Natural Antimicrobials Suitable for Combating Desiccation-Resistant Salmonella enterica in Milk Powder
Abstract
:1. Introduction
2. Material and Methods
2.1. Preparation of the Test Food Additives
2.2. Bacterial Strains
2.3. Preparation of Desiccation-Adapted S. enterica Serovars
2.4. Potassium Ion Release Assay
2.5. Determination of the Minimum Inhibitory Concentration (MIC)
2.6. Treatment of Salmonella Serovars with Additive-Heat Combination
2.7. Inactivation of S. enterica in Milk during Spray-Drying
2.8. Inactivation of S. enterica in Milk during Freeze-Drying
2.9. Statistical Analysis
3. Results and Discussion
3.1. Screening Food Additives for the Ability to Disrupt Desiccation Resistance in Salmonella
3.2. Sensitizing Desiccation-Resistant Salmonella to Heat Treatment Using Selected Food Additives
3.3. Inactivation of S. enterica in Milk during Spray-Drying
3.4. Inactivation of S. enterica in Milk during Freeze-Drying
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beuchat, L.R.; Komitopoulou, E.; Beckers, H.; Betts, R.P.; Bourdichon, F.; Fanning, S.; Joosten, H.M.; Ter Kuile, B.H. Low–water activity foods: Increased concern as vehicles of foodborne pathogens. J. Food Prot. 2013, 76, 150–172. [Google Scholar] [CrossRef]
- Russo, E.T.; Biggerstaff, G.; Hoekstra, R.M.; Meyer, S.; Patel, N.; Miller, B.; Quick, R. A recurrent, multistate outbreak of Salmonella serotype Agona infections associated with dry, unsweetened cereal consumption, United States, 2008. J. Food Prot. 2013, 76, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration (FDA). FDA Investigated multistate outbreak of Salmonella infections linked to raw nut butter products | FDA, 2014. Available online: https://www.fda.gov/food/outbreaks-foodborne-illness/fda-investigated-multistate-outbreak-salmonella-infections-linked-raw-nut-butter-products (accessed on 15 December 2020).
- FDA. Recalls, Market Withdrawals & Safety Alerts. 2018. Available online: https://www.fda.gov/safety/archive-recalls-market-withdrawals-safety-alerts/2018-recalls-market-withdrawals-safety-alerts (accessed on 15 December 2020).
- Food and Agricultural Organization (FAO); World Health Organization (WHO). Ranking of Low Moisture Foods in Support of Microbiological Risk Management. Report of an FAO/WHO Consultation Process, 2014. Available online: http://www.fao.org/tempref/codex/Meetings/CCFH/ccfh46/FAO_WHO%20Presentation%20on%20LMF%20ranking.pdf (accessed on 15 December 2020).
- Finn, S.; Condell, O.; McClure, P.; Amézquita, A.; Fanning, S. Mechanisms of survival, responses, and sources of Salmonella in low-moisture environments. Front. Microbiol. 2013, 4, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.; Zhang, G.; Gerner-Smidt, P.; Mantripragada, V.; Ezeoke, I.; Doyle, M.P. Thermal inactivation of Salmonella in Peanut Butter. J. Food Prot. 2009, 72, 1596–1601. [Google Scholar] [CrossRef]
- Abdelhamid, A.G.; Yousef, A.E. The microbial lipopeptide paenibacterin disrupts desiccation resistance in Salmonella enterica serovars Tennessee and Eimsbuettel. Appl. Environ. Microbiol. 2019, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lian, F.; Zhao, W.; Yang, R.; Tang, Y.; Katiyo, W. Survival of Salmonella enterica in skim milk powder with different water activity and water mobility. Food Control 2015, 47, 1–6. [Google Scholar] [CrossRef]
- Angulo, F.J.; Cahill, S.M.; Wachsmuth, I.K.; Costarrica, M.D.L.; Embarek, P.K.B. Powdered infant formula as a source of Salmonella infection in infants. Clin. Infect. Dis. 2008, 46, 268–273. [Google Scholar] [CrossRef] [Green Version]
- Rowe, B.; Hutchinson, D.N.; Gilbert, R.J.; Hales, B.H.; Begg, N.T.; Dawkins, H.C.; Jacob, M.; Rae, F.A.; Jepson, M. Salmonella Ealing infections associated with consumption of infant dried milk. Lancet 1987, 330, 900–903. [Google Scholar] [CrossRef]
- Jourdan-da Silva, N.; Fabre, L.; Robinson, E.; Fournet, N.; Nisavanh, A.; Bruyand, M.; Mailles, A.; Serre, E.; Ravel, M.; Guibert, V.; et al. Ongoing nationwide outbreak of Salmonella Agona associated with internationally distributed infant milk products, France, December 2017. Eurosurveillance 2018, 23. [Google Scholar] [CrossRef]
- Louie, K.K.; Paccagnella, A.M.; Osei, W.D.; Lior, H.; Francis, B.J.; Osterholm, M.T. Salmonella serotype Tennessee in powdered milk products and infant formula--Canada and United States, 1993. JAMA J. Am. Med. Assoc. 1993, 270, 432. [Google Scholar] [CrossRef]
- Enache, E.; Kataoka, A.; Black, D.G.; Napier, C.D.; Podolak, R.; Hayman, M.M. Development of a dry inoculation method for thermal challenge studies in low-moisture foods by using Talc as a carrier for Salmonella and a surrogate (Enterococcus faecium). J. Food Prot. 2015, 78, 1106–1112. [Google Scholar] [CrossRef] [Green Version]
- Abdelhamid, A.G.; Yousef, A.E. Collateral adaptive responses induced by desiccation stress in Salmonella enterica. LWT 2020, 133, 110089. [Google Scholar] [CrossRef]
- Abdelhamid, A.G.; Xu, Y.; Yousef, A.E. Draft genome sequence of Salmonella enterica subsp. enterica serovar Livingstone 1236H, a desiccation-resistant strain that poses a salmonellosis hazard in low-moisture foods. Microbiol. Resour. Announc. 2021, 10, e01197-20. [Google Scholar] [CrossRef]
- Peña-Meléndez, M.; Perry, J.J.; Yousef, A.E. Changes in thermal resistance of three Salmonella serovars in response to osmotic shock and adaptation at water activities reduced by different humectants. J. Food Prot. 2014, 77, 914–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabag-Daigle, A.; Blunk, H.M.; Gonzalez, J.F.; Steidley, B.L.; Boyaka, P.N.; Ahmer, B.M.M. Use of attenuated but metabolically competent Salmonella as a probiotic to prevent or treat Salmonella infection. Infect. Immun. 2016, 84, 2131–2140. [Google Scholar] [CrossRef] [Green Version]
- Gruzdev, N.; McClelland, M.; Porwollik, S.; Ofaim, S.; Pinto, R.; Saldinger-Sela, S. Global transcriptional analysis of dehydrated Salmonella enterica serovar Typhimurium. Appl. Environ. Microbiol. 2012, 78, 7866–7875. [Google Scholar] [CrossRef] [Green Version]
- Helander, I.M.; Alakomi, H.L.; Latva-Kala, K.; Mattila-Sandholm, T.; Pol, I.; Smid, E.J.; Gorris, L.G.M.; von Wright, A. Characterization of the action of selected essential oil components on Gram-negative bacteria. J. Agric. Food Chem. 1998, 46, 3590–3595. [Google Scholar] [CrossRef]
- Miladi, H.; Zmantar, T.; Kouidhi, B.; Chaabouni, Y.; Mahdouani, K.; Bakhrouf, A.; Chaieb, K. Use of carvacrol, thymol, and eugenol for biofilm eradication and resistance modifying susceptibility of Salmonella enterica serovar Typhimurium strains to nalidixic acid. Microb. Pathog. 2017, 104, 56–63. [Google Scholar] [CrossRef]
- Olasupo, N.A.; Fitzgerald, D.J.; Gasson, M.J.; Narbad, A. Activity of natural antimicrobial compounds against Escherichia coli and Salmonella enterica serovar Typhimurium. Lett. Appl. Microbiol. 2003, 37, 448–451. [Google Scholar] [CrossRef] [Green Version]
- Humayoun, S.B.; Hiott, L.M.; Gupta, S.K.; Barrett, J.B.; Woodley, T.A.; Johnston, J.J.; Jackson, C.R.; Frye, J.G. An assay for determining the susceptibility of Salmonella isolates to commercial and household biocides. PLoS ONE 2018, 13, e0209072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obaidat, M.M.; Alu’Datt, M.H.; Bani Salman, A.E.; Obaidat, H.M.; Al-Zyoud, A.A.; Al-Saleh, O.K.; Abu al’anaz, B. Inactivation of nondesiccated and desiccated Cronobacter Sakazakii and Salmonella spp. at low and high inocula levels in reconstituted infant milk formula by vanillin. Food Control 2015, 50, 850–857. [Google Scholar] [CrossRef]
- Skroza, D.; Šimat, V.; Smole Možina, S.; Katalinić, V.; Boban, N.; Generalić Mekinić, I. Interactions of resveratrol with other phenolics and activity against food-borne pathogens. Food Sci. Nutr. 2019, 7, 2312–2318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, M.; Henika, P.R.; Mandrell, R.E. Antibacterial activities of phenolic benzaldehydes and benzoic acids against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J. Food Prot. 2003, 66, 1811–1821. [Google Scholar] [CrossRef]
- Wikler, M.A.; Cockerill, F.R.; Craig, W.A.; Dudley, M.N.; Eliopoulos, G.M.; Hecht, D.W.; Hindler, J.F.; Low, D.E.; Sheehan, D.J.; Tenover, F.C.; et al. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved Standard - Seventh Edition (M7-A7). In CLSI Guidelines; Clinical & Laboratory Standards Institute: Annapolis Junction, MD, USA, 2006; ISBN 156238600X. [Google Scholar]
- Reh, C.T.; Gerber, A. Total solids determination in dairy products by microwave oven technique. Food Chem. 2003, 82, 125–131. [Google Scholar] [CrossRef]
- Nair, M.S.; Upadhyaya, I.; Amalaradjou, M.A.R.; Venkitanarayanan, K. Antimicrobial food additives and disinfectants. In Foodborne Pathogens and Antibiotic Resistance; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 275–301. [Google Scholar]
- Lambert, R.J.W.; Skandamis, P.N.; Coote, P.J.; Nychas, G.J.E. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 2001, 91, 453–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guevara, L.; Antolinos, V.; Palop, A.; Periago, P.M. Impact of moderate heat, carvacrol, and thymol treatments on the viability, injury, and stress response of Listeria monocytogenes. Biomed. Res. Int. 2015, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Waghmare, R.B.; Perumal, A.B.; Moses, J.A.; Anandharamakrishnan, C. Recent developments in freeze drying of foods. In Innovative Food Processing Technologies; Elsevier: Amsterdam, The Netherlands, 2021; pp. 82–99. [Google Scholar]
- Lang, E.; Guyot, S.; Peltier, C.; Alvarez-Martin, P.; Perrier-Cornet, J.M.; Gervais, P. Cellular injuries in Cronobacter sakazakii CIP 103183T and Salmonella enterica exposed to drying and subsequent heat treatment in milk powder. Front. Microbiol. 2018, 9, 475. [Google Scholar] [CrossRef] [PubMed]
- McDonough, F.E.; Hargrove, R.E. Heat resistance of Salmonella in dried milk. J. Dairy Sci. 1968, 51, 1587–1591. [Google Scholar] [CrossRef]
Category | Food Additive | MIC (ppm) | Source |
---|---|---|---|
Plant-derived Biomolecules | Carvacrol | 200 | Current study |
Thymol | 100 | Current study | |
Trans-cinnamaldehyde | 3000 | [20] | |
Eugenol | 512 | [21] | |
Vanillin | 8000 | [24] | |
Weak organic acids | Citric acid | 12,624 | [23] |
Lactic acid | 7552 | [23] | |
Benzoic acid | >6700 a | [26] | |
Microbially-derived | Diacetyl | 1076 | [22] |
Catechin hydrate | 181 | [25] |
Treatment Time | Moisture Content (%) | Salmonella Population (Log CFU/g Milk Solids) | Log CFU/g Reduction * |
---|---|---|---|
Control (0 ppm carvacrol) | |||
Time 0 ** | 85.86 | 5.6 ± 0.0.05 | 0.0 ± 0.00 |
After drying | 4.67 | 5.3 ± 0.21 | 0.3 ± 0.26 |
1-day storage | 0.25 | 5.0 ± 0.07 | 0.6 ± 0.02a # |
Carvacrol (200 ppm) | |||
Time 0 | 85.86 | 6.1 ± 0.51 | 0.0 ± 0.00 |
After drying | 4.67 | 5.9 ± 0.17 | 0.2 ± 0.34 |
1-day storage | 0.25 | 5.2 ± 0.53 | 0.9 ± 0.02b |
Carvacrol (500 ppm) | |||
Time 0 | 85.86 | 6.6 ± 0.02 | 0.0 ± 0.00 |
After drying | 4.67 | 6.1 ± 0.02 | 0.5 ± 0.00 |
1-day storage | 0.25 | 5.3 ± 0.13 | 1.3 ± 0.10c |
Treatment | Log CFU/g Total Solids of Milk | |||
---|---|---|---|---|
Initial Population | Day–0 | 1-Day Storage | 2-Day Storage | |
Carvacrol (5000 ppm) + Freeze-drying | 7.5 ± 0.5 | <3 a | <3 a | <3 a |
Carvacrol (5000 ppm) | 7.5 ± 0.3 | 5.4 ± 0.02 | 3.9 ± 0.6 | 4.9 ± 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelhamid, A.G.; Yousef, A.E. Natural Antimicrobials Suitable for Combating Desiccation-Resistant Salmonella enterica in Milk Powder. Microorganisms 2021, 9, 421. https://doi.org/10.3390/microorganisms9020421
Abdelhamid AG, Yousef AE. Natural Antimicrobials Suitable for Combating Desiccation-Resistant Salmonella enterica in Milk Powder. Microorganisms. 2021; 9(2):421. https://doi.org/10.3390/microorganisms9020421
Chicago/Turabian StyleAbdelhamid, Ahmed G., and Ahmed E. Yousef. 2021. "Natural Antimicrobials Suitable for Combating Desiccation-Resistant Salmonella enterica in Milk Powder" Microorganisms 9, no. 2: 421. https://doi.org/10.3390/microorganisms9020421
APA StyleAbdelhamid, A. G., & Yousef, A. E. (2021). Natural Antimicrobials Suitable for Combating Desiccation-Resistant Salmonella enterica in Milk Powder. Microorganisms, 9(2), 421. https://doi.org/10.3390/microorganisms9020421