Comparative Analysis of Consumer Exposure to Resistant Bacteria through Chicken Meat Consumption in Germany
Abstract
1. Introduction
2. Materials and Methods
2.1. Model Description
2.2. Model Parameterization
2.3. Model Simulation
2.4. Comparative Analysis of Consumer Exposure between ESBL-/AmpC-producing E. coli and MRSA by Using the Same Probabilistic Model
2.5. Model Reusability and Exchange
3. Results
3.1. Estimation of Consumer Exposure to ESBL-/AmpC-producing E. coli
3.2. Impact of Hygiene Practices in Consumer Exposure to ESBL-/AmpC-producing E. coli (What-if Scenarios)
3.3. Comparative Analysis of Consumer Exposure to ESBL-/AmpC-producing E. coli and MRSA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EFSA. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017. EFSA J. 2019, 17, e05598. [Google Scholar]
- EFSA. Scientific Opinion on the public health risks of bacterial strains producing extended-spectrum β-lactamases and/or AmpC β-lactamases in food and food-producing animals. EFSA J. 2011, 9, 2322. [Google Scholar] [CrossRef]
- WHO. Tackling Antibiotic Resistance from a Food Safety Perspective in Europe; WHO Regional Office for Europe: Copenhagen, Denmark, 2011. [Google Scholar]
- Huijbers, P.M.C.; Graat, E.A.M.; Haenen, A.P.J.; Van Santen, M.G.; Van Essen-Zandbergen, A.; Mevius, D.J.; Van Duijkeren, E.; Van Hoek, A.H.A.M. Extended-spectrum and AmpC β-lactamase-producing Escherichia coli in broilers and people living and/or working on broiler farms: Prevalence, risk factors and molecular characteristics. J. Antimicrob. Chemother. 2014, 69, 2669–2675. [Google Scholar] [CrossRef]
- Njage, P.M.K.; Buys, E.M. Quantitative assessment of human exposure to extended spectrum and AmpC β-lactamases bearing E. coli in lettuce attributable to irrigation water and subsequent horizontal gene transfer. Int. J. Food Microbiol. 2017, 240, 141–151. [Google Scholar] [CrossRef]
- Dorado-García, A.; Smid, J.H.; van Pelt, W.; Bonten, M.J.M.; Fluit, A.C.; van den Bunt, G.; Wagenaar, J.A.; Hordijk, J.; Dierikx, C.M.; Veldman, K.T.; et al. Molecular relatedness of ESBL/AmpC-producing Escherichia coli from humans, animals, food and the environment: A pooled analysis. J. Antimicrob. Chemother. 2018, 73, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Leverstein-van Hall, M.A.; Dierikx, C.M.; Cohen, J.S.; Voets, G.M.; van den Munckhof, M.P.; van Essen-Zandbergen, A.; Platteel, T.; Fluit, A.C.; van de Sande-Bruinsma, N.; Scharinga, J.; et al. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin. Microbiol. Infect. 2011, 17, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Voets, G.M.; Fluit, A.C.; Scharringa, J.; Schapendonk, C.; van den Munckhof, T.; Leverstein-van Hall, M.A.; Stuart, J.C. Identical plasmid AmpC beta-lactamase genes and plasmid types in E. coli isolates from patients and poultry meat in the Netherlands. Int. J. Food Microbiol. 2013, 167, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Smet, A.; Rasschaert, G.; Martel, A.; Persoons, D.; Dewulf, J.; Butaye, P.; Catry, B.; Haesebrouck, F.; Herman, L.; Heyndrickx, M. In situ ESBL conjugation from avian to human Escherichia coli during cefotaxime administration. J. Appl. Microbiol. 2011, 110, 541–549. [Google Scholar] [CrossRef]
- Collignon, P.J.; Conly, J.M.; Andremont, A.; McEwen, S.A.; Aidara-Kane, A.; Agerso, Y.; Andremont, A.; Collignon, P.; Conly, J.; Dang Ninh, T.; et al. World Health Organization Ranking of Antimicrobials According to Their Importance in Human Medicine: A Critical Step for Developing Risk Management Strategies to Control Antimicrobial Resistance from Food Animal Production. Clin. Infect. Dis. 2016, 63, 1087–1093. [Google Scholar] [CrossRef] [PubMed]
- Lerminiaux, N.A.; Cameron, A.D.S. Horizontal transfer of antibiotic resistance genes in clinical environments. Can. J. Microbiol. 2019, 65, 34–44. [Google Scholar] [CrossRef]
- Zwirzitz, B.; Wetzels, S.U.; Dixon, E.D.; Stessl, B.; Zaiser, A.; Rabanser, I.; Thalguter, S.; Pinior, B.; Roch, F.-F.; Strachan, C.; et al. The sources and transmission routes of microbial populations throughout a meat processing facility. NPJ Biofilms Microbiomes 2020, 6, 1–12. [Google Scholar] [CrossRef]
- Depoorter, P.; Persoons, D.; Uyttendaele, M.; Butaye, P.; De Zutter, L.; Dierick, K.; Herman, L.; Imberechts, H.; Van Huffel, X.; Dewulf, J. Assessment of human exposure to 3rd generation cephalosporin resistant E. coli (CREC) through consumption of broiler meat in Belgium. Int. J. Food Microbiol. 2012, 159, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Tirado, C.; Schmidt, K. WHO surveillance programme for control of foodborne infections and intoxications: Preliminary results and trends across greater Europe. World Health Organization. J. Infect. 2001, 43, 80–84. [Google Scholar] [CrossRef]
- EU-Commision. Food Hygiene. Revision of Official Controls on Products of Animal Origin Intended for Human Consumption: From 14 December 2019. 2019. Available online: https://ec.europa.eu/food/safety/biosafety/food_hygiene_en (accessed on 11 May 2021).
- Mazengia, E.; Fisk, C.; Liao, G.; Huang, H.; Meschke, J. Direct Observational Study of the Risk of Cross-contamination during Raw Poultry Handling: Practices in Private Homes. J. Food Prot. 2015, 35, 8–23. [Google Scholar]
- Van Asselt, E.D.; De Jong, A.E.I.; De Jonge, R.; Nauta, M.J. Cross-contamination in the kitchen: Estimation of transfer rates for cutting boards, hands and knives. J. Appl. Microbiol. 2008, 105, 1392–1401. [Google Scholar] [CrossRef]
- Evers, E.G.; Pielaat, A.; Smid, J.H.; Van Duijkeren, E.; Vennemann, F.B.C.; Wijnands, L.M.; Chardon, J.E. Comparative Exposure Assessment of ESBL-Producing Escherichia coli through Meat Consumption. PLoS ONE 2017, 12, e0169589. [Google Scholar] [CrossRef] [PubMed]
- Redmond, E.C.; Griffith, C.J. Consumer Food Handling in the Home: A Review of Food Safety Studies. J. Food Prot. 2003, 66, 130–161. [Google Scholar] [CrossRef]
- Sampers, I.; Berkvens, D.; Jacxsens, L.; Ciocci, M.-C.; Dumoulin, A.; Uyttendaele, M. Survey of Belgian consumption patterns and consumer behaviour of poultry meat to provide insight in risk factors for campylobacteriosis. Food Control. 2012, 26, 293–299. [Google Scholar] [CrossRef]
- Plaza-Rodríguez, C.; Kaesbohrer, A.; Tenhagen, B. Probabilistic model for the estimation of the consumer exposure to methicillin-resistant Staphylococcus aureus due to cross-contamination and recontamination. MicrobiologyOpen 2019, 8, e900. [Google Scholar] [CrossRef]
- Bearth, A.; Cousin, M.-E.; Siegrist, M. Poultry consumers’ behaviour, risk perception and knowledge related to campylobacteriosis and domestic food safety. Food Control. 2014, 44, 166–176. [Google Scholar] [CrossRef]
- Fetsch, A.; Tenhagen, B.A.; Kelner-Burgos, Y.; Thoens, C.; Kaesbohrer, A. Küchenhygiene? Da war doch was!—Studien zur Kreuzkontamination mit MRSA und ESBL E. coli in Geflügelfleisch. In Proceedings of the BfR-Symposium Antibiotikaresistenz in der Lebensmittelkette, Berlin, Germany, 2–3 November 2015. [Google Scholar]
- BVL. 12.2. Berichte zur Lebensmittelsicherheit. Zoonosen-Monitoring 2016; Bundesamt für Verbraucherschutz und Lebensmittelsicherheit: Berlin, Germany, 2017. [Google Scholar]
- BVL. 14.1. Berichte zur Lebensmittelsicherheit. Zoonosen-Monitoring 2018; Bundesamt für Verbraucherschutz und Lebensmittelsicherheit: Berlin, Germany, 2019. [Google Scholar]
- BVL. 9.4. Berichte zur Lebensmittelsicherheit. Zoonosen-Monitoring 2013; Bundesamt für Verbraucherschutz und Lebensmittelsicherheit: Berlin, Germany, 2014. [Google Scholar]
- Reich, F.; Schill, F.; Atanassova, V.; Klein, G. Quantification of ESBL-Escherichia coli on broiler carcasses after slaughtering in Germany. Food Microbiol. 2016, 54, 1–5. [Google Scholar] [CrossRef]
- Von Tippelskirch, P.; Gölz, G.; Projahn, M.; Daehre, K.; Friese, A.; Roesler, U.; Alter, T.; Orquera, S. Prevalence and quantitative analysis of ESBL and AmpC beta-lactamase producing Enterobacteriaceae in broiler chicken during slaughter in Germany. Int. J. Food Microbiol. 2018, 281, 82–89. [Google Scholar] [CrossRef] [PubMed]
- EFSA. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA J. 2020, 18, e06007. [Google Scholar]
- Bergšpica, I.; Kaprou, G.; Alexa, E.A.; Prieto, M.; Alvarez-Ordóñez, A. Extended Spectrum β-Lactamase (ESBL) Producing Escherichia coli in Pigs and Pork Meat in the European Union. Antibiotics 2020, 9, 678. [Google Scholar] [CrossRef] [PubMed]
- EU-Commision. Guidelines for the Prudent Use of Antimicrobials in Veterinary Medicine (2015/C 299/04). Off. J. Eur. Union. 2015, C299, 21–22. [Google Scholar]
- Kaesbohrer, A.; Bakran-Lebl, K.; Irrgang, A.; Fischer, J.; Kämpf, P.; Schiffmann, A.; Werckenthin, C.; Busch, M.; Kreienbrock, L.; Hille, K. Diversity in prevalence and characteristics of ESBL/pAmpC producing E. coli in food in Germany. Veter. Microbiol. 2019, 233, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Belmar Campos, C.; Fenner, I.; Wiese, N.; Lensing, C.; Christner, M.; Rohde, H.; Aepfelbacher, M.; Fenner, T.; Hentschke, M. Prevalence and genotypes of extended spectrum beta-lactamases in Enterobacteriaceae isolated from human stool and chicken meat in Hamburg, Germany. Int. J. Med. Microbiol. 2014, 304, 678–684. [Google Scholar] [CrossRef]
- Kola, A.; Kohler, C.; Pfeifer, Y.; Schwab, F.; Kühn, K.; Schulz, K.; Balau, V.; Breitbach, K.; Bast, A.; Witte, W.; et al. High prevalence of extended-spectrum-β-lactamase-producing Enterobacteriaceae in organic and conventional retail chicken meat, Germany. J. Antimicrob. Chemother. 2012, 67, 2631–2634. [Google Scholar] [CrossRef] [PubMed]
- Plaza Rodríguez, C.; Correia Carreira, G.; Käsbohrer, A. A Probabilistic Transmission Model for the Spread of Extended-Spectrum-β-Lactamase and AmpC-β-Lactamase-Producing Escherichia Coli in the Broiler Production Chain. Risk Anal. 2018, 38, 2659–2682. [Google Scholar] [CrossRef]
- Apostolakos, I.; Mughini-Gras, L.; Fasolato, L.; Piccirillo, A. Assessing the occurrence and transfer dynamics of ESBL/pAmpC-producing Escherichia coli across the broiler production pyramid. PLoS ONE 2019, 14, e0217174. [Google Scholar] [CrossRef]
- Carmo, L.P.G.D.; Nielsen, L.R.; Da Costa, P.M.; Alban, L. Exposure assessment of extended-spectrum beta-lactamases/AmpC beta-lactamases-producing Escherichia coli in meat in Denmark. Infect. Ecol. Epidemiol. 2014, 4, 2322. [Google Scholar] [CrossRef] [PubMed]
- Luber, P.; Brynestad, S.; Topsch, D.; Scherer, K.; Bartelt, E. Quantification of Campylobacter Species Cross-Contamination during Handling of Contaminated Fresh Chicken Parts in Kitchens. Appl. Environ. Microbiol. 2006, 72, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Nauta, M.J.; Jacobs-Reitsma, W.F.; Evers, E.G.; Van Pelt, W.; Havelaar, A.H. Risk Assessment of Campylobacter in the Netherlands via Broiler Meat and Other Routes; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2005. [Google Scholar]
- Voedingscentrum. Hygiëne privé-huishouding Voedingscentrum; Voedingscentrum: Den Haag, The Netherlands, 1999. [Google Scholar]
- Fetsch, A.; Tenhagen, B.A. How big is the risk? Update on MRSA in the food chain. In Proceedings of the RESET-MedVet-Staph Abschlusssymposium, Berlin, Germany, 26–28 April 2017. [Google Scholar]
- Delignette-Muller, M.L.; Dutang, C. fitdistrplus: An R package for fitting distributions. J. Stat. Softw. 2015, 64, 1–34. [Google Scholar] [CrossRef]
- Aparicio, M.D.A.; Buschhardt, T.; Swaid, A.; Valentin, L.; Mesa-Varona, O.; Günther, T.; Plaza-Rodriguez, C.; Filter, M. FSK-Lab—An open source food safety model integration tool. Microb. Risk. Anal. 2018, 10, 13–19. [Google Scholar] [CrossRef]
- Filter, M.; de Alba-Aparicio, M.; Sundermann, E.-M.; Fuhrmann, M. Food Safety Knowledge Markup Language (FSK-ML) Software Developer Guide v3.1. 2017. Available online: https://foodrisklabs.bfr.bund.de/wp-content/uploads/fsk/FSK_guidance_document_V3_1.pdf (accessed on 11 May 2021).
- Haberbeck, L.U.; Plaza-Rodríguez, C.; Desvignes, V.; Dalgaard, P.; Sanaa, M.; Guillier, L.; Nauta, M.; Filter, M. Harmonized terms, concepts and metadata for microbiological risk assessment models: The basis for knowledge integration and exchange. Microb. Risk Anal. 2018, 10, 3–12. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, F.; Zwietering, M.H. Application of the Central Limit Theorem in microbial risk assessment: High number of servings reduces the Coefficient of Variation of food-borne burden-of-illness. Int. J. Food Microbiol. 2012, 153, 413–419. [Google Scholar] [CrossRef]
- Plaza-Rodríguez, C.; Haberbeck, L.U.; Desvignes, V.; Dalgaard, P.; Sanaa, M.; Nauta, M.; Filter, M.; Guillier, L. Towards transparent and consistent exchange of knowledge for improved microbiological food safety. Curr. Opin. Food Sci. 2018, 19, 129–137. [Google Scholar] [CrossRef]
- Kluytmans, J.A.; Overdevest, I.T.; Willemsen, I.; Kluytmans-van den Bergh, M.F.; van der Zwaluw, K.; Heck, M.; Rijnsburger, M.; Vandenbroucke-Grauls, C.M.; Savelkoul, P.H.; Johnston, B.D. Extended-spectrum β-lactamase-producing Escherichia coli from retail chicken meat and humans: Comparison of strains, plasmids, resistance genes, and virulence factors. Clin. Infect. Dis. 2013, 56, 478–487. [Google Scholar] [CrossRef]
- Manges, A.R.; Smith, S.P.; Lau, B.J.; Nuval, C.J.; Eisenberg, J.N.; Dietrich, P.S.; Riley, L.W. Retail meat consumption and the acquisition of antimicrobial resistant Escherichia coli causing urinary tract infections: A case-control study. Foodborne Pathog. Dis. 2007, 4, 419–431. [Google Scholar] [CrossRef]
- Isendahl, J.; Giske, C.G.; Hammar, U.; Sparen, P.; Tegmark Wisell, K.; Ternhag, A.; Nauclér, P. Temporal Dynamics and Risk Factors for Bloodstream Infection with Extended-spectrum β-Lactamase-producing Bacteria in Previously-colonized Individuals: National Population-based Cohort Study. Clin. Infect. Dis. 2019, 68, 641–649. [Google Scholar] [CrossRef]
- Dame-Korevaar, A.; Fischer, E.A.J.; van der Goot, J.; Velkers, F.; van den Broek, J.; Veldman, K.; Ceccarelli, D.; Mevius, D.; Stegeman, A. Effect of challenge dose of plasmid-mediated extended-spectrum β-lactamase and AmpC β-lactamase producing Escherichia coli on time-until-colonization and level of excretion in young broilers. Vet. Microbiol. 2019, 239, 108446. [Google Scholar] [CrossRef] [PubMed]
- Van den Bunt, G.; Liakopoulos, A.; Mevius, D.J.; Geurts, Y.; Fluit, A.C.; Bonten, M.J.; Mughini-Gras, L.; van Pelt, W. ESBL/AmpC-producing Enterobacteriaceae in households with children of preschool age: Prevalence, risk factors and co-carriage. J. Antimicrob. Chemother. 2017, 72, 589–595. [Google Scholar] [CrossRef]
- Haverkate, M.R.; Platteel, T.N.; Fluit, A.C.; Cohen Stuart, J.W.; Leverstein-van Hall, M.A.; Thijsen, S.; Scharringa, J.; Kloosterman, R.C.; Bonten, M.; Bootsma, M. Quantifying within-household transmission of extended-spectrum β-lactamase-producing bacteria. Clin. Microbiol. Infect. 2017, 23, 46.e1–46.e7. [Google Scholar] [CrossRef] [PubMed]
- Donkor, E.; Codjoe, F. Methicillin Resistant Staphylococcus aureus and Extended Spectrum Beta-lactamase Producing Enterobacteriaceae: A Therapeutic Challenge in the 21st Century. Open Microbiol. J. 2019, 13, 94–100. [Google Scholar] [CrossRef]
Sub-Scenario | Parameter Type | Notation | Parameter | Unit * | Description | Parameter Reference |
---|---|---|---|---|---|---|
1–2 | Prevalence and bacterial concentration in raw chicken meat at retail | P_C | Prevalence of ESBL (P) in raw chicken meat (C) at retail | rgamma(5.87, 11.56) | [24,25,26,32] | |
N_C | Contamination level (N) on raw chicken meat (C) at retail | CFU/cm2 | rweibull(0.33, 62.89)/1.25 | [27,28] | ||
1 | Transfer coefficients and bacterial persistence after rinsing | tC_H | Transfer coefficient (t) from raw chicken meat (C) to hand (H) | 0.0384 | [23] | |
tC_CB | Transfer coefficient (t) from raw chicken meat (C) to cutting board (CB) | 0.0342 | [23] | |||
tC_K | Transfer coefficient (t) from raw chicken meat (C) to knife (K) | 0.0103 | [23] | |||
tH_B | Transfer coefficient (t) from hands (H) to bread (B) | 0.0300 | [38] | |||
tCB_B | Transfer coefficient (t) from cutting board (CB) to bread (B) | 1 | [23] | |||
tK_B | Transfer coefficient (t) from knife (K) to bread (B) | 1 | [23] | |||
tCB_CB | Persistence coefficient of ESBL in cutting board (CB) after rinsing | 0.0134 | [23] | |||
Probabilities of action occurrence | pCF | Probability (p) that the raw chicken meat (C) is cut first (F) (before cutting the bread) | 0.50 | [39] | ||
pRCB | Probability (p) that the cutting board (CB) is rinsed (R) after cutting the raw chicken meat and before cutting the bread | 0.28 | [40] | |||
pCB | Probability (p) that the cutting board (CB) is not rinsed after cutting the raw chicken meat and before cutting the bread | 1-pRCB | [21] | |||
Surfaces involved | SB_H | Bread contaminated surface (SB) from hand (H) | cm2 | 90 | [41] | |
SB_CB | Bread contaminated surface (SB) from cutting board (CB) | cm2 | runif (63, 80) | [41] | ||
SB_K | Bread contaminated surface (SB) from knife (K) | cm2 | 19.60 | [41] | ||
2 | Transfer coefficients and bacterial persistence after rinsing | tC_D | Transfer coefficient (t) from raw chicken meat (C) to dish (D) | 0.018 | [23] | |
tC_T | Transfer coefficient (t) from raw chicken meat (C) to barbecue tong (T) | 0.0089 | [23] | |||
tD_C90 | Transfer coefficient (t) from dish (D) to grilled chicken that remains at 90 °C (C90) | 0.0027 | [23] | |||
tT_C90 | Transfer coefficient (t) from barbecue tong (T) to grilled chicken that remains at 90 °C (C90) | 0.0038 | [23] | |||
tD_C60 | Transfer coefficient (t) from dish (D) to grilled chicken that remains at 60 °C (C60) | 0.3774 | [23] | |||
tT_C60 | Transfer coefficient (t) from barbecue tong (T) to grilled chicken that remains at 60 °C (C60) | 0.0038 | [23] | |||
tD_D | Persistence coefficient of ESBL in dish (D) after rinsing | 0.0027 | [23] | |||
Probability of action occurrence | pMF | Probability (p) that the raw chicken meat is manipulated (M) first (F) (before grilled chicken is manipulated) | 1 | [21] | ||
pC90 | Probability (p) that the grilled chicken remains warm (C90) when is manipulated | 0.60 | [21] | |||
pC60 | Probability (p) that the grilled chicken cools to 60 °C (C60) before being manipulated | 1-pC90 | [21] | |||
pRD | Probability that the dish (D) is rinsed(R) after being used for raw chicken meat manipulation | 0.28 | [40] | |||
pD | Probability (p) that the dish (D) is not rinsed after being used for raw chicken meat | 1-pRD | [21] | |||
Surfaces involved | SGC_D | Grilled chicken contaminated surface (SGC) from dish (D) | cm2 | 22.14 | [41] | |
SGC_T | Grilled chicken contaminated surface (SGC) from barbecue tong (T) | cm2 | 14.17 | [41] |
Minimum | Q1 | Median | Mean | SD | Q3 | Maximum | ||
---|---|---|---|---|---|---|---|---|
Probability of one CFU being transferred from raw chicken meat (expressed as a fraction of 1) | PC_B | 7.40 × 10−4 | 6.44 × 10−3 | 8.68 × 10−3 | 9.18 × 10−3 | 3.77 × 10−3 | 1.14 × 10−2 | 3.83 × 10−2 |
PC_GC | 8.24 × 10−5 | 7.17 × 10−4 | 9.66 × 10−4 | 1.02 × 10−3 | 4.20 × 10−4 | 1.27 × 10−3 | 4.27 × 10−3 | |
P_E× | 1.49 × 10−6 | 1.30 × 10−5 | 1.75 × 10−5 | 1.85 × 10−5 | 7.59 × 10−6 | 2.29 × 10−5 | 7.72 × 10−5 | |
Number of CFU transferred from raw chicken meat (CFU/serving) | N_B | 0 | 0 | 35 | 319 | 1301 | 183 | 114,201 |
N_GC | 0 | 0 | 0 | 13 | 60 | 6 | 5618 | |
N_Ex | 0 | 0 | 37 | 332 | 1360 | 189 | 119,820 |
Exposure Dose | >10 CFU/g | >100 CFU/g | >1000 CFU/g | >10,000 CFU/g |
---|---|---|---|---|
Bread | 61.8% | 34.1% | 6.9% | 0.3% |
Grilled chicken | 19.8% | 2.9% | 0.1% | 0.0% |
Final serving | 62.1% | 34.6% | 7.2% | 0.3% |
ESBL-/AmpC-producing E. coli | Methicillin-Resistant Staphylococcus aureus | Diff. Means | p-Value (ParametricT-Test) | p-Value (Non-Parametric Wilcoxon Test) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | 95% CI | Median | Mean | 95% CI | Median | Diff. Medians | ||||
PC_B | 9.18 × 10−3 | (9.16 × 10−3–9.20 × 10−3) | 8.68 × 10−3 | 1.88 × 10−3 | (1.86 × 10−3–1.90 × 10−3) | 5.78 × 10−4 | 7.30 × 10−3 | <0.001 | 8.10 × 10−3 | <0.001 |
PC_GC | 1.02 × 10−3 | (1.02 × 10−3–1.02 × 10−3) | 9.66 × 10−4 | 1.07 × 10−4 | (1.06 × 10−4–1.08 × 10−4) | 3.29 × 10−5 | 9.15 × 10−4 | <0.001 | 9.33 × 10−4 | <0.001 |
P_Ex | 1.85 × 10−5 | (1.84 × 10−5–1.85 × 10−3) | 1.75 × 10−5 | 2.44 × 10−6 | (2.42 × 10−6–2.47 × 10−6) | 7.50 × 10−6 | 1.60 × 10−5 | <0.001 | 9.98 × 10−6 | <0.001 |
N_B | 318.91 | (310.85–326.97) | 35.07 | 61.84 | (56.15–67.53) | 0.00 | 257.07 | <0.001 | 35.07 | <0.001 |
N_GC | 13.30 | (12.93–13.68) | 0.00 | 1.38 | (1.24–1.51) | 0.00 | 11.92 | <0.001 | 0.00 | <0.001 |
N_Ex | 332.21 | (323.79–340.64) | 36.63 | 63.22 | (57.39–69.05) | 0.00 | 268.99 | <0.001 | 36.63 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plaza-Rodríguez, C.; Mesa-Varona, O.; Alt, K.; Grobbel, M.; Tenhagen, B.-A.; Kaesbohrer, A. Comparative Analysis of Consumer Exposure to Resistant Bacteria through Chicken Meat Consumption in Germany. Microorganisms 2021, 9, 1045. https://doi.org/10.3390/microorganisms9051045
Plaza-Rodríguez C, Mesa-Varona O, Alt K, Grobbel M, Tenhagen B-A, Kaesbohrer A. Comparative Analysis of Consumer Exposure to Resistant Bacteria through Chicken Meat Consumption in Germany. Microorganisms. 2021; 9(5):1045. https://doi.org/10.3390/microorganisms9051045
Chicago/Turabian StylePlaza-Rodríguez, Carolina, Octavio Mesa-Varona, Katja Alt, Mirjam Grobbel, Bernd-Alois Tenhagen, and Annemarie Kaesbohrer. 2021. "Comparative Analysis of Consumer Exposure to Resistant Bacteria through Chicken Meat Consumption in Germany" Microorganisms 9, no. 5: 1045. https://doi.org/10.3390/microorganisms9051045
APA StylePlaza-Rodríguez, C., Mesa-Varona, O., Alt, K., Grobbel, M., Tenhagen, B.-A., & Kaesbohrer, A. (2021). Comparative Analysis of Consumer Exposure to Resistant Bacteria through Chicken Meat Consumption in Germany. Microorganisms, 9(5), 1045. https://doi.org/10.3390/microorganisms9051045