Detection of Viral −RNA and +RNA Strands in Enterovirus-Infected Cells and Tissues
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culturing and Virus Infections in Cells
2.2. Virus Infected Mice
2.3. Immunofluoresence
2.4. In Situ Hybridization
2.5. Microscopy
2.6. Antiviral Drugs
2.7. RT-qPCR
2.8. Image and Data Processing
3. Results
3.1. Distribution of Enterovirus +RNA and −RNA in Relation to the Capsid during an Infection
3.2. Distribution of Enterovirus +RNA, −RNA, and dsRNA during an Infection
3.3. The Amounts of Enterovirus +RNA and −RNA during an Infection
3.4. Effect of Antiviral Drugs on the Amounts of Viral +RNA and −RNA
3.5. Effect of Antiviral Drugs on the Distribution of Viral +RNA and −RNA
3.6. The Pace of Viral +RNA and −RNA Synthesis during a CVA9 Infection
3.7. Viral +RNA and −RNA Detection in Formalin-Fixed, Paraffin-Embedded Samples of CVB1-Infected Cell Cultures and CVB1-Infected Mouse Pancreas
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. bDNA FISH Protocol for Enteroviruses Using ViewRNA Cell Plus Assay Kit
- ViewRNA Cell Plus Assay Kit (Thermo Scientific)
- ○
- Fixation/Permeabilization Component A
- ○
- Fixation/Permeabilization Component B
- ○
- Blocking/Antibody Diluent
- ○
- Solution A Fixative
- ○
- Solution B Fixative
- ○
- Probe Set Diluent
- ○
- Amplifier Diluent
- ○
- Label Probe Diluent
- ○
- PBS (10X)
- ○
- RNA wash buffer component A
- ○
- RNA wash buffer component B
- ○
- RNase Inhibitor (100X)
- ○
- EVAB- and EVAB+ Probes
- ○
- Pre-Amplifier Mix
- ○
- Amplifier Mix
- ○
- Label Probe Mix
- Round, autoclaved coverslips
- Microscopy glasses
- 4-well plates
- Sterile glass Petri dishes
- A scalpel and/or tweezers
- Cells and viruses
- DMEM (1% and 10% FBS)
- Ice-cold 0.5% BSA-PBS
- Nuclease free water
- 95% formamide in 0.1% SSC buffer
- Primary antibody(s)
- Secondary antibody(s)
- DAPI diluted 1:40,000 in 1X PBS
- Mowiol-DABCO or similar mounting media
- Prepare as many coverslips on 5 mL plate(s) for your cells as you need by putting a sterile round coverslip on the bottom of a 5 mL plate, max 10 per plate.
- Sub-culture your cells as per usual.
- If you had a 90–100% confluent T75 bottle, use a 1:5 or 1:6 dilution for the 5 mL plate (this way the 5 mL plate with the coverslips will be 70–80% confluent the next day).
- Add media to the 5 mL plate so that the total volume is around 5 mL.
- Incubate in 37 °C overnight.
- 6.
- Mark 4-well plates for your samples (1 well per sample). Add 500 µL of PBS to the wells.
- 7.
- Move coverslips (70–80% confluent with cells) from the 5 mL plate to the 4-well plates (1 coverslip per well) using a clean scalpel or tweezers, cells facing up.
- 8.
- Prepare your virus dilution: 1:3000 in 1% DMEM for CVA9. Prepare at least 200 µL per well. Mix well.
- 9.
- Fill a Styrofoam box with ice and cover it with a metal plate; take it to the laminar and put your 4-well plates on the ice-cold metal plate.
- 10.
- Aspirate PBS from wells, add 200 µL of diluted virus.
- 11.
- Put the box on a rocker, incubate for 45 min (ice-binding of the virus).
- 12.
- Aspirate the virus solution.
- 13.
- Wash 3 × 5 min with 0.5% ice-cold BSA-PBS.
- 14.
- Add 400 µL of 10% DMEM to the wells.
- 15.
- Incubate at 37 °C for as long as you need to, e.g., 5 h (infection).
- 16.
- Prepare Fixation/Permeabilization Solution for all samples by combining 110 µL of Fixation/Permeabilization Component A with 110 µL of Fixation/Permeabilization Component B per sample. Mix well.
- 17.
- Prepare 1X PBS with RNase Inhibitor (1 mL per sample) by diluting the 100X RNase Inhibitor and the 10X PBS in nuclease-free water. Mix well.
- 18.
- After the virus incubation, aspirate the 10% DMEM.
- 19.
- Add 200 µL of Fixation/Permeabilization Solution per well.
- 20.
- Incubate for 30 min at room temperature on the rocker.
- 21.
- Aspirate the Fixation/Permeabilization Solution.
- 22.
- Wash three times with the 1X PBS with RNase Inhibitor, 300 µL per well per wash.
- 23.
- Be gentle with the washing; you can prepare additional wash buffer and use a dropper to wash the wells gently if you want to. There is no need to incubate the cells in the wash buffer between washes.
- 24.
- Leave the cells in the 1X PBS with RNase inhibitor.
- 25.
- Seal the edges of the plates with parafilm, store at +4 °C overnight.
- 26.
- Prepare Blocking/Antibody Diluent Solution (550 µL per sample) by diluting RNase inhibitor (100X) to a 1:100 dilution with Blocking/Antibody Diluent.
- 27.
- Aspirate the 1X PBS with RNase inhibitor from the wells.
- 28.
- Add 200 µL of Blocking/Antibody Diluent Solution per well.
- 29.
- Incubate for 20 min at room temperature on the rocker.
- 30.
- Dilute primary antibodies in Blocking/Antibody Diluent Solution (155 µL per sample).
- 31.
- Dilute secondary antibodies in Blocking/Antibody Diluent Solution (155 µL per sample).
- 32.
- Aspirate Blocking/Antibody Diluent Solution from the wells.
- 33.
- Add 150 µL of primary antibody solution per well.
- 34.
- Incubate for 1 h at room temperature on the rocker.
- 35.
- Prepare 1X PBS with RNase inhibitor as in step 17, with at least 3 mL per sample.
- 36.
- Aspirate the primary antibody solution.
- 37.
- Wash three times with the 1X PBS with RNase Inhibitor, 300 µL per well per wash.
- 38.
- Add 150 µL of secondary antibody solution per well.
- 39.
- Incubate for 30 min at room temperature on the rocker.
- 40.
- Aspirate the secondary antibody solution.
- 41.
- Wash three times with the 1X PBS with RNase Inhibitor, 300 µL per well per wash.
- 42.
- Prepare Fixation solution by combining 27.5 µL of Solution A Fixative with 192.5 µL of Solution B Fixative per sample. Mix well.
- 43.
- Add 200 µL of Fixation Solution per well.
- 44.
- Incubate for 1 h at room temperature on the rocker.
- 45.
- During the incubation:
- Thaw the target probes (EVAB- and EVAB+) and maintain on ice.
- Pre-warm Probe Set Diluent to 40 °C.
- Prepare wash buffer Solution by combining 1587.2 µL of nuclease-free water, 4.8 µL of Wash Component 1, and 8 µL of Wash Component 2 per sample. Mix well.
- Take a heating block to a fume hood and warm it to 65 °C.
- Mark spots on the bottom of a sterile glass Petri dish for your samples so you do not confuse the samples.
- 46.
- Aspirate the Fixation Solution.
- 47.
- Wash three times with the 1X PBS with RNase Inhibitor, 300 µL per well per wash.
- 48.
- Maintain the coverslips in PBS on the 4-well plates and take the plates to the fume hood.
- 49.
- Add 95% formamide in 0.1X SSC buffer to the glass dishes (around 5 mL).
- 50.
- Transfer the coverslips to the glass dishes and leave the PBS in the 4-well plates.
- 51.
- Place the glass dishes on top of the heating block in the fume hood.
- 52.
- Incubate for 15 min on top of the 65 °C heater block.
- 53.
- Transfer the coverslips back to the 4-well plates with PBS in the wells.
- 54.
- Wash quickly once with 1X PBS with RNase Inhibitor, 300 µL per wash.
- 55.
- Dilute the Probe Set(s) 1:100 in the pre-warmed Probe Set Diluent. If using more than one probe, dilute them into the same solution. Prepare 155 µL per sample and mix well.
- 56.
- Aspirate the 1X PBS with RNase inhibitor.
- 57.
- Add 150 µL of the Diluted Target Probe per well.
- 58.
- Incubate for 2 h at 40 °C incubator.
- 59.
- Aspirate the Diluted Target Probe.
- 60.
- Wash five times with the wash buffer prepared in step 45c, 300 µL per wash per well.
- 61.
- Leave the cells in the wash buffer.
- 62.
- Seal the edges of the plates with parafilm, and store at +4 °C overnight.
- 63.
- Pre-warm the samples to room temperature.
- 64.
- Pre-warm Amplifier Diluent and Label Probe Diluent to 40 °C.
- 65.
- Thaw PreAmplifier Mix, Amplifier Mix, and Label Probe Mix, and maintain on ice.
- 66.
- Prepare wash buffer Solution by combining 4761.6 µL of nuclease-free water, 14.4 µL of Wash Component 1, and 24 µL of Wash Component 2 per sample. Mix well.
- 67.
- Prepare the PreAmplifier Solution by diluting the PreAmplifier Mix 1:25 in the Amplifier Diluent. Prepare 155 µL per sample and mix well.
- 68.
- Aspirate the wash buffer from the wells.
- 69.
- Add 150 µL of the PreAmplifier Solution per well.
- 70.
- Incubate for 1 h at 40 °C.
- 71.
- Aspirate the PreAmplifier Solution.
- 72.
- Wash five times with the wash buffer, 300 µL per wash per well.
- 73.
- Prepare the Amplifier Solution by diluting the Amplifier Mix 1:25 in the Amplifier Diluent. Prepare 155 µL per sample and mix well.
- 74.
- Aspirate the wash buffer from the wells.
- 75.
- Add 150 µL of the Amplifier Solution per well.
- 76.
- Incubate for 1 h at 40 °C.
- 77.
- Aspirate the Amplifier Solution.
- 78.
- Wash five times with the wash buffer, 300 µL per wash per well.
- 79.
- Prepare the Label Probe Solution by diluting the Label Probe Mix 1:25 in the Amplifier Diluent. Prepare 155 µL per sample and mix well.
- 80.
- Aspirate the wash buffer from the wells.
- 81.
- Add 150 µL of the Label Probe Solution per well.
- 82.
- Incubate for 1 h at 40 °C.
- 83.
- Aspirate the Label Probe Solution.
- 84.
- Wash five times with the wash buffer, 300 µL per wash per well.
- 85.
- Let the coverslips incubate in the final wash for 10 min at room temperature.
- 86.
- Wash once with normal 1X PBS (no RNase inhibitors needed), 300 µL per well.
- 87.
- Add 150 µL of DAPI diluted 1:40,000 in 1X PBS per well.
- 88.
- Incubate for 5 min at room temperature on the rocker.
- 89.
- Wash once with 1X PBS.
- 90.
- Mark microscopy glasses well with a pencil.
- 91.
- Add 10 µL of Mowiol-DABCO per coverslip on the glass (1–2 coverslips per glass).
- 92.
- Mount the coverslips on the glass, cells facing downwards.
- 93.
- Let dry overnight at +4 °C.
- 94.
- Visualize with confocal microscope.
References
- Baggen, J.; Thibaut, H.J.; Starting, J.R.P.M.; van Kuppeveld, F.J.M. The life cycle of non-polio enteroviruses and how to target it. Nat. Rev. Microbiol. 2018, 16, 368–1526. [Google Scholar] [CrossRef] [PubMed]
- Pons-Salort, M.; Parker, E.P.K.; Grassly, N.C. The epidemiology of non-polio enteroviruses: Recent advances and outstanding questions. Curr. Opin. Infect. Dis. 2015, 28, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Hober, D.; Sauter, P. Pathogenesis of type 1 diabetes mellitus: Interplay between enterovirus and host. Nat. Rev. Endocrinol. 2010, 6, 279. [Google Scholar] [CrossRef] [PubMed]
- Roivainen, M.; Alfthan, G.; Jousilahti, P.; Kimpimaki, M.; Hovi, T.; Tuomilehto, J. Enterovirus Infections as a Possible Risk Factor for Myocardial Infarction. Circulation 1998, 98, 2534–2537. [Google Scholar] [CrossRef]
- Tuthill, T.J.; Groppelli, E.; Hogle, J.M.; Rowlands, D.J. Picornaviruses. In Cell Entry by Non-Enveloped Viruses, 1st ed.; Johnson, J.E., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 43–89. [Google Scholar] [CrossRef]
- Ruokolainen, V.; Domanska, A.; Laajala, M.; Pelliccia, M.; Butcher, S.J.; Marjomäki, V. Extracellular albumin and endosomal ions prime enterovirus particles for uncoating that can be prevented by fatty acid saturation. J. Virol. 2019, 93, 17. [Google Scholar] [CrossRef]
- Basavappa, R.; Syed, R.; Flore, O.; Icenogle, J.P.; Filman, D.J.; Hogle, J.M. Role and mechanism of the maturation cleavage of VP0 in poliovirus assembly: Structure of the empty capsid assembly intermediate at 2.9 A resolution. Protein Sci. 1994, 3, 1651–1669. [Google Scholar] [CrossRef]
- Harris, K.G.; Coyne, C.B. Death waits for no man—Does it wait for a virus? How enteroviruses induce and control cell death. Cytokine Growth Factor Rev. 2014, 25, 587–596. [Google Scholar] [CrossRef][Green Version]
- Lai, J.K.F.; Sam, I.; Chan, Y.F. The Autophagic Machinery in Enterovirus Infection. Viruses 2016, 8, 32. [Google Scholar] [CrossRef]
- Wang, F.; Flanagan, J.; Su, N.; Wang, L.C.; Bui, S.; Nielson, A.; Wu, X.; Vo, H.T.; Ma, X.J.; Luo, Y. RNAscope: A novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. 2012, 14, 22–29. [Google Scholar] [CrossRef]
- Battich, N.; Stoeger, T.; Pelkmans, L. Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nat. Methods 2013, 10, 1127–1133. [Google Scholar] [CrossRef]
- Head, J.R.; Collender, P.A.; Lewnard, J.A.; Skaff, N.K.; Li, L.; Cheng, Q.; Baker, J.M.; Li, C.; Chen, D.; Ohringer, A.; et al. Early Evidence of Inactivated Enterovirus 71 Vaccine Impact against Hand, Foot, and Mouth Disease in a Major Center of Ongoing Transmission in China, 2011–2018: A Longitudinal Surveillance Study. Clin. Infect. Dis. 2019, ciz1188. [Google Scholar] [CrossRef] [PubMed]
- Hyöty, H.; Leon, F.; Knip, M. Developing a vaccine for type 1 diabetes by targeting coxsackievirus B. Expert Rev. Vaccines 2018, 17, 1071–1083. [Google Scholar] [CrossRef] [PubMed]
- Upla, P.; Marjomäki, V.; Nissinen, L.; Nylund, C.; Waris, M.; Hyypiä, T.; Heino, J. Calpain 1 and 2 are required for RNA replication of echovirus 1. J. Virol. 2008, 82, 1581–1590. [Google Scholar] [CrossRef] [PubMed]
- Huttunen, M.; Waris, M.; Kajander, R.; Hyypiä, T.; Marjomäki, V. Coxsackievirus A9 infects cells via nonacidic multivesicular bodies. J. Virol. 2014, 88, 5138–5151. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Gallay, P. Curing a viral infection by targeting the host: The example of cyclophilin inhibitors. Antivir. Res. 2013, 99, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Etienne-Manneville, S.; Hall, A. Rho GTPases in cell biology. Nature 2002, 420, 629–635. [Google Scholar] [CrossRef]
- Dierkes, R.; Warnking, K.; Liedmann, S.; Seyer, R.; Ludwig, S.; Ehrhardt, C. The Rac1 Inhibitor NSC23766 Exerts Anti-Influenza Virus Properties by Affecting the Viral Polymerase Complex Activity. PLoS ONE 2014, 9, e88520. [Google Scholar] [CrossRef]
- Karjalainen, M.; Kakkonen, E.; Upla, P.; Paloranta, H.; Kankaanpää, P.; Liberali, P.; Renkema, G.H.; Hyypiä, T.; Heino, J.; Marjomäki, V. A Raft-derived, Pak1-regulated Entry Participates in α2β1 Integrin-dependent Sorting to Caveosomes. Mol. Biol. Cell 2008, 19, 2857–2869. [Google Scholar] [CrossRef]
- Gao, Y.; Dickerson, J.B.; Guo, F.; Zheng, J.; Zheng, Y. Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc. Natl. Acad. Sci. USA 2004, 101, 7618. [Google Scholar] [CrossRef]
- Ono, Y.; Sorimachi, H. Calpains: An elaborate proteolytic system. Biochim. Biophys. Acta 2012, 1824, 224–236. [Google Scholar] [CrossRef]
- Bozym, R.A.; Morosky, S.A.; Kim, K.S.; Cherry, S.; Coyne, C.B. Release of intracellular calcium stores facilitates coxsackievirus entry into polarized endothelial cells. PLoS Pathog. 2010, 6, e1001135. [Google Scholar] [CrossRef] [PubMed]
- Laajala, M.; Hankaniemi, M.M.; Määttä, J.A.E.; Hytönen, V.P.; Laitinen, O.H.; Marjomäki, V. Host Cell Calpains Can Cleave Structural Proteins from the Enterovirus Polyprotein. Viruses 2019, 11, 1106. [Google Scholar] [CrossRef] [PubMed]
- Laiho, J.E.; Oikarinen, S.; Oikarinen, M.; Larsson, P.G.; Stone, V.M.; Hober, D.; Oberste, S.; Flodström-Tullberg, M.; Isola, J.; Hyöty, H. Application of bioinformatics in probe design enables detection of enteroviruses on different taxonomic levels by advanced in situ hybridization technology. J. Clin. Virol. 2015, 69, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Laiho, J.E.; Oikarinen, M.; Richardson, S.J.; Frisk, G.; Nyalwidhe, J.; Burch, T.C.; Morris, M.A.; Oikarinen, S.; Pugliese, A.; Dotta, F.; et al. Relative sensitivity of immunohistochemistry, multiple reaction monitoring mass spectrometry, in situ hybridization and PCR to detect Coxsackievirus B1 in A549 cells. J. Virol. 2016, 77, 21–28. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, L.; Zhang, Y.; Wang, T.; Zou, X.; Zhu, Y.; Zhao, Y.; Li, C.; Chen, K.; Sun, Y.; et al. A novel ViewRNA in situ hybridization method for the detection of the dynamic distribution of Classical Swine Fever Virus RNA in PK15 cells. Virol. J. 2017, 14, 81. [Google Scholar] [CrossRef]
- van Buuren, N.; Kirkegaard, K. Detection and Differentiation of Multiple Viral RNAs Using Branched DNA FISH Coupled to Confocal Microscopy and Flow Cytometry. Bio-Protocol 2018, 8, e3058. [Google Scholar] [CrossRef]
- Novak, J.E.; Kirkegaard, K. Improved method for detecting poliovirus negative strands used to demonstrate specificity of positive-strand encapsidation and the ratio of positive to negative strands in infected cells. J. Virol. 1991, 65, 3384. [Google Scholar] [CrossRef]
- Honkimaa, A.; Sioofy-Khojine, A.B.; Oikarinen, S.; Bertin, A.; Hober, D.; Hyöty, H. Eradication of persistent coxsackievirus B infection from a pancreatic cell line with clinically used antiviral drugs. J. Virol. 2020, 128, 104334. [Google Scholar] [CrossRef]
- Saarinen, N.; Laiho, J.E.; Richardson, S.J.; Zeissler, M.; Stone, V.M.; Marjomäki, V.; Kantoluoto, T.; Horwitz, M.S.; Sioofy-Khojine, A.; Honkimaa, A.; et al. A novel rat CVB1-VP1 monoclonal antibody 3A6 detects a broad range of enteroviruses. Sci. Rep. 2018, 8, 33. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Lietzén, N.; Hirvonen, K.; Honkimaa, A.; Buchacher, T.; Laiho, J.E.; Oikarinen, S.; Mazur, M.A.; Flodström-Tullberg, M.; Dufour, E.; Sioofy-Khojine, A.B.; et al. Coxsackievirus B Persistence Modifies the Proteome and the Secretome of Pancreatic Ductal Cells. iScience 2019, 19, 340–357. [Google Scholar] [CrossRef] [PubMed]
- Alidjinou, E.K.; Engelmann, I.; Bossu, J.; Villenet, C.; Figeac, M.; Romond, M.B.; Sané, F.; Hober, D. Persistence of Coxsackievirus B4 in pancreatic ductal-like cells results in cellular and viral changes. Virulence 2017, 8, 1229–1244. [Google Scholar] [CrossRef] [PubMed]
- Pinkert, S.; Klingel, K.; Lindig, V.; Dörner, A.; Zeichhardt, H.; Spiller, O.B.; Fechner, H. Virus-host coevolution in a persistently coxsackievirus B3-infected cardiomyocyte cell line. J. Virol. 2011, 85, 13409–13419. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.V. Possible Unifying Mechanism of Picornavirus Genome Replication. In Molecular Biology of Picornavirus, 1st ed.; Semler, B.L., Wimmer, E., Eds.; ASM Press: Washington, DC, USA, 2002; pp. 227–246. [Google Scholar] [CrossRef]
- Bessaud, M.; Autret, A.; Jegouic, S.; Balanant, J.; Joffret, M.; Delpeyroux, F. Development of a Taqman RT-PCR assay for the detection and quantification of negatively stranded RNA of human enteroviruses: Evidence for false-priming and improvement by tagged RT-PCR. J. Virol. Methods 2008, 153, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lim, H.J.; Son, A. Characterization of denaturation and renaturation of DNA for DNA hybridization. Environ. Anal. Health Toxicol. 2014, 29, 2014007. [Google Scholar] [CrossRef] [PubMed]
- Bolten, R.; Egger, D.; Gosert, R.; Schaub, G.; Landmann, L.; Bienz, K. Intracellular localization of poliovirus plus- and minus-strand RNA visualized by strand-specific fluorescent in situ hybridization. J. Virol. 1998, 72, 8578–8585. [Google Scholar] [CrossRef]
- Melia, C.E.; Peddie, C.J.; de Jong, A.W.M.; Snijder, E.J.; Collinson, L.M.; Koster, A.J.; van der Schaar, H.M.; van Kuppeveld, F.J.M.; Bárcena, M. Origins of Enterovirus Replication Organelles Established by Whole-Cell Electron Microscopy. mBio 2019, 10, 951. [Google Scholar] [CrossRef]
- Romero-Brey, I.; Bartenschlager, R. Endoplasmic Reticulum: The Favorite Intracellular Niche for Viral Replication and Assembly. Viruses 2016, 8, 160. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salmikangas, S.; Laiho, J.E.; Kalander, K.; Laajala, M.; Honkimaa, A.; Shanina, I.; Oikarinen, S.; Horwitz, M.S.; Hyöty, H.; Marjomäki, V. Detection of Viral −RNA and +RNA Strands in Enterovirus-Infected Cells and Tissues. Microorganisms 2020, 8, 1928. https://doi.org/10.3390/microorganisms8121928
Salmikangas S, Laiho JE, Kalander K, Laajala M, Honkimaa A, Shanina I, Oikarinen S, Horwitz MS, Hyöty H, Marjomäki V. Detection of Viral −RNA and +RNA Strands in Enterovirus-Infected Cells and Tissues. Microorganisms. 2020; 8(12):1928. https://doi.org/10.3390/microorganisms8121928
Chicago/Turabian StyleSalmikangas, Sami, Jutta E. Laiho, Kerttu Kalander, Mira Laajala, Anni Honkimaa, Iryna Shanina, Sami Oikarinen, Marc S. Horwitz, Heikki Hyöty, and Varpu Marjomäki. 2020. "Detection of Viral −RNA and +RNA Strands in Enterovirus-Infected Cells and Tissues" Microorganisms 8, no. 12: 1928. https://doi.org/10.3390/microorganisms8121928
APA StyleSalmikangas, S., Laiho, J. E., Kalander, K., Laajala, M., Honkimaa, A., Shanina, I., Oikarinen, S., Horwitz, M. S., Hyöty, H., & Marjomäki, V. (2020). Detection of Viral −RNA and +RNA Strands in Enterovirus-Infected Cells and Tissues. Microorganisms, 8(12), 1928. https://doi.org/10.3390/microorganisms8121928