Production Performance, Nutrient Digestibility, and Milk Composition of Dairy Ewes Supplemented with Crushed Sunflower Seeds and Sunflower Seed Silage in Corn Silage-Based Diets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Conditions and Experimental Diets
Ingredient | Corn Silage | Alfalfa Hay | Sorghum Gain | Triticale Grain | Soybean Meal | SF | SFS |
---|---|---|---|---|---|---|---|
Dry matter | 270 | 900 | 932 | 900 | 923 | 927 | 553 |
Organic matter | 939 | 900 | 919 | 934 | 905 | 961 | 955 |
Crude protein | 84 | 180 | 80 | 123 | 443 | 205 | 257 |
Ether extract | 16.8 | 30 | 26.7 | 25 | 11.9 | 281 | 378 |
Neutral detergent fiber | 545 | 550 | 46 | 231 | 70 | 408 | 331 |
Acid detergent fiber | 322 | 330 | 23 | 64 | 37 | 333 | 238 |
ME, MJ/kg DM 1 | 11 | 10 | 13 | 13.2 | 13.6 | 17.5 | 17.5 |
2.2. Sampling and Measurements
2.3. In Vitro Gas Production
2.4. Statistical Analysis
3. Results and Discussion
3.1. Nutrient Intake and Digestibility
3.2. Nitrogen Balance
3.3. Milk Yield and Milk Components
3.4. In Vitro Gas Production
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ortiz-Hernandez, A.A.; Araiza-Esquivel, M.; Delgadillo-Ruiz, L.; Ortega-Sigala, J.J.; Durán-Muñoz, H.A.; Mendez-Garcia, V.H.; Yacaman, M.J.; Vega-Carrillo, H.R. Physical characterization of sunflower seeds dehydrated by using electromagnetic induction and low-pressure system. Innov. Food Sci. Emerg. Technol. 2020, 60, 102285. [Google Scholar] [CrossRef]
- Canibe, N.; Pedrosa, M.M.; Robredo, L.M.; Bach Knudsen, K.E. Chemical composition, digestibility and protein quality of 12 sunflower (Helianthus annuus L.) cultivars. J. Sci. Food Agric. 1999, 79, 1775–1782. [Google Scholar] [CrossRef]
- Thomas, V.M.; Murray, G.A.; Thacker, D.L.; Sneddon, D.N. Sunflower Silage in Rations for Lactating Holstein Cows1, 2. J. Dairy Sci. 1982, 65, 267–270. [Google Scholar] [CrossRef]
- Zagorakis, K.; Liamadis, D.; Milis, C.; Dotas, V.; Dotas, D. Nutrient digestibility and in situ degradability of alternatives to soybean meal protein sources for sheep. Small Rumin. Res. 2015, 124, 38–44. [Google Scholar] [CrossRef]
- Parisi, G.; Tulli, F.; Fortina, R.; Marino, R.; Bani, P.; Zotte, A.D.; de Angeli, A.; Piccolo, G.; Pinotti, L.; Schiavone, A.; et al. Protein hunger of the feed sector: The alternatives offered by the plant world. Ital. J. Anim. Sci. 2020, 19, 1205–1227. [Google Scholar] [CrossRef]
- Zhang, R.H.; Mustafa, A.F.; Zhao, X. Effects of feeding oilseeds on nutrient utilization by lactating ewes. Small Rumin. Res. 2007, 67, 307–311. [Google Scholar] [CrossRef]
- Amores, G.; Virto, M.; Nájera, A.I.; Mandaluniz, N.; Arranz, J.; Bustamante, M.A.; Valdivielso, I.; de Gordoa, J.R.; García-Rodríguez, A.; Barron, L. Rapeseed and sunflower oilcake as supplements for dairy sheep: Animal performance and milk fatty acid concentrations. J. Dairy Res. 2014, 81, 410. [Google Scholar] [CrossRef]
- Cabiddu, A.; Addis, M.; Fiori, M.; Spada, S.; Decandia, M.; Molle, G. Pros and cons of the supplementation with oilseed enriched concentrates on milk fatty acid profile of dairy sheep grazing Mediterranean pastures. Small Rumin. Res. 2017, 147, 63–72. [Google Scholar] [CrossRef]
- Martínez, J.R.P.F.; Huerta, A.G.; López, D.D.J.P.; Cuevas, R.S.; Salem, A.Z.M.; Robles-Jimenez, L.E.; Gonzalez-Ronquillo, M. Effect of xylanase, cellulase and natural maguey extract on the chemical composition of corn silage and in vitro rumen gas production. Int. J. Agric. Nat. Resour. 2020, 47, 23–34. [Google Scholar]
- Escalante, A.; López Soto, D.R.; Velázquez Gutiérrez, J.E.; Giles-Gómez, M.; Bolívar, F.; López-Munguía, A. Pulque, a Traditional Mexican Alcoholic Fermented Beverage: Historical, Microbiological, and Technical Aspects. Front. Microbiol. 2016, 7, 1026. [Google Scholar] [CrossRef] [Green Version]
- NRC. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; National Academies Press: Washington, DC, USA, 2007; p. 362. [Google Scholar]
- AOAC. Association of Official Analytical Chemists. Official Methods of Analysis, 18th ed.; AOAC: Gaithersburg, MD, USA, 2005; p. 432. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- McKenzie, H.A.; Murphy, W.H. General methods and elemental analysis. Determination of total nitrogen. In Milk Proteins; McKenzie, H.A., Ed.; Academic Press: New York, NY, USA, 1970; Volume 1, pp. 154–161. [Google Scholar]
- Levowitz, D. An Appraisal of the Gerber Test for Milk Fat in Milk and Market Milk Products1. J. Milk Food Technol. 1960, 23, 69–72. [Google Scholar] [CrossRef]
- Pulina, G.; Macciotta, N.; Nudda, A. Milk composition and feeding in the Italian dairy sheep. Ital. J. Anim. Sci. 2005, 4, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Vargas-Bello-Pérez, E.; Robles-Jimenez, L.E.; Ayala-Hernández, R.; Romero-Bernal, J.; Pescador-Salas, N.; Castelán-Ortega, O.A.; González-Ronquillo, M. Effects of Calcium Soaps from Palm, Canola and Safflower Oils on Dry Matter Intake, Nutrient Digestibility, Milk Production, and Milk Composition in Dairy Goats. Animals 2020, 10, 1728. [Google Scholar] [CrossRef]
- France, J.; Dhanoa, M.S.; Theodorou, M.K.; Lister, S.J.; Davies, D.R.; Isac, D. A Model to Interpret Gas Accumulation Profiles Associated with In Vitro Degradation of Ruminant Feeds. J. Theor. Biol. 1993, 163, 99–111. [Google Scholar] [CrossRef]
- Khotijah, L.; Pandiangan, E.I.; Astuti, D.A.; Wiryawan, K.G. Effect of Sunflower Oil Supplementation as Unsaturated Fatty Acid Source on Rumen Fermentability and Performance of Lactating Garut Ewes. J. Indones. Trop. Anim. Agric. 2017, 42, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Ivan, M.; Mir, P.S.; Mir, Z.; Entz, T.; He, M.L.; McAllister, T.A. Effects of dietary sunflower seeds on rumen protozoa and growth of lambs. Br. J. Nutr. 2004, 92, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Cortés, P.; de la Fuente, M.A.; Toral, P.G.; Frutos, P.; Juárez, M.; Hervás, G. Effects of different forage:concentrate ratios in dairy ewe diets supplemented with sunflower oil on animal performance and milk fatty acid profile. J. Dairy Sci. 2011, 94, 4578–4588. [Google Scholar] [CrossRef] [Green Version]
- Lock, A.L.; Teles, B.M.; Perfield, J.W., 2nd; Bauman, D.E.; Sinclair, L.A. A conjugated linoleic acid supplement containing trans-10, cis-12 reduces milk fat synthesis in lactating sheep. J. Dairy Sci. 2006, 89, 1525–1532. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Bello-Pérez, E.; García Montes de Oca, C.A.; Pescador Salas, N.; Estrada Flores, J.G.; Bernal, J.R.; Robles-Jimenez, L.E.; Gonzalez-Ronquillo, M. Productive Performance, Milk Composition and Milk Fatty Acids of Goats Supplemented with Sunflower and Linseed Whole Seeds in Grass Silage-Based Diets. Animals 2020, 10, 1143. [Google Scholar] [CrossRef] [PubMed]
- Martínez Marín, A.L.; Gómez-Cortés, P.; Gómez Castro, G.; Juárez, M.; Pérez Alba, L.; Pérez Hernández, M.; de la Fuente, M.A. Effects of feeding increasing dietary levels of high oleic or regular sunflower or linseed oil on fatty acid profile of goat milk. J. Dairy Sci. 2012, 95, 1942–1955. [Google Scholar] [CrossRef] [Green Version]
- Hristov, A.N.; Ropp, J.K.; Grandeen, K.L.; Abedi, S.; Etter, R.P.; Melgar, A.; Foley, A.E. Effect of carbohydrate source on ammonia utilization in lactating dairy cows. J. Anim. Sci. 2005, 83, 408–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas-Bello-Pérez, E.; Márquez-Hernández, R.I.; Hernández-Castellano, L.E. Bioactive peptides from milk: Animal determinants and their implications in human health. J. Dairy Res. 2019, 86, 136–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angeles-Hernandez, J.C.; Vieyra Alberto, R.; Kebreab, E.; Appuhamy, J.A.D.R.N.; Dougherty, H.C.; Castelan-Ortega, O.; Gonzalez-Ronquillo, M. Effect of forage to concentrate ratio and fat supplementation on milk composition in dairy sheep: A meta-analysis. Livest. Sci. 2020, 238, 104069. [Google Scholar] [CrossRef]
- Bernard, L.; Shingfield, K.J.; Rouel, J.; Ferlay, A.; Chilliard, Y. Effect of plant oils in the diet on performance and milk fatty acid composition in goats fed diets based on grass hay or maize silage. Br. J. Nutr. 2009, 101, 213–224. [Google Scholar] [CrossRef] [Green Version]
- Mierlita, D.; Maerescu, C.; Daraban, S.; Lup, F. Effects of Energy and Protein Content in the Diet on Milk Yield and Milk Fatty Acid Profile in Dairy Ewes. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Anim. Sci. Biotechnol. 2009, 66, 3326. [Google Scholar] [CrossRef]
- Ferlay, A.; Bernard, L.; Meynadier, A.; Malpuech-Brugère, C. Production of trans and conjugated fatty acids in dairy ruminants and their putative effects on human health: A review. Biochimie 2017, 141, 107–120. [Google Scholar] [CrossRef]
- Kennelly, J.J. The fatty acid composition of milk fat as influenced by feeding oilseeds. Anim. Feed Sci. Technol. 1996, 60, 137–152. [Google Scholar] [CrossRef]
- Mele, M.; Buccioni, A.; Petacchi, F.; Serra, A.; Banni, S.; Antongiovanni, M.; Secchiari, P. Effect of forage/concentrate ratio and soybean oil supplementation on milk yield, and composition from Sarda ewes. Anim. Res. 2006, 55, 273–285. [Google Scholar] [CrossRef]
- Mele, M.; Serra, A.; Buccioni, A.; Conte, G.; Pollicardo, A.; Secchiari, P. Effect of soybean oil supplementation on milk fatty acid composition from Saanen goats fed diets with different forage:concentrate ratios. Ital. J. Anim. Sci. 2008, 7, 297–311. [Google Scholar] [CrossRef]
- Bionaz, M.; Vargas-Bello-Pérez, E.; Busato, S. Advances in fatty acids nutrition in dairy cows: From gut to cells and effects on performance. J. Anim. Sci. Biotechnol. 2020, 11, 110. [Google Scholar] [CrossRef]
- Chilliard, Y.; Glasser, F.; Ferlay, A.; Bernard, L.; Rouel, J.; Doreau, M. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol. 2007, 109, 828–855. [Google Scholar] [CrossRef]
- Vargas-Bello-Pérez, E.; Faber, I.; Osorio, J.S.; Stergiadis, S. Consumer knowledge and perceptions of milk fat in Denmark, the United Kingdom, and the United States. J. Dairy Sci. 2020, 103, 4151–4163. [Google Scholar] [CrossRef]
- Vlaeminck, B.; Fievez, V.; Cabrita, A.R.J.; Fonseca, A.J.M.; Dewhurst, R.J. Factors affecting odd- and branched-chain fatty acids in milk: A review. Anim. Feed Sci.Technol. 2006, 131, 389–417. [Google Scholar] [CrossRef]
- Vargas-Bello-Pérez, E.; Cancino-Padilla, N.; Romero, J.; Garnsworthy, P.C. Quantitative analysis of ruminal bacterial populations involved in lipid metabolism in dairy cows fed different vegetable oils. Animal 2016, 10, 1821–1828. [Google Scholar] [CrossRef]
- Kurade, M.B.; Saha, S.; Salama, E.-S.; Patil, S.M.; Govindwar, S.P.; Jeon, B.-H. Acetoclastic methanogenesis led by Methanosarcina in anaerobic co-digestion of fats, oil and grease for enhanced production of methane. Bioresour. Technol. 2019, 272, 351–359. [Google Scholar] [CrossRef]
Ingredients | Treatments | ||
---|---|---|---|
Control | SF | SFS | |
Corn silage | Ad libitum | Ad libitum | Ad libitum |
Alfalfa hay | 333 | 333 | 333 |
Sorghum grain | 253 | 267 | 267 |
Triticale grain | 200 | 100 | 100 |
Soybean meal | 167 | 167 | 167 |
Crushed sunflower seeds | 0 | 87 | 0 |
Sunflower seed silage | 0 | 0 | 87 |
Vitamin and mineral premix 1 | 47 | 47 | 47 |
Chemical composition | |||
Dry matter | 905 | 928 | 903 |
Organic matter | 870 | 873 | 872 |
Crude protein | 179 | 185 | 190 |
Ether extract | 24 | 46 | 54 |
Neutral detergent fiber | 253 | 266 | 259 |
Acid detergent fiber | 135 | 158 | 149 |
Metabolizable energy, MJ (kg DM 2) | 11.5 | 11.9 | 11.9 |
Treatment | SEM | p-Value | |||
---|---|---|---|---|---|
Control | SF | SFS | |||
Average body weight, BW, kg | 52.5 | 51.9 | 52.5 | 4.90 | 0.853 |
Average metabolic BW, g/kg LW0.75 | 19.4 | 19.2 | 19.4 | 1.36 | 0.995 |
Intake, g/d | |||||
Dry matter | 1127 | 1100 | 1144 | 85.7 | 0.981 |
Forage:concentrate ratio | 1.37 (57:43) | 1.47 (59:41) | 1.21 (55:45) | 0.13 | 0.400 |
Organic matter | 1683 | 1860 | 1799 | 182 | 0.975 |
Crude protein | 251 | 297 | 318 | 25.5 | 0.199 |
Fat | 66 b | 90 ab | 124 a | 12.6 | 0.017 |
Neutral detergent fiber | 530 b | 833 a | 788 ab | 78.6 | 0.033 |
Acid detergent fiber | 259 b | 475 a | 449 a | 43.8 | 0.006 |
Intake, g/kg LW0.75 | |||||
Dry matter | 92.0 | 102 | 98.1 | 5.32 | 0.419 |
Forage intake | 53.3 | 60.9 | 53.7 | 5.21 | 0.524 |
Concentrate intake | 38.7 b | 41.3 ab | 44.3 a | 0.84 | 0.001 |
Sunflower intake | 0.00 c | 5.00 b | 7.82 a | 0.69 | 0.001 |
Organic matter | 85.8 | 96.0 | 92.2 | 4.95 | 0.362 |
Crude protein | 12.9 b | 15.3 a | 16.2 a | 0.39 | 0.001 |
Fat | 3.41 b | 4.65 b | 6.24 a | 0.34 | 0.001 |
Neutral detergent fiber | 26.8 b | 43.0 a | 40.4 a | 2.32 | 0.001 |
Acid detergent fiber | 13.1 b | 24.5 a | 23.0 a | 1.28 | 0.001 |
Digestibility coefficient, kg/kg | |||||
Dry matter | 720 | 700 | 720 | 15.5 | 0.497 |
Organic matter | 740 | 730 | 750 | 12.2 | 0.571 |
Crude protein | 840 | 850 | 860 | 11.2 | 0.547 |
Neutral detergent fiber | 560 b | 650 a | 700 a | 14.6 | 0.001 |
Acid detergent fiber | 370 b | 600 a | 620 a | 17.0 | 0.001 |
N Balance | Treatment | SEM | p-Value | ||
---|---|---|---|---|---|
Control | SF | SFS | |||
N intake, g/d | 40.2 | 47.6 | 51.0 | 4.08 | 0.199 |
N intake, g/kg LW0.75 | 2.06 b | 2.46 a | 2.60 a | 0.06 | 0.001 |
Fecal N excretion g/d | 6.37 | 7.20 | 6.76 | 0.93 | 0.819 |
Fecal N g/kg LW0.75 | 0.32 | 0.37 | 0.34 | 0.03 | 0.597 |
Fecal N % of N | 15.3 | 15.0 | 13.3 | 1.23 | 0.474 |
Urine N excretion g/d | 2.69 | 3.54 | 4.72 | 0.59 | 0.087 |
Urine N g/kg LW0.75 | 0.14 | 0.18 | 0.25 | 0.04 | 0.201 |
Urine N % of N | 7.14 | 7.64 | 10.0 | 1.89 | 0.537 |
Milk N excretion g/d | 9.93 | 11.2 | 8.27 | 2.19 | 0.630 |
Milk g/kg LW0.75 | 0.48 | 0.57 | 0.40 | 0.08 | 0.382 |
Milk % of N | 22.8 | 23.2 | 15.1 | 3.53 | 0.220 |
Milk N retention g/d | 21.1 b | 24.5 b | 29.7 a | 2.06 | 0.031 |
N balance g/kg LW0.75 | 1.59 b | 1.90 a | 2.00 a | 0.07 | 0.004 |
% Retained N | 54.0 | 51.8 | 58.6 | 3.74 | 0.448 |
Item | Treatment | ||||
---|---|---|---|---|---|
Control | SF | SFS | SEM | Treatment | |
Milk Yield, kg/d | 0.64 | 0.78 | 0.62 | 0.14 | 0.695 |
Fat-corrected milk 6.5% | 0.63 | 0.72 | 0.52 | 0.14 | 0.603 |
FPCM 6.5, 5.8% | 0.60 | 0.69 | 0.52 | 0.13 | 0.647 |
Feed Efficiency | 0.32 | 0.35 | 0.26 | 0.05 | 0.359 |
Feed Efficiency FCM | 0.30 | 0.34 | 0.25 | 0.04 | 0.404 |
Milk-N/ N-Intake% | 0.22 | 0.27 | 0.22 | 0.03 | 0.503 |
MUN, mg/dl | 74.8 | 95.4 | 105 | 11.4 | 0.199 |
Milk composition, g/100g | |||||
Fat | 5.78 | 5.69 | 4.79 | 0.43 | 0.810 |
Protein | 4.23 b | 4.38 ab | 4.58 a | 0.10 | 0.043 |
Lactose | 4.00 b | 4.15 ab | 4.34 a | 0.10 | 0.042 |
Non-fat solids | 8.93 b | 9.29 ab | 9.72 a | 0.22 | 0.027 |
Total solids | 22.9 | 23.5 | 23.4 | 0.56 | 0.752 |
Milk composition, g/d | |||||
Fat | 40.7 | 44.1 | 30.5 | 9.12 | 0.541 |
Protein | 26.4 | 34.8 | 29.0 | 6.32 | 0.468 |
Lactose | 25.0 | 32.9 | 27.5 | 5.98 | 0.466 |
Non-fat solids | 55.9 | 73.9 | 61.9 | 13.4 | 0.450 |
Total solids | 148 | 185 | 149 | 34.2 | 0.680 |
Item | Control | SFS | SFS | SEM | p-Value |
---|---|---|---|---|---|
A | 186 | 183 | 174 | 5.08 | 0.298 |
B | 0.044 | 0.038 | 0.050 | 0.008 | 0.665 |
C | 0.002 | 0.003 | 0.012 | 0.017 | 0.903 |
Lag time | 0.258 | 0.352 | 0.218 | 0.079 | 0.931 |
Gas production, mL gas/g DM | |||||
12 h | 85 ab | 77 b | 90 a | 2.56 | 0.001 |
24 h | 124 a | 112 b | 122 a | 2.73 | 0.001 |
48 h | 158 a | 152 b | 150 b | 2.61 | 0.001 |
96 h | 188 a | 181 b | 176 b | 3.03 | 0.001 |
pH | 6.78 | 6.79 | 6.77 | 0.02 | 0.685 |
DMD 96 h | 84.9 a | 83.2 b | 83.0 b | 0.30 | 0.007 |
PF 96 h | 221 | 218 | 212 | 4.12 | 0.326 |
GY 24 h | 29.2 | 26.9 | 29.4 | 0.62 | 0.057 |
SCFA | 0.55 | 0.49 | 0.54 | 0.01 | 0.056 |
MCP | 794 a | 782 ab | 776 b | 2.79 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso-Gutiérrez, E.; Narváez-López, A.C.; Robles-Jiménez, L.E.; Morales Osorio, A.; Gutierrez-Martinez, M.d.G.; Leskinen, H.; Mele, M.; Vargas-Bello-Pérez, E.; González-Ronquillo, M. Production Performance, Nutrient Digestibility, and Milk Composition of Dairy Ewes Supplemented with Crushed Sunflower Seeds and Sunflower Seed Silage in Corn Silage-Based Diets. Animals 2020, 10, 2354. https://doi.org/10.3390/ani10122354
Cardoso-Gutiérrez E, Narváez-López AC, Robles-Jiménez LE, Morales Osorio A, Gutierrez-Martinez MdG, Leskinen H, Mele M, Vargas-Bello-Pérez E, González-Ronquillo M. Production Performance, Nutrient Digestibility, and Milk Composition of Dairy Ewes Supplemented with Crushed Sunflower Seeds and Sunflower Seed Silage in Corn Silage-Based Diets. Animals. 2020; 10(12):2354. https://doi.org/10.3390/ani10122354
Chicago/Turabian StyleCardoso-Gutiérrez, Eduardo, Alondra Cristel Narváez-López, Lizbeth E. Robles-Jiménez, Andrés Morales Osorio, María de Guadalupe Gutierrez-Martinez, Heidi Leskinen, Marcello Mele, Einar Vargas-Bello-Pérez, and Manuel González-Ronquillo. 2020. "Production Performance, Nutrient Digestibility, and Milk Composition of Dairy Ewes Supplemented with Crushed Sunflower Seeds and Sunflower Seed Silage in Corn Silage-Based Diets" Animals 10, no. 12: 2354. https://doi.org/10.3390/ani10122354