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Simple Summary: The objective of the experiment was to evaluate the effects of dietary
supplementation of heifers with increasing levels of dried Leucaena leucocephala leaves (DLL) on
nutrient digestibility, fermentation parameters, microbial rumen population, and production of
enteric methane (CHs). Nutrient digestibility decreased with increasing levels of DLL in the ration.
Inclusion of DLL did not have detrimental effects on rumen pH, rumen microbial community, and
volatile fatty acids proportions. Enteric CHs emissions in heifers were reduced with increasing levels
of DLL in the ration.

Abstract: The effects of dietary inclusion of dried Leucaena leucocephala leaves (DLL) on nutrient
digestibility, fermentation parameters, microbial rumen population, and production of enteric
methane (CHas) in crossbred heifers were evaluated. Four heifers were used in a 4x4 Latin square
design consisting of four periods and four levels of inclusion of DLL: 0%, 12%, 24%, and 36% of dry
matter (DM) intake. Results showed that DM intake (DMI), organic matter intake, and gross energy
intake (GEI) were similar (p > 0.05) among treatments. Apparent digestibility of organic matter,
neutral detergent fiber, and energy decreased with increasing levels of DLL in the ration (p < 0.05).
In contrast, digestible crude protein (CP) was higher (p <0.05) in treatments with 12% and 24% DM
of DLL. The inclusion of DLL did not affect (p >0.05) rumen pH and total volatile fatty acids. Rumen
microbial community was not affected (p > 0.05) by treatment. There was a linear reduction (p <0.05)
in CHa emissions as the levels of DLL in the ration were increased. Results of this study suggest that
an inclusion of 12% DM of ration as DLL enhances digestible CP and reduces daily production of
enteric CHs4 without adversely affecting DMI, rumen microbial population, and fermentation
parameters.
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1. Introduction
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Methane (CHa) is the second most important greenhouse gas (GHG) and it has a potential global
warming effect 28 times above that of carbon dioxide (COz) [1]. The livestock sector contributes 14.5%
of global emissions of GHG [2] and CHa represents 44% of total anthropogenic emissions [3], where
CH: from ruminant enteric fermentation represents 39.1% of total emissions in the livestock sector
[2]. Methaneis a byproduct of anaerobic microbial fermentation of feed in the rumen, and energy
used for its synthesis is considered as a loss of energy for animal production; it has been calculated
that the energy loss fluctuates between 3% and 6.5% on average for cattle fed diets high in
concentrates and low-quality pastures, respectively [4]. In tropical climates, feeding of ruminants is
largely sustained by using low-quality forages, which in turn increases the production of CHa [5].
Facing the current climate issues, research has been focused on the reduction of enteric CH4 through
feeding practices that alter rumen fermentation, as well as the use of mitigating agents, such as
essential oils [6], secondary metabolites [7-9], and some chemical compounds such as
organophosphates [6,10] or 3-nitrooxypropanol [11]. In tropical climates, Leucaena leucocephala is a
legume species that is highly available and commonly used as fodder for ruminant feeding.
Incorporation of L. leucocephala in tropical pastoral systems for meat production has proven to reduce
CHs emissions in cattle [12,13]. The use of this tropical legume in ruminant nutrition has been widely
implemented due to its high content of crude protein. On the other hand, the effect of L. leucocephala
on enteric CHa reduction is linked to its content of condensed tannins (CT), which form complexes
with protein (CT-P) and with polysaccharides, and reduce nutrient degradation in the rumen [14,15].
In addition, some studies propose that CT promote changes in microbial populations [16-18] due to
bacteriostatic, bactericidal, and enzyme inhibiting effects that modify rumen fermentation.

The aim of the study was to quantify the effect of increasing levels of dried L. leucocephala leaves
on nutrient intake and digestibility, rumen fermentation patterns, CHs production, and rumen
microbial populations in crossbred heifers.

2. Materials and Methods

2.1. Animals, Diet Management, and Experimental Design

The study was conducted at the Laboratory of Climate Change and Livestock Production at the
Faculty of Veterinary Medicine and Animal Science (FMVZ-UADY) of the Autonomous University
of Yucatan, Merida, Mexico. Management of experimental animals followed the protocol for animal
guidelines and regulations for animal experimentation and welfare of FMVZ-UADY and the
experimental protocol was conducted in accordance with the Mexican Official Standard NOM-062-
Z00-1999, technical specifications for the production, care, and use of laboratory animals. Four
crossbred heifers (Bos taurus x Bos indicus) with an average body weight (BW) of 310 + 9.6 kg (mean =+
SD) were used. Before the experiment started, heifers were dewormed with Ivermectin® (Pier; Dose:
1 mL/50 kg BW) and injected intramuscularly with vitamins A, D and E (Vigantol ADE®, Bayer
manufacturer, Kéln, North Rhine-Westphalia, Germany). The heifers were accustomed to the indirect
open-circuit respiration chambers for CHs measurements before starting the experiment. Drinking
water was available ad libitum. Heifers were randomly assigned in a 4 x 4 Latin square design with
four treatments, four heifers, and four periods. Each period lasted for 15 days: 1 to 8 for treatment
adaptation and days 9 to 15 for measurements. In order to minimize the residual effect of treatments,
after every period, heifers were fed with a diet without dried Leucaena leucocephala leaves (DLL) for
10 days (cleansing).

2.2. Experimental Diets

Young stems of leaves of L. leucocephala at 45 days of growth were harvested, the leaves were
chopped and dried in the shade for 4 days, and then oven dried in a stove at 40 °C for four days.
Dried L. leucocephala leaves were stored and protected from light until used. Nutrient diet formulation
was based on metabolizable energy and protein requirements for ruminants according to the
Agriculture and Food Research Council [19], for a predicted daily weight gain of 0.75 kg. Diet
formulation was aimed to be isoenergetic, isoproteic, and with similar content of neutral detergent
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fiber (NDF). Diets were offered to the heifers as total mixed ration, in order to maintain homogeneity
in particle size and particle type among rations. Formulation and chemical composition of each
experimental diet are shown in Table 1. The inclusions of 0%, 12%, 24%, and 36% dry matter (DM)
per animal? day of DLL corresponded to treatments 0, 1, 2, and 3. Experimental diets were offered
at 08:00, considering a dry matter intake (DMI) of 2.5% of BW [20]. The feed offered was adjusted
based on the BW of each animal for every period. Heifers were weighed two days before the
beginning of every period and two days after finishing every period.

Table 1. Ingredient composition of experimental diets.

I Treatments
fem 0 1 2 3
Ingredients (g kg' DM)
Guinea grass hay, ground 4333 4080 4293 4253
Corn grain, cracked 93.3 94.7 93.3 94.7
Soybean meal 66.7 66.7 37.3 0.00
Leucaena leucocephala dried leaves 0.00 120.0 240.0 360.0
Wheat bran 266.7 2132 90.7 0.00
Sugarcane molasses 133.3 90.7 102.7 113.3
Mineralized salt 6.7 6.7 6.7 6.7

DM: dry matter
Data collection: sampling procedures and analysis; dry matter intake and apparent digestibility.

Voluntary intake of DM and nutrients in experimental diets were determined as the difference
between the amount of nutrients offered and the amount which was refused every day. Samples of
feed and refusals were collected and stored every day for posterior chemical analysis. Apparent
digestibility was determined by using the method described by [21]. Total production of feces was
collected and weighed every day, and an aliquot of 10% was stored for further analysis. Fecal sample
aliquots (last six days during every period) were pooled for treatment each period and were used for
chemical analysis.

Estimated nonfiber carbohydrate (NFC) and total digestible nutrients (TDN) were calculated
according to Nutrient Requirements of Dairy Cattle [22]. Metabolizable energy (ME) concentration
was calculated considering that 1 kg of TDN is equal to 4.409 Mcal of DE and 1 Mcal of DE is equal
to 0.82 Mcal of ME [22].

2.3. Chemical Analysis

The collected samples of feed and orts as well as feces were ground and passed through a 1 mm
sieve for analysis according to the methods [23]. DM content of diet, orts, and feces were determined
by drying subsamples in a forced-air oven at 105 °C for 48 h (constant weight). Nitrogen (N) and
crude protein were carried out with Kjeldahl AN 3001 FOSS [23]. Crude protein was calculated as N
x 6.25. Organic matter (OM) content of the samples was determined by combustion in a muffle
furnace at 550 °C [23] and the concentration of NDF (AN 3805 ANKOM, ANKOM Technology,
Wayne County, NY, USA) [23] and acid detergent fiber (ADF) (AN 3804 ANKOM) [23] were
determined as suggested by Van Soest et al. [24]. Gross energy (GE) was measured using a bomb
calorimeter (6400 Parr Instrument Company, Moline, IL, USA). Acid detergent lignin (ADL) was
determined in beakers (ANKOM Technology, Wayne County, NY, USA). Ether extract (EE) contents
were obtained by the Randall method (SER 148 Solvent extraction unit) [23]. In vitro DM digestibility
was determined as suggested by Tilley and Terry [25]. Total phenol (TP) content and total tannins
(TT) were determined following the Folin—Ciocalteu method; precipitating tannins with the
polyvinylpolypyrrolidone [26], and were expressed as acid-tannin equivalents g kg' DM. CT were
quantified using the vanillin assay [27], and were expressed as vanillin equivalents in g kg! DM.

2.4. Blood Samples
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Blood samples were collected by jugular venepuncture using 7-mL blood collection tubes
(Vacutainer; BD Inc., Oxford, UK) on days 14 and 15 for every period, within four hours postprandial.
Blood samples were immediately centrifuged (2500 rpm for 10 min at 4 °C) to separate serum, which
was stored at —20 °C until further analysis. Blood urea nitrogen was determined via a colorimetric
assay using a commercial kit (Accutrack S.A. de C.V., CDMX, Mexico).

2.5. Rumen Fermentation

Samples of rumen content were taken from animals on days 14 and 15 of every period, within
four hours postprandial. Approximately 1.2 L of rumen fluid was taken from each heifer by inserting
an esophageal tube [28]. The samples were filtered through four layers of cheesecloth. Three sub-
samples were taken. Metaphosphoric acid was added to the first sub-sample 1:5 (v/v) to preserve the
sample at -80 °C for volatile fatty acids (VFA) analysis. VFA proportions in rumen liquid were
determined by gas chromatography (7890A GC system Agilent Technologies Inc, Santa Clara, CA,
USA), equipped with a flame ionization detector [29]. Rumen pH was measured immediately after
obtaining the sample with a portable potentiometer (HANNA® Instruments, Woonsocket, RI, USA)
in the second sub-sample. The third subsample was preserved at —80 °C for ruminal microbial
deoxyribonucleic acid (DNA) extraction.

2.6. Microbial Quantification

2.6.1. Ruminal Microbial DNA Extraction

The deoxyribonucleic acid extraction was carried out using the method described by Rojas-
Herrera [30]. DNA concentration was calculated using a NanoDrop 2000 (Thermo Scientific,
Waltham, MA, USA), and the DNA integrity was confirmed by agarose gel electrophoresis. DNA
samples were then stored at =80 °C until analysis.

2.6.2. Quantitative Real-Time Polymerase Chain Reaction (qQPCR)

The qPCR was applied to quantify the bacterial, protozoal, and methanogenic archaeal
populations in the rumen by measuring the absolute quantity of the targeted DNA fragments by a
reference to a standard curve constructed with a plasmid containing the target insert. The domain
bacteria primers used were BAC338F and BAC805R [31], methanogen primers were Met630F and
Met803R [32], and protozoal primers were Oph-151F and Ento-472R [33] (Table 2). The qPCR
amplifications for the quantification of target ruminal microbial genes were performed using a Rotor-
Gene Q (Qiagen, Hilden, Germany). Chemical reagent Go Taq Green Master Mix (Promega, Madison,
WI, USA) was used following the manufacturer's instructions.

Table 2. Oligonucleotide primers used for the quantitative polymerase chain reaction.

. Alignment Amplification
Primer Sequence . .
Temperature Efficiency

BAC338F 5-ACT CCT ACG GGA GGC AG-3’ 57 °C 1.99
BAC805R 5-GAC TAC CAG GGT ATC TAA TCC-3’
Met630F 5"-GGA TTA GAT ACC CSG GTA GT-3’ 57°C 2
Met803R 5-GTT GAR TCC AAT TAA ACC GCA-3’
Oph-151F 5-GAG CTA ATA CAT GCT AAG GC-3’ 55 9C 2

Ento-472R 5'-CCC TCA CTA CAA TCG AGA TTT AAG G-3’

qPCR: quantitative polymerase chain reaction.

Each gene was cloned separately by using pGEM®-T Easy Vector System and ligation using 2x
Rapid Ligation buffer (Promega, Madison, WI, USA) according to the manufacturer's instructions.
Then, the recombinant vector was transformed into competent E. coli cells with ampicillin and X-
gal/IPTG. Transformed positive colonies were picked and processed for plasmid isolation. Plasmid
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purification was done using a Wizard®Plus SV Minipreps DNA Purification System (Promega,
Madison, WI, USA.). Presence of the insert in the recombinant clones was confirmed by restriction
digestion and digested products were detected by agarose gel electrophoresis. Plasmid DNA
concentrations were measured using a NanoDrop 2000 (Thermo Scientific, Waltham, MA, USA) and
copy numbers were calculated using the following equation:

molecules
mole

number of bases * 660 daltons

6.022 x 1023 ( )* plasmid concentrations (%)

)

Number of copies/uL =

To construct the standard curve, a tenfold series dilution (102 to 10'%) was performed for each
target gene. Each standard curve and sample was analyzed in triplicate for absolute quantification.
The amplification efficiency (E) was determined by the slope (s) of linear regression of the standard
curve. Amplification efficiency was established using the following equation [34]:

E =10C1/9) )

2.7. Methane Production

Emission of CHs was measured using individual indirect open-circuit respiration chambers [35]
with a methane measurement system (Sable Systems International®, Las Vegas, NV, USA). Heifers
remained in the respiration chambers for 23 h per day. Each heifer was in the chamber for four days
receiving the same treatment during the period. Temperature and relative humidity inside the
chambers were kept at 23 °C and 55%, respectively. Data were extrapolated to 24 h using Expe Data®
software (Sable Systems International® Las Vegas, NV, USA). The infrared CHs analyzer was
calibrated before each experimental period. Methane concentrations were transformed to energy
taking into account the heat combustion of CHs (55.65 MJ kg) [4]. Moreover, methane loss was
expressed in absolute terms as GE (Gross energy, MJ d!) and also emission of CH4 as a percentage
of GEI (Gross energy intake, Ym). Additionally, the estimate of the emission factor (EF) of CH: kg
animal~! year-! was calculated according to [4].

2.8. Nitrous Oxide Emissions

Estimated nitrous oxide (N20) emissions from feces of heifers were calculated with fecal N
excretion and according to its volatilization rate for Latin America [4] with the equations 10.25 (direct
N20 emissions from manure management), 10.28 (N losses due to leaching from manure
management system), and 10.29 (indirect N2O emissions due to leaching from manure management)
of the [4].

Both CHs production and estimated N2O emissions were converted to COz equivalents (COz-eq)
using global warming potential values of 28 and 265, respectively [4].

2.9. Statistical Analyses

Statistical analyses were carried out on data of DM intake, apparent digestibility, fermentation
parameters, blood metabolites, CHs production, and rumen microorganism population. Data of
bacteria, methanogen, and protozoa (cells mL- of ruminal liquor) were transformed to Logo. All data
were subjected to analysis of variance for a 4 x 4 Latin square design, using the mixed procedure of
the SAS® 9. Software (SAS Inc., Cary, NC, USA.) [36]. The statistical model was Yijk = p + Pi + Aj + Tk
+ Eijk; where: Y is the dependent variable, p is the general mean, P is the effect of period, A is the
random effect of animal, T is the effect of treatment, and E is the random residual error. Results were
compared with the procedure LSmeans test, whereas orthogonal contrasts were performed to
evaluate the effect of treatments [36].

3. Results

3.1. Chemical Analysis of Experimental Diets



Animals 2020, 10, 300 6 of 17

The chemical analyses of experimental diets are shown in Table 3. Although the aim of diet
formulation was to obtain isoproteic and isoenergetic diets, it was evident that the diet without
inclusion of DLL had a lower content of CP and GE in comparison with the other treatments. In
addition, the diets were not homogeneous in the contribution of NDF. In the case of ADF and ADL,
these were increased as a result of increasing the inclusion of DLL in the diets. The concentration of
ADF and ADL in treatment with DLL showed a trend higher than treatment 0. These could be related
to a minor content of OM and reduction of in vitro DM digestibility. On the other hand, the
concentrations of fat and secondary metabolites (total phenols, total tannins, and CT) in the diets
were increased as a result of a higher level of inclusion of DLL in diets. Estimation of NFC showed
the lowest content in treatment 3 compared to the other treatments.

Table 3. Chemical composition of experimental diets.

Treatments
Item
0 1 2 3
Chemical composition (g kg DM)
Organic matter 933 931 925 919
Crude protein 109.7 134.6 1364 137.8
Neutral detergent fiber 585.6 5544 537.3 594.2
Acid detergent fiber 2954 3121 333.1 3524
Acid detergent lignin 555 742 704 913
Ether extract 11.7 163 232 223
Gross energy (M] kg DM) 178 180 180 181
Total phenols = 042 96 228 264
Total tannins 2 004 43 131 151
Condensed tannins ® 0.0 2.7 82 123

In vitro DM digestibility (g kg DM) 676 654 637 617
Estimated values
NFC 221 221 223 161
DM: dry matter; * equivalents-g tannic acid kg DM; ? equivalents-g catechin kg DM; NFC: nonfiber

carbohydrate.

3.2. Feed Intake and Apparent Digestibility

The effect of DLL supplementation on intake and apparent digestibility is presented in Table 4.
No significant effects were found in the DMI, OM intake (OMI), and GEIL On the other hand, the
intakes of CP and ADF increased with a higher level of DLL. Crude protein intake was 21.7%, 28.3%,
and 28.3% higher for treatments 1, 2, and 3 than that for treatment 0. In contrast, the consumption of
NDF was lower by 5% for treatments 1 and 2 compared to treatments 0 and 3. Consumption of ADL
was different between treatments 1 and 2. Intake of TP, TT, and CT increased linearly as DLL
inclusion increased. For CT, an increase corresponding to 2.7, 8.2, and 12.3 g kg of DMI for
treatments at 1, 2, and 3 was observed compared with treatment 0. Apparent digestibility of OM and
NDF decreased with increasing DLL in the rations. The effect of reduction in digestible OM and NDF
were of 1.5%, 8.8%, 13.2% and 12.7%, 22.5%, 13.4% for treatments 1, 2, and 3, respectively against
treatment 0. On the other hand, digestible energy (DE) decreased to 8.3 MJ d-! with treatment 3 versus
treatment 0. In contrast, the apparent digestibility of CP increased compared to the control by 25%
and 14% for treatment 1 and 2. In the same way, the digestibility of ADF increased by 20% in treatment
2 in contrast to treatment 0.

Table 4. Effect of dried L. leucocephala leaves supplementation on intake and apparent digestibility in
heifers.

Treatments SE Contrast
Item 0 1 2 3 P L Q C
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Intake (kg d)
DM 8.36 8.32 8.63 8.54 0.13 0.169 0.098 0.8176 0.1226
oM 7.8 7.74 7.98 7.85 0.12 0.340 0.365 0.694 0.136
CP 092« 1.12¢ 1.18= 1.182 0.02 <0.0001  <0.0001 0.0004 0.231
NDF 492 461> 4640 5.07a 0.08 0.0027 0.065 0.0006 0.695
ADF 2474 26¢ 2.87°b 3.01 0.04 <0.0001  <0.0001 0.882 0.067
GE 149 150 156 155 243 0.078 0.0256 0.572 0.181
EE 0.155= 0.156= 0.101®> 0.100°® 0.02 0.029 0.008 0.934 0.105
ADL  0.615 0.609 0.631 0.623 0.01 0.114 0.106 0.809 0.057
PT 0.035¢ 0.08¢ 0.197> 02262 0.003 <0.0001 <0.0001 0.011 <0.0001
1T 0.003¢ 0.036c 0.113> 01292 0.002 <0.0001 <0.0001 0.001 <0.0001
CT 0.00¢ 0.023¢< 0.07> 0.104> 0.002 <0.0001 <0.0001 0.003 0.0003
Nutrient apparent digestibility (g kg? DMI )
OM 48192 47472 4393° 4184 12.32 0.006 0.001 0.463 0.315
CP 60 © 7492 68.5" 619¢ 1.6 0.0003 0.928 <0.0001 0.005
NDF 23822 208.0° 184.6c 206.4> 951 0.008 0.007 0.008 0.247
ADF 79.5 89.9 95.5 85.9 6.02 0.157 0.244 0.057 0.607
DE 8.82 8.72 8.2 7.8° 0.25 0.020 0.004 0.360 0.594
Estimated values
TDN  0.546 0.541 0.529 0.480
ME 8.26 8.18 8.00 7.26
DM: dry matter; DMI: dry matter intake; OM: organic matter; CP: crude protein; NDF: neutral
detergent fiber; ADF: acid detergent fiber; GE: gross energy (M] d™'); EE: ether extract; TP: total
phenols; TT: total tannins; CT: condensed tannins; ADL: acid detergent lignin; DE: digestible energy
(MJ kg™' DMI); TDN: total digestible nutrients (kg™! DMI); ME: metabolizable energy (M] kg™ DMI).
Means in the same row with different superscript letters differ (p < 0.05); SE: standard error; surface

response: L: linear contrast; Q: quadratic contrast; C: cubic contrast.

3.3. Fermentation Parameters

Rumen fermentation parameters are shown in Table 5. Ruminal pH was not affected (p > 0.05)
by the inclusion of DLL in the diets. Molar concentrations and the ratio of acetic acids in rumen liquor
were affected significantly by treatments (p < 0.05).

Table 5. Effect of dried L. leucocephala leaves supplementation on fermentation in the rumen of

heifers.
Treatments Contrast
SE p
Item 0 1 2 3 L Q C
Rumen pH 6.4 6.5 6.5 6.5 0.13 0.815 0685 0522 0.604
Total VFA mMol L! 799 804 754 669 846 036 0.128 0.435 0.975
Acetic:propionic acid ratio 268 274 3424 3.a38 025 004 0013 0805 0.145

mMol L1 b b
Molar proportions of VFA (%)
610 61.0 654 674

Acetic acid b . N R 1.8 0.025 0.005 0.446 0.298
Propionic acid 228 231 193 200 1.7 0.157 0.065 0.871 0.171
Butyric acid 109 131 107 10.8 298 0.818 0.772 0.619 0.481
Isobutyric acid 062 059 142 042 0.65 0480 0920 0.334 0.241
Valeric acid 127 132 1.69 091 045 0464 0.646 0244 0.350
Isovaleric acid 323 072 136 038 1.86 0479 0226 0.582 0.449

VFA: Volatile fatty acids. Means in the same row with different superscript letters differ (p < 0.05); SE:
standard error; surface response: L: linear contrast; Q: quadratic contrast; C: cubic contrast.
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3.4. Fecal Nitrogen Excretion

The values of ingested and fecal excreted nitrogen (N) are shown in Table 6. Ingested N (INi)
show differences (p < 0.05) among treatments. However, the concentration of blood nitrogen urea
(BUN) increased (p < 0.05) in treatments 1 and 2 compared to the other treatments, while fecal N
excretion (Nf) increased linearly (p < 0.0001) as DLL increased in the diet.

Table 6. Indicators of the flow of nitrogen consumed by heifers fed Leucaena leucocephala.

Treatments Contrast
Ttem 0 1 2 3 SE P L Q C

Ratio CP:TDN 0.210 0.249 0.258 0.287
Ratio TDN:CP 4.98 4.02 3.88 3.48

N intake (g d) 146.9% 179.12 18842 18822 3.18 <0.0001 <0.00014 0.0004 0.231

BUN (mg dL) 9.89¢ 1096 11.72a 9.95¢< 0.26 0.001 0.314 <0.001 0.036

N fecal (g d™) 67.44 80.1¢ 93.7¢ 103.8a 24 <0.0001 <0.0001 0.470  0.589
Ratio N fecal:N intake 0.46 0.45 0.50 0.55
Ratio CP:DOM 0.228 0.284 0.311 0.329

CP: crude protein; TDN: total digestible nutrients; N: nitrogen; BUN: concentration of blood nitrogen
urea; DOM: digestible organic matter; ¢ Means in the same row with different superscript letters
differ (p <0.05); SE: standard error; surface response: L: linear contrast; Q: quadratic contrast; C: cubic

contrast.

3.5. Ruminal Microorganism Population

The effect of supplementation of DLL on ruminal microorganism populations is summarized in
Table 7. Inclusion of DLL showed not effect (p > 0.05) on protozoal, bacterial, and archaeal
populations. The ratio of methanogens:bacterial population was not altered (p > 0.05).

Table 7. Estimation of ruminal microbial population by quantitative polymerase chain reaction.

Treatments Contrast
SE P
Item 0 1 2 3 L Q C
gPCR Microbial population

Protozoa logio cell ml* 452 477 531 5.06 0.34 0209 0.092 0.329 0.353
Bacteria logio cell ml-* 9.01 929 940 922 013 0.133 0.147 0.058 0.812
Methanogens loguo cell ml-* 640 632 6.77 6.71 0.29 0395 0.182 0.963 0.304
Methanogen:bacteria 071 0.68 0.72 073 0.035 0556 0433 0459 0.368

qPCR: quantitative polymerase chain reaction. Means in the same row with different superscript
letters differ (p < 0.05); SE: standard error; surface response: L: linear contrast; Q: quadratic contrast;
C: cubic contrast

3.6. Methane Production.

Methane production is shown in Table 8. Inclusion of DLL in the diets resulted in a significant
decrease (p < 0.001) in CHs production. Methane reductions were of 6.2%, 11%, and 19.6% (where
100% is equivalent to the emission of CHs measured without the inclusion of DLL or treatment 0)
corresponding to an increase of DLL in the diet. In this study, the production of CHs g kg' DMI was
affected negatively (p < 0.001) in treatments 2 and 3, which corresponds to a reduction of 13.5% and
20.7%, respectively. Reduction of CHs g kg! of DM, CHa g kg of digestible OM and CHs g kg of
digestible NDF did not show significant differences (p > 0.05) among treatments. In contrast, CHs g
kg of digestible CP decreased significantly (p <0.001) by 25 % on average in all treatments containing
DLL against treatment 0.

Energy loss as CH4 during fermentation was 6.2%, 11.3%, and 19.6% M] d-! of GEI for treatments
1,2, and 3, respectively versus treatment 0. These effects showed a linear (p <0.01) reduction of energy
correlated negatively with DLL inclusion. In the same case, Ym decreased (p < 0.01) by 6.6%, 14.8%,
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and 22.3 % in treatments 1, 2, and 3, respectively versus treatment 0. The emission factor (EF) of CHa
kg animal™ year decreased linearly (p < 0.01) in response to inclusion of DLL. Treatments 1, 2, and
3 reduced EF by 6.5%, 11.1%, and 19.6% in contrast to treatment 0.

Table 8. Effect of supplements of dried L. leucocephala leaves on enteric CH4 production in heifers.

Treatments SE Contrast
Ttem 0 1 2 3 P L Q C
Methane
CHs (g d™) 17422 162.9% 154.8°b 140.0¢ 3.73 0.001  0.0002 0.581 0.497
CHs ( DMI) 20.8 19.6a 1790 16.4 ¢ 0.57 0.0012 0.0002 0.672 0.716
Methane g kg of digestible fractions intake
CH. ( DM) 44.8 425 40.6 39.0 2.37  0.181 0.040 0.860  0.994
CHa (OM) 44.1 42.1 40.8 394 2.19 0.274 0.068 0.869 0.910
CHa4 (CP) 35342 265.8> 2619b 266.1b 13.68 0.001 0.0009 0.0032 0.131
CHa (NDF) 90.4 98.4 97.1 80.1 6.47  0.097 0.169 0.034 0.767
Estimated of methane as energy loss

Ym 6.52 6.07> 554< 505¢ 017 0.0008 0.0001 0.841 0.827
CHs (MJ d) 9.62 9.0° 8.6P 7.7¢ 023 0.001 0.0002 0.581 0.497
EF 6352 594t 565" 51.1< 156 0.001 0.0002 0.581 0.497

CHas: methane: CHad: CHs g d™'; CHsDMI: CHs g kg™ Dry Matter Intake; CHdaDM: CHs g kg™ Dry
Matter; CH4«OM: CHa g kg! Organic Matter; CH4sPC: CHa g kg Crude Protein; CHsNDF: CHs g kg™
Neutral Detergent Fiber; GEI: gross energy intake; Ym: CHs MJ d, expressed as percentage of gross
energy intake; EF: CHs emission factor, kg CHs animal ™ year; Means in the same row with different
superscript letters differ (p <0.05); SE: standard error; surface response: L: linear contrast; Q: quadratic
contrast; C: cubic contrast.

3.7. Effect of DLL on Greenhouse Gas Emissions

Estimated global warming potential (GWP) of CHs and N:O in heifers fed DLL can be observed
in Table 9. Estimated GWP from CHsas CO2-eq d! showed a decreasing tendency as DLL increased
in the diets. In contrast, all treatments with DLL showed an increase of estimated GWP through N.O
CO2-eq d from nitrogen excreted through feces against the treatment without DLL. However,
according to the estimate of total GWP (CHsand N20) all treatments with DLL showed a total GHG
emission mitigation potential compared to the diet without DLL or treatment 0.

Table 9. Estimate global warming potential in heifers fed with dried L. leucocephala leaves.

Treatments
Global warming potential 0 1 2 3
CHs (CO2-eq kg d) 4.88 4.56 4.33 3.92
N20 (CO2-eq kg d1) 1.17 1.39 1.62 1.79
Total global warming potential
COz-eq kg d! 6.05 5.95 5.95 5.71

CHs; methane; N20 nitrous oxide; CO2-eq; carbon dioxide equivalents.

4. Discussion

The effects of L. leucocephala consumption on intake and digestibility of feed, and on enteric CHa
mitigation, are linked to its content of CT. Condensed tannins have been widely studied for their
effects in animal nutrition. It is generally accepted to use the term 'anti-nutritional effect' to describe
the reduction of palatability leading to a reduced ingestion of feed and a lower nutrient digestibility.
Both effects are related to the astringency generated by the capacity of tannins to establish stable
bonds with dietary components [37]. In this study, the DLL treatments contained 0%, 0.28%, 0.82%,
and 1.23% CT in the total diet. None of the inclusion levels of L. leucocephala affected DMI or OMI.
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Previous studies obtained similar results [8,9], but did not observe any effect on DMI with CT doses
<2%. Ruminants in the tropics are exposed to tannin containing forages, leading to selectivity in their
consumption or adaption to these conditions. Some studies have suggested that ruminants possess
proteins with a high content of amino acids such as proline [38] in their saliva, which are more likely
to bind with CT. Thus, allowing ruminants to reduce or block the effect of astringency which could
lead to a reduction in feed intake.

In regard to CP and ADF consumption, significant increments were shown with DLL
supplementation which was related to the concentration of these components in the diet (Table 3). In
the case of legumes such as L. leucocephala there has been reported greater amount of CP compared
to tropical grass [39]. On the other hand, NDF and ADL intakes remained unchanged or decreased
compared to those for treatment 0. This observation is contrary to previous studies where no effect
on consumption of NDF and ADF with doses <2% CT was observed [8,40].

Apparent nutrient digestibility was affected by the level of DLL in the ration. Digestibility of
OM and NDF showed a linear reduction. These findings may be associated with in vitro DM
digestibility (Table 4) and total digestible nutrients (TDN) which showed a comparable decline with
higher inclusions of DLL. This effect can be explained by the ADL contained in DLL. Similar reductive
effects were reported in other studies for digestibility of DM (DDM) [41,42], digestible OM (DOM)
[39], and digestible NDF [42]. However, results reported by other authors differ from the above,
showing increases in DOM, NDF, and digestible ADF [8]. It also indicates increases in digestibility of
OM and NDF[43]. All results quoted in this section were derived from in vivo studies and correspond
to a dose of <2% CT. However, the source of CT differs in some of the studies, which could account
for the heterogeneity of results. Genotype, species, variety, and growth stage of the plant material are
associated with differences in the chemical structure and molecular weight of CT as key
characteristics determining their capacity to precipitate proteins [41,44] which could affect the
digestibility of feed. Another aspect that has to be taken into account to explain the differences
regarding digestibility is the ability of CT to attach to cellulose and hemicelluloses as well as to
enzymes of microbial origin [17,45]. Consequently, it makes sense to expect a decrease in digestibility
of the fibrous fractions, DDM, and DOM as a result of the inclusion of CT [46] in the ration.

In this study, treatment 3 (1.2% CT in diet) reduced DE significantly (Table 2). However, that
probably did not result from CT contained in diet, because estimation of metabolizable energy (ME)
also showed a reduction derived from low TDN concentration in treatment 3. Similar reductive
effects in DE have been reported elsewhere [9].

Digestibility of CP was significantly higher for treatments 2 and 3 relative to treatment 0 (Table
2). Similar results have been found for doses of 0.83%, 1.37%, and 1.89% CT [47]. Results suggest that
there were effective bonds between dietary proteins and CT in the rumen and consequently the
intestinal absorption of protein was increased [37,43]. However, in this study the dose of 1.2% CT
(treatment 3) did not increase digestible CP. This result for treatment 3 can be partially explained by
the disproportion between the contributions of energy and protein that affects microbial fermentation
in the rumen. Several studies are in agreement showing a linear digestible CP depression at increased
doses of CT [8,9,41,42].

Several authors have attempted to explain the reduction of digestibility by an incomplete
dissociation of the CT-P complexes in the abomasum (due to pH conditions) reaching the intestine
and not being absorbable. In this case, the synthesis of irreversible bonds between CT and dietary
proteins is suggested. However, there is evidence that dietary CT-P bonds are reversible and largely
dissociated in the abomasum [48]. Other authors propose that the digestibility reduction results from
the ability of CT to form new complexes with N from endogenous origin within the intestine [17,48].
This theory has been supported by several studies involving N balance [9,41,42].

The hydrogen potential is a quantitative measure of acidity or alkalinity of a solution. A stable
rumen pH is a precondition for the growth of microorganisms, the fermentation of ingested feed, and
the absorption of organic acids [49]. In the present study rumen pH values did not vary significantly
(on average 6.5 + 0.05) among treatments. Similar results have been reported elsewhere, with average
pH values of 6.6 + 0.2 at CT concentrations of <2% [40-42,47]. This result could be explained by the
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proportion of forage in the rations of the above mentioned studies, which was kept at above >50% of
DM. Forage consumption stimulates salivary excretion which in turn is an important factor in
maintaining a stable rumen pH [49].

In this study, CT from DLL did not affect rumen fermentation with regard to total VFA
concentration, molar proportions of propionate (Cs), butyrate (C4), and the acetate to propionate ratio
C2:Cs. These results are in accordance with other studies [40-42], all of them at doses <2% CT. On the
other hand, they differ from results showing a reduction in total VFA concentration [8], Cz2[8], C4[47],
and C2:Csratio [8,47]. Furthermore, increments of Cs [47] have been reported. The difference of effects
on rumen fermentation might be related to the doses and ability of CT in forming complexes with
dietary proteins, inhibition of catalytic activity of extracellular enzymes, or the reduction of bacterial
populations [17]. It has also been proposed that CT reduces the acetic acid:propionic acid ratio which
in turn reduces the amount of available hydrogen for methanogenesis [50]; however, in this study
such effect was not observed.

The CP:TDN ratio of 0.19 or 190 g CP kg™ TDN is a reference for efficient daily weight gain (0.84
kg) and minimal CHa emissions for cattle during growth compared to cattle fed at lower CP:TDN
values [51]. Although the concentration of nitrogen intake was similar among treatments with DLL,
the CP:TDN ratio (Table 6) indicates with higher precision the differences in nitrogen intake as a
result of increasing DLL in diets. Furthermore, the ratio of TDN:CP can be used to identify the balance
of nutrients in the rumen. A TDN:CP ratio between 4:1 to 7:1 is considered an adequate contribution
of N in cattle. Ratios higher than 7:1 indicate a deficiency of rumen degradable CP. On the other side,
ratios that are <4:1 show an excess N or a lack of energy relative to the amount of rumen degradable
CP [52]. In this study, following the criterion of TDN:CP, treatments 2 and 3 suggest an excess CP.

Concentration of BUN correlates directly with the concentration of CP in the feed and the
concentration of ammonia in the rumen. BUN range for cattle has been established as an indicator
for desirable productive performance. It varies depending on the productive phase and the
production system, in the case of growing animals, a range between 9 and 12 mg dL has been
suggested as optimal [53]. BUN concentrations outside this general range in cattle are indicative of
deficiency ( <6 mg dL) and excess of protein supply (>19 mg dL™) [53,54]. BUN determined for the
treatments hereby described are within the range for growing cattle. Treatments 1 and 2 showed a
higher BUN compared to treatment 0. In accordance with these results in another study, doses of
0.83% and 1.89% CT increased BUN compared to the control treatment [47]. By contrast, a reduction
of BUN at doses below 1.9% CT has been also reported [42], which compares well with the reduction
in BUN observed at the dose of 1.2% CT in this trial. These findings may be associated with the
capacity of CT-P complex formation which in turn depends on the source and the growth stage of
the legume [41,44].

Results previously shown, indicated a reduced CP digestibility, which could be a consequence
of increased complex formation between endogenous nitrogen and CT in the small intestine, which
is then excreted in the feces. Thus, it seems important to explore in more detail the effects of such
endogenous N excretion in feces. The loss of N in feces showed a linear positive trend, possibly
correlated with CT concentrations in the diet. Previous studies revealed decreased CP digestibility at
doses <1.9% CT, while N retention was not affected, the excretion of N in feces increased, whilst N
excretion in urine was reduced [9,41,42]. On the other hand, the Nf:Ni ratio helps to explain effects
related to the proportion of excreted Nf. In this case, treatments 2 and 3 showed increased Nf
compared to the other treatments. This effect can be explained by the increase in CP and CT with
high doses of DLL. This fact can be reinforced with PC:DOM ratio >0.288 for treatments 2 and 3
because the interval of 0.191-0.218 of CP:DOM ratio is interpreted as the range of higher efficiency of
nitrogen utilization in grazing cattle [55]. Also, CP:DOM ratios greater than 0.288 suggest a loss of N
[55].

Rumen populations of microorganisms are responsible for the fermentation of feed. As a result,
most of the proposed strategy to reduce enteric CHs production is by regulating their growth,
quantity, and metabolism. Rumen microbiota (protozoa, bacteria, and methanogenic archaea)
quantified by means of qPCR were not affected by treatments in this study. Previous investigations
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had obtained the same results of quantification analysis of rumen microbial populations [41,56]. One
possible explanation is that some microorganisms are adapted with protective mechanisms against
CT, such as the production of polymers for cellular protection and tannin degrading enzymes [17,50].

Results obtained did not show any difference with regard to the total quantity of microbial
populations. However, the results on digestibility can be a consequence of increased inhibition of
bacterial enzymatic activity with increasing CT in the diets. Some studies that include the
identification of specific genera for microbial diversity and bacterial enzymatic activity using omic
tools have shown in more detail that the effect of some secondary metabolites in rumen
microorganisms are still present, while the quantity of microorganisms does not seem to be affected
[57-59]. Enteric CHs mitigation is undoubtedly related to direct and indirect effects of CT on microbial
populations. The mechanisms of action of CT shown in several experiments are as follows:
antimicrobial effect on cellulolytic and proteolytic bacteria, interference with the catalytic activity of
extracellular enzymes acting on fermentation of feed, reduced availability and digestibility of
nutrients [17,50]. Otherwise, CT induce a defaunating effect of protozoa [7,45,60]. In the case of
methanogenic archaea, a growth inhibiting effect has been proposed [61].

In the present study treatments 2 and 3 (0.8% and 1.2% CT) decreased production of CHas g kg
DM (13.5% and 20.7% compared to treatment 0) (Table 6). These results are similar with what was
observed at 1.37% and 1.89% CT in DLL [47], and doses of 0.9% and 1.36% CT in Acacia mearnsii [9].
Reduction of enteric CHs with the inclusion of DLL in the diets could be explained by the lower
digestibility of the crude protein and OM in the rumen. This effect is attributed to the ability of the
CT to form complexes CT-P [9,47].

The evaluation index of strategies (chemical products, ingredients, secondary metabolites, and
feed management, amongst others) proposed in various studies for the mitigation of enteric CHa
emissions is usually expressed in g kg=! DMI. However, it has been shown that the results obtained
with this index differ from those defined as CHs units per unit of product generated by cattle (milk
or weight gain). The objective of the latter is to assess if the mitigation effect of CH4 compromises
animal production [62,63]. As a consequence, more studies that include production variables are
needed to discern the real potential of the strategies under investigation. In this context, the inclusion
of doses of 0.9% and 1.36% CT in Acacia mearnsii decreased the production of CH4 [9]. However, the
adequate concentration of CT recommended to reduce CHs (14%) without negative effects on milk
production was 0.9% [9].

On the other hand, the Intergovernmental Panel on Climate Change, (IPCC) [1,4] suggest to
determine emissions of CHs in terms of unity of GEI as Ym or as GE loss MJ d'. In this study, all
treatments with inclusion of DLL showed a reduction in enteric CHs emissions when expressed both
ways. For growing cattle (on pasture or in high fiber diets) Ym average value is 6.5% of GEI in Latin
America [4]. The treatment without inclusion of DLL in the present study agrees with this reference.

GHG affect the atmosphere in different proportions and remains there for different lengths of
time. The GWP evaluates GHG in relation to their warming potential of one unit of CO2 during the
same period of time [4]. CHs and N20 possess a GWP of 28 and 265 times higher than that of CO,
respectively [1].

The effect of CT in reducing enteric CH4 productionhas been widely documented [8,9,17,18,64].
However, few studies evaluate the effect of CT on N20 emissions. CT have been shown to increase
the concentration of nitrogen in feces as a side effect [9,41,42]. The inclusion of the dose of 0.45% CT
in the diet gave a reduction in the excretion of N in urine without affecting digestibility of nutrients
and milk production [42]. It has also been mentioned, that N excreted through feces compared to N
from urine is less volatile and as a consequence the N that can be converted to N20O is reduced [65,66].
Otherwise, N in feces bound to CT is more resistant to degradation under soil conditions compared
to organic N in feces [67].

In this study, estimated N20 as CO2-eq d! in feces was increased due to higher CT concentration.
On the other hand, enteric CHsas CO2-eq d-! showed a linear trend towards a reduction at increasing
DLL concentrations in the diet.



Animals 2020, 10, 300 13 of 17

In summary, the lowest total GWP in COz-eq d! of gases was established for treatment 3 (1.2%
CT in diet). Even though this treatment showed a lower digestible CP and DE, and also reduced BUN
in contrast to the other doses of DLL. On the other hand, treatments 1 and 2 showed equal reductions
in GWP compared to treatment 0. However, treatment 2 decreased digestibility of OM and NDF
while increased the digestibility of ADF and excess of N compared to treatment 1.

This study did not include analysis of N excreted in the urine as variable where the largest
production of N2O may have been expected. Hence, for future studies it is important to include
evaluations of N balance and production variables with the aim of establishing the precise doses at
which CT are most effective in mitigating GHG without affecting animal production. Similar
observations have been suggested when evaluating mitigation strategies for extended periods of time
and interpreting the results of mitigating GHG in kg of product (milk and meat) obtained [68].

5. Conclusions

The results of this experiment demonstrate that the inclusion of DLL in the ration of growing
crossbred heifers decreased the emissions of enteric CHas. Supplementation of 12% of ration DM with
DLL (0.27% CT in ration) was enough to increase the digestibility of dietary protein and organic
matter while reducing CHs production, without negative effects on the quantity of microbial
populations and rumen fermentation.
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