467
Chicago/Turabian StyleMiltko, Renata, Barbara Kowalik, Małgorzata P. Majewska, Aneta Kędzierska, Neil R. McEwan, and Grzegorz Bełżecki. 2020. "The Effect of Protozoa on the Bacterial Composition and Hydrolytic Activity of the Roe Deer Rumen" Animals 10, no. 3: 467. https://doi.org/10.3390/ani10030467
APA StyleMiltko, R., Kowalik, B., Majewska, M. P., Kędzierska, A., McEwan, N. R., & Bełżecki, G. (2020). The Effect of Protozoa on the Bacterial Composition and Hydrolytic Activity of the Roe Deer Rumen. Animals, 10(3), 467. https://doi.org/10.3390/ani10030467