The Effect of Encapsulated Powder of Goji Berry (Lycium barbarum) on Growth and Survival of Probiotic Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goji Berry Powder Preparation
2.2. Determination of Total Polyphenol Content (TPC) and Total Carbohydrate Content (TCC) of the Extracts
2.3. Sources and Cultivation of Probiotic Cultures
2.4. Growth on Nutritive Synthetic Substrate
2.5. Study of Potential Prophylactic Effect of Goji Berry Powder Extracts towards Probiotic Species in a Simulated Gastrointestinal Environment
2.5.1. Preparation of Simulated Gastric and Intestinal Juices
Gastric Juice
Intestinal Juice
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mocan, A.; Moldovan, C.; Zengin, G.; Bender, O.; Locatelli, M.; Simirgiotis, M.; Atalay, A.; Vodnar, D.C.; Rohn, S.; Crișan, G. UHPLC-QTOF-MS analysis of bioactive constituents from two Romanian Goji (Lyciumbarbarum L.) berries cultivars and their antioxidant, enzyme inhibitory, and real-time cytotoxicological evaluation. Food Chem. Toxicol. 2018, 115, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Seeram, N.P.; Adams, L.S.; Zhang, Y.; Lee, R.; Sand, D.; Scheuller, H.S.; Heber, D. Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J. Agric. Food Chem. 2006, 54, 9329–9339. [Google Scholar] [CrossRef] [PubMed]
- Leontopoulos, S.; Skenderidis, P.; Kalorizou, H.; Petrotos, K. Bioactivity Potential of Polyphenolic Compounds in Human Health and their Effectiveness Against Various Food Borne and Plant Pathogens. A Review. J. Food Biosyst. Eng. 2017, 7, 1–19. [Google Scholar]
- Skenderidis, P.; Lampakis, D.; Giavasis, I.; Leontopoulos, S.; Petrotos, K.; Hadjichristodoulou, C. Chemical Properties, Fatty-Acid Composition, and Antioxidant Activity of Goji Berry (Lycium barbarum L. and Lycium chinense Mill.) Fruits. Antioxidants 2019, 8, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skenderidis, P.; Kerasioti, E.; Karkanta, E.; Stagos, D.; Kouretas, D.; Petrotos, K.; Hadjichristodoulou, C.; Tsakalof, A. Assessment of the antioxidant and antimutagenic activity of extracts from Goji berry of Greek cultivation. Toxicol. Rep. 2018, 5, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Skenderidis, P.; Mitsagga, C.; Giavasis, I.; Petrotos, K.; Lampakis, D.; Leontopoulos, S.; Hadjichristodoulou, C.; Tsakalof, A. The in vitro antimicrobial activity assessment of ultrasound assisted Lycium barbarum fruit extracts and pomegranate fruit peels. J. Food Meas. Charact. 2019, 13, 2017–2031. [Google Scholar] [CrossRef]
- Chang, R.C.; So, K.F. Use of anti-aging herbal medicine, Lycium barbarum, against aging-associated diseases. What do we know so far. Cell. Mol. Neurobiol. 2008, 28, 643. [Google Scholar] [CrossRef]
- Jin, M.; Huang, Q.; Zhao, K.; Shang, P. Biological activities and potential health benefit effects of polysaccharides isolated from Lycium barbarum L. Int. J. Biol. Macromol. 2013, 54, 16–23. [Google Scholar] [CrossRef]
- Kulczyński, B.; Gramza-Michałowska, A. Goji Berry (Lycium barbarum): Composition and Health Effects—A Review. Pol. J. Food Nutr. Sci. 2016, 66, 67–75. [Google Scholar] [CrossRef]
- Cheng, J.; Zhou, Z.-W.; Sheng, H.-P.; He, L.-J.; Fan, X.-W.; He, Z.-X.; Sun, T.; Zhang, X.; Zhao, J.-R.; Gu, L.; et al. An evidence-based update on the pharmacological activities and possible molecular targets of Lycium barbarum polysaccharides. Drug Des. Dev. Ther. 2014, 9, 33–78. [Google Scholar]
- Skenderidis, P.; Petrotos, K.; Giavasis, I.; Hadjichristodoulou, C.; Tsakalof, A. Optimization of ultrasound assisted extraction of of Goji berry (Lycium barbarum) fruits and evaluation of extracts’ bioactivity. J. Food Process Eng. 2016, 40, e12522. [Google Scholar] [CrossRef]
- Protti, M.; Gualandi, I.; Mandrioli, R.; Zappoli, S.; Tonelli, D.; Mercolini, L. Analytical profiling of selected antioxidants and total antioxidant capacity of Goji (Lycium spp.) berries. J. Pharm. Biomed. Anal. 2017, 143, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Rotar, A.M.; Vodnar, D.C.; Bunghez, F.; Cătunescu, G.M.; Pop, C.R.; Jimborean, M.; Semeniuc, C.A. Effect of Goji berries and honey on lactic acid bacteria viability and shelf life stability of yoghurt. Not. Bot. Horti Agrobot. Cluj-Napoca 2015, 43, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Jiang, X.; Wang, T.; Zhang, B.; Zhao, H. Lycium barbarum Polysaccharide ( LBP ): A Novel Prebiotics Candidate for Bifidobacterium and Lactobacillus. Front. Microbiol. 2018, 9, 1–11. [Google Scholar] [CrossRef]
- Duda-Chodak, A.; Tarko, T.; Satora, P.; Sroka, P. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: A review. Eur. J. Nutr. 2015, 54, 325–341. [Google Scholar] [CrossRef] [Green Version]
- Bertelsen, R.J.; Jensen, E.T.; Ringel-Kulka, T. Use of probiotics and prebiotics in infant feeding. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 39–48. [Google Scholar] [CrossRef]
- Yamashiro, Y. Gut Microbiota in Health and Disease. Ann. Nutr. Metab. 2018, 71, 242–246. [Google Scholar] [CrossRef]
- Fuller, R.; Gibson, G. Probiotics and prebiotics|Definition and role. In Encyclopedia of Human Nutrition; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1633–1639. [Google Scholar]
- Baldassarre, M.E.; Di Mauro, A.; Capozza, M.; Rizzo, V.; Schettini, F.; Panza, R.; Laforgia, N. Dysbiosis and Prematurity: Is There a Role for Probiotics? Nutrients 2019, 11, 1273. [Google Scholar] [CrossRef] [Green Version]
- Baldassarre, M.E.; Di Mauro, A.; Mastromarino, P.; Fanelli, M.; Martinelli, D.; Urbano, F.; Capobianco, D.; Laforgia, N. Administration of a Multi-Strain Probiotic Product to Women in the Perinatal Period Differentially Affects the Breast Milk Cytokine Profile and May Have Beneficial Effects on Neonatal Gastrointestinal Functional Symptoms. A Randomized Clinical Trial. Nutrients 2019, 11, 1273. [Google Scholar] [CrossRef] [Green Version]
- Ghouri, Y.A.; Richards, D.M.; Rahimi, E.F.; Krill, J.T.; Jelinek, K.A.; DuPont, A.W. Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in infammatory bowel disease. Clin. Exp. Gastroenterol. 2014, 7, 473–487. [Google Scholar]
- Bellavia, M.; Tomasello, G.; Romeo, M.; Damiani, P.; Lo Monte, A.I.; Lozio, L.; Campanella, C.; Gammazza, A.M.; Rappa, F.; Zummo, G.; et al. Gut microbiota imbalance and chaperoning system malfunction are central to ulcerative colitis pathogenesis and can be counteracted with specifically designed probiotics: A working hypothesis. Med. Microbiol. Immunol. 2013, 202, 393–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pt, M.; Mckay, D.; Sj, K.; Gardiner, K. Probiotics for induction of remission in ulcerative colitis (Review). Cochrane Libr. 2008. [Google Scholar] [CrossRef]
- Orel, R.; Trop, T.K. Intestinal microbiota, probiotics and prebiotics in inflammatory bowel disease. World J. Gastroenterol. 2014, 20, 11505–11524. [Google Scholar] [CrossRef] [PubMed]
- Vandenplas, Y. Probiotics and prebiotics in infectious gastroenteritis. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 49–53. [Google Scholar] [CrossRef]
- Fotiadis, C.I.; Stoidis, C.N.; Spyropoulos, B.G.; Zografos, E.D. Role of probiotics, prebiotics and synbiotics in chemoprevention for colorectal cancer. World J. Gastroenterol. 2008, 14, 6453–6457. [Google Scholar] [CrossRef]
- Geier, M.S.; Butler, R.N.; Howarth, G.S. Probiotics, prebiotics and synbiotics: A role in chemoprevention for colorectal cancer. Cancer Biol. Ther. 2006, 5, 1265–1269. [Google Scholar] [CrossRef] [Green Version]
- Sáez-Lara, M.J.; Robles-Sanchez, C.; Ruiz-Ojeda, F.J.; Plaza-Diaz, J.; Gil, A. Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: A review of humanclinicaltrials. Int. J. Mol. Sci. 2016, 17, 928. [Google Scholar] [CrossRef] [Green Version]
- Erejuwa, O.O.; Sulaiman, S.A.; Ab Wahab, M.S. Modulation of gut microbiota in the management of metabolic disorders: The prospects and challenges. Int. J. Mol. Sci. 2014, 15, 4158–4188. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.C.; Valiere, A. Probiotics and medical nutrition therapy. Nutr. Clin. Care Off. Publ. Tufts Univ. 2006, 7, 56–68. [Google Scholar]
- Yoo, J.Y.; Kim, S.S. Probiotics and prebiotics: Present status and future perspectives on metabolic disorders. Nutrients 2016, 8, 173. [Google Scholar] [CrossRef] [Green Version]
- Raskine, L.; Flourié, B.; Bornet, F.R.; Neut, C.; Brouns, F.; Simoneau, G.; Vicaut, E.; Bouhnik, Y. The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: A double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. Am. J. Clin. Nutr. 2018, 80, 1658–1664. [Google Scholar]
- He, Z.; Wang, X.; Li, G.; Zhao, Y.; Zhang, J.; Niu, C.; Zhang, L.; Zhang, X.; Ying, D.; Li, S. Antioxidant activity of prebiotic ginseng polysaccharides combined with potential probiotic Lactobacillus plantarum C88. Int. J. Food Sci. Technol. 2015, 50, 1673–1682. [Google Scholar] [CrossRef]
- Al-Sheraji, S.H.; Ismail, A.; Manap, M.Y.; Mustafa, S.; Yusof, R.M. Viability and Activity of Bifidobacteria During Refrigerated Storage of Yoghurt Containing Mangifera pajang Fibrous Polysaccharides. J. Food Sci. 2012, 77, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Chou, W.T.; Sheih, I.C.; Fang, T.J. The applications of polysaccharides from various mushroom wastes as prebiotics in different systems. J. Food Sci. 2013, 78. [Google Scholar] [CrossRef] [PubMed]
- Nur’Ain, N.M.N.; Abbasiliasi, S.; Marikkar, M.N.; Ariff, A.; Amid, M.; Lamasudin, D.U.; Abdul Manap, M.Y.; Mustafa, S. Defatted coconut residue crude polysaccharides as potential prebiotics: Study of their effects on proliferation and acidifying activity of probiotics in vitro. J. Food Sci. Technol. 2017, 54, 164–173. [Google Scholar]
- Roos, Y.; Karel, M. Differential Scanning Calorimetry Study of Phase Transitions Affecting the Quality of Dehydrated Materials. Biotechnol. Progress 1990, 6, 159–163. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Pak, D.; Muthaiyan, A.; Story, R.; O’Bryan, C.A.; Lee, S.N.; Grandall, P.G.; Ricke, S.C. Fermentative Capacity of Three Strains of Lactobacillus Using Different Sources of Carbohydrates: In Vitro Evaluation of Synbiotic Effects, Resistance and Tolerance to Bile and Gastric Juices. J. Food Res. 2013, 2, 158–167. [Google Scholar] [CrossRef] [Green Version]
- Pavli, F.; Tassou, C.; Nychas, G.J.E.; Chorianopoulos, N. Probiotic incorporation in edible films and coatings: Bioactive solution for functional foods. Int. J. Mol. Sci. 2018, 19, 150. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, L.; Margolles, A.; Sánchez, B. Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front. Microbiol. 2013, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Alp, G.; Aslim, B.; Suludere, Z.; Akca, G. The role of hemagglutination and effect of exopolysaccharide production on bifidobacteria adhesion to Caco-2 cells in vitro. Microbiol. Immunol. 2010, 54, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Baba, A.S.; Najarian, A.; Shori, A.B.; Lit, K.W.; Keng, G.A. Viability of Lactic Acid Bacteria, Antioxidant Activity and In Vitro Inhibition of Angiotensin-I-Converting Enzyme of Lycium barbarum Yogurt. Arab. J. Sci. Eng. 2014, 39, 5355–5362. [Google Scholar] [CrossRef]
- Alp, G.; Aslim, B.; Suludere, Z.; Akca, G.; Al-Sheraji, S.H.; Ismail, A.; Manap, M.Y.; Mustafa, S.; Yusof, R.M.; Liao, M.; et al. Improving the quality of Sichuan pickle by adding a traditional Chinese medicinal herb Lycium barbarum in its fermentation. Int. J. Food Sci. Technol. 2017, 52, 658–665. [Google Scholar]
- Kocot, A.M.; Mruk, M.S.; Olszewska, M.A. Fluorescent in situ hybridization applied to identify and evaluate physiological activity of lactobacillus SPP. In Goji berry juice. Zywn. Nauka Technol. Jakosc/Food Sci. Technol. Qual. 2017, 24, 106–119. [Google Scholar]
- Zhao, L.; Wu, H.; Zhao, A.; Lu, H.; Sun, W.; Ma, C.; Yang, Y.; Xin, X.; Zou, H.; Qiu, M.; et al. The in vivo and in vitro study of polysaccharides from a two-herb formula on ulcerative colitis and potential mechanism of action. J. Ethnopharmacol. 2014, 153, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Anjan, A.; Niladri, B.; Sangita, B.; Rania, I.; Moumita, R. Evaluation of Adverse Drug Reactions in Tertiary Care Hospital of Kolkata, West Bengal, India. J. Young Pharm. 2017, 9, S1–S4. [Google Scholar]
- Kimoto-Nira, H.; Suzuki, C.; Sasaki, K.; Kobayashi, M.; Mizumachi, K. Survival of a Lactococcus lactis strain varies with its carbohydrate preference under in vitro conditions simulated gastrointestinal tract. Int. J. Food Microbiol. 2010, 143, 226–229. [Google Scholar] [CrossRef]
- Vernazza, C.L.; Gibson, G.R.; Rastall, R.A. Carbohydrate preference, acid tolerance and bile tolerance in five strains of Bifidobacterium. J. Appl. Microbiol. 2006, 100, 846–853. [Google Scholar] [CrossRef]
- Salazar, N.; Prieto, A.; Leal, J.A.; Mayo, B.; Bada-Gancedo, J.C.; de Los Reyes-Gavilán, C.G.; Ruas-Madiedo, P. Production of exopolysaccharides by Lactobacillus and Bifidobacterium strains of human origin, and metabolic activity of the producing bacteria in milk. J. Dairy Sci. 2009, 92, 4158–4168. [Google Scholar] [CrossRef] [Green Version]
- Qian, D.; Zhao, Y.; Yang, G.; Huang, L. Systematic review of chemical constituents in the genus lycium (solanaceae). Molecules 2017, 22, 911. [Google Scholar] [CrossRef] [Green Version]
- Redgwell, R.J.; Curti, D.; Wang, J.; Dobruchowska, J.M.; Gerwig, G.J.; Kamerling, J.P.; Bucheli, P. Cell wall polysaccharides of Chinese Wolfberry (Lycium barbarum): Part 2. Characterisation of arabinogalactan-proteins. Carbohydr. Polym. 2011, 84, 1075–1083. [Google Scholar] [CrossRef]
- Ismail, B.; Nampoothiri, K.M. Production, purification and structural characterization of an exopolysaccharide produced by a probiotic Lactobacillus plantarum MTCC 9510. Arch. Microbiol. 2010, 192, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Giavasis, I.; Tsante, E.; Goutsidis, P.; Papatheodorou, K.; Petrotos, K. Stimulatory effect of novel polyphenol-based supplements from olive mill waste on the growth and acid production of lactic acid bacteria. Microbes Appl. 2012, 308–312. [Google Scholar] [CrossRef]
- Petrotos, K.B.; Karkanta, F.K.; Gkoutsidis, P.E.; Giavasis, I.; Papatheodorou, K.N.; Ntontos, A.C. Production of novelbioactive yogurt enriched with olive fruit polyphenols. World Acad. Sci. Eng. Technol. 2012, 64, 867–872. [Google Scholar]
- Georgakouli, K.; Mpesios, A.; Kouretas, D.; Petrotos, K.; Mitsagga, C.; Giavasis, I.; Jamurtas, A. The effects of an olive fruit polyphenol-enriched yogurt on body composition, blood redox status, physiological and metabolic parameters and yogurt microflora. Nutrients 2016, 8, 344. [Google Scholar] [CrossRef] [Green Version]
- Kafantaris, I.; Stagos, D.; Kotsampasi, B.; Hatzis, A.; Kypriotakis, A.; Gerasopoulos, K.; Makri, S.; Goutzourelas, N.; Mitsagga, C.; Giavasis, I.; et al. Grape pomace improves performance, antioxidant status, fecal microbiota and meat quality of piglets. Animal 2018, 12, 246–255. [Google Scholar] [CrossRef] [Green Version]
- Cheah, K.Y.; Howarth, G.S.; Bastian, S.E.P. Grape Seed Extract Dose-Responsively Decreases Disease Severity in a Rat Model of Mucositis; ConcomitantlyEnhancing Chemotherapeutic Effectiveness in Colon Cancer Cells. PLoS ONE 2014, 9, e85184. [Google Scholar] [CrossRef] [Green Version]
- Yamakoshi, J.; Tokutake, S.; Kikuchi, M. Effect of proanthocyanidin- rich extract from grape seeds on human fecal flora andfecal odor. Microb. Ecol. Health Dis. 2001, 13, 25–31. [Google Scholar] [CrossRef]
DGBE Sample | Goji Berry Carbohydrates (g/L) in LGBE | Goji Berry Polyphenols (mg/L) in LGBE | Maltodextrin or SiO2 Added in LGBE (g/L) | Goji Berry Carbohydrates % (w/w) in DGBE | Goji Berry Polyphenols % (w/w) in DGBE |
---|---|---|---|---|---|
1 | 26.9 ± 0.52 | 792 ± 2.2 | 70 (maltodextrin) | 34.08 ± 0.33 | 0.74 ± 0.12 |
2 | 25.74 ± 1.07 | 756 ± 5.6 | 140 (maltodextrin) | 19.69 ± 0.49 | 0.65 ± 0.11 |
3 | 28.24 ± 0.81 | 970 ± 6.4 | 20 (maltodextrin) + 10 (SiO2) | 55.84 ± 0.52 | 0.94 ± 0.1 |
pH during Incubation in Growth Medium | |||||||
---|---|---|---|---|---|---|---|
0 h | 8 h | 24 h | 34 h | Mean Delta pH at 8 h | Mean Delta pH at 24 h | Mean Delta pH at 34 h | |
L. acidophilus control | 6.5 ± 0.02 | 5.5 ± 0.04 a | 4.92 ± 0.02 a | 3.83 ± 0.02 a | 0 | 0 | 0 |
L. acidophilus + sample 1 | 6.5 ± 0.01 | 5.43 ± 0.03 a | 4.74 ± 0.02 b | 3.65 ± 0.01 b | 0.07 | 0.18 * | 0.18 * |
L. acidophilus + sample 2 | 6.5 ± 0.02 | 5.49 ± 0.03 a | 4.83 ± 0.04 ab | 3.75 ± 0.03 ab | 0.01 | 0.09 | 0.08 |
L. acidophilus+ sample 3 | 6.5 ± 0.03 | 5.4 ± 0.02 a | 4.4 ± 0.02 c | 3.63 ± 0.01 b | 0.1 | 0.52 * | 0.20 * |
L. casei control | 6.5 ± 0.02 | 5.19 ± 0.02 a | 4.11 ± 0.03 a | 3.96 ± 0.01 a | 0 | 0 | 0 |
L. casei + sample 1 | 6.5 ± 0.03 | 5.04 ± 0.03 b | 3.98 ± 0.02 a | 3.85 ± 0.02 a | 0.15 * | 0.13 | 0.09 |
L. casei + sample 2 | 6.5 ± 0.01 | 5.09 ± 0.04 a | 4.01 ± 0.01 a | 3.85 ± 0.01 a | 0.10 | 0.10 | 0.09 |
L. casei + sample 3 | 6.5 ± 0.03 | 5.04 ± 0.02 b | 3.96 ± 0.02 b | 3.81 ± 0.02 b | 0.15 * | 0.15 * | 0.15 * |
L. rhamnosus control | 6.5 ± 0.02 | 5.2 ± 0.02 a | 3.95 ± 0.03 a | 3.93 ± 0.02 a | 0 | 0 | 0 |
L. rhamnosus + sample 1 | 6.5 ± 0.03 | 5.11 ± 0.04 a | 3.77 ± 0.03 bc | 3.75 ± 0.01 c | 0.09 | 0.18 * | 0.18 * |
L. rhamnosus + sample 2 | 6.5 ± 0.01 | 5.07 ± 0.06 a | 3.79 ± 0.02 b | 3.78 ± 0.01 b | 0.13 | 0.16 * | 0.15 * |
L. rhamnosus + sample 3 | 6.5 ± 0.01 | 5.19 ± 0.05 a | 3.76 ± 0.02 c | 3.75 ± 0.01 c | 0.01 | 0.19 * | 0.18 * |
B. lactis (Bb-12) control | 6.5 ± 0.01 | 5.8 ± 0.02 a | 4.27 ± 0.04 a | 4.18 ± 0.03 a | 0 | 0 | 0 |
B. lactis (Bb-12) + sample 1 | 6.5 ± 0.02 | 5.66 ± 0.03 ab | 4.27 ± 0.05 a | 4.17 ± 0.04 a | 0.14 | 0 | 0.01 |
B. lactis (Bb-12) + sample 2 | 6.5 ± 0.02 | 5.67 ± 0.04 ab | 4.29 ± 0.04 a | 4.04 ± 0.01 ab | 0.13 | −0.02 | 0.14 * |
B. lactis (Bb-12) + sample 3 | 6.5 ± 0.03 | 5.65 ± 0.03 b | 4.23 ± 0.03 a | 4.02 ± 0.01 b | 0.15 * | 0.04 | 0.16 * |
B. longum(Bb-46) control | 6.5 ± 0.02 | 5.86 ± 0.02 a | 4.62 ± 0.02 a | 4.45 ± 0.04 a | 0 | 0 | 0 |
B. longum(Bb-46) + sample 1 | 6.5 ± 0.03 | 5.73 ± 0.03 ab | 4.49 ± 0.01 ab | 4.23 ± 0.03 b | 0.13 | 0.13 | 0.22 * |
B. longum(Bb-46) + sample 2 | 6.5 ± 0.01 | 5.64 ± 0.02 b | 4.41 ± 0.02 b | 4.25 ± 0.02 b | 0.22 * | 0.21 * | 0.2 * |
B. longum(Bb-46) + sample 3 | 6.5 ± 0.01 | 5.78 ± 0.02 a | 4.29 ± 0.01 c | 4.11 ± 0.04 c | 0.08 | 0.33 * | 0.34 * |
Population (log cfu/mL) during Incubation in Growth Medium | |||||||
---|---|---|---|---|---|---|---|
0 h | 8 h | 24 h | 34 h | Mean Delta log cfu/mL at 8 h | Mean Delta log cfu/mL at 24 h | Mean Delta log cfu/mL at 34 h | |
L. acidophilus control | 4.93 ± 0.2 | 7.56 ± 0.3 a | 8.77 ± 0.4 a | 8.11 ± 0.2 b | 0 | 0 | 0 |
L. acidophilus + sample 1 | 4.93 ± 0.3 | 7.78 ± 0.2 a | 8.73 ± 0.6 a | 8.75 ± 0.1 a | 0.22 | –0.04 | 0.64 * |
L. acidophilus + sample 2 | 4.93 ± 0.1 | 7.56 ± 0.2 a | 8.71 ± 0.4 a | 8.61 ± 0.2 a | 0 | –0.06 | 0.51 * |
L. acidophilus + sample 3 | 4.93 ± 0.2 | 7.68 ± 0.1 a | 8.74 ± 0.4 a | 8.61 ± 0.2 a | 0.12 | –0.03 | 0.5 * |
L. casei control | 6.85 ± 0.1 | 8.34 ± 0.2 a | 8.88 ± 0.2 a | 7.89 ± 0.2 b | 0 | 0 | 0 |
L. casei + sample 1 | 6.85 ± 0.2 | 8.49 ± 0.3 a | 9.04 ± 0.3 ab | 9.04 ± 0.1 a | 0.15 | 0.16 | 1.15 * |
L. casei + sample 2 | 6.85 ± 0.3 | 8.39 ± 0.4 a | 9.04 ± 0.2 ab | 9.17 ± 0.1 a | –0.1 | 0.16 | 1.13 * |
L. casei + sample 3 | 6.85 ± 0.2 | 8.43 ± 0.5 a | 9.17 ± 0.1 ab | 9.23 ± 0.2 a | 0.09 | 0.29 | 1.34 * |
L. rhamnosus control | 5.86 ± 0.2 | 8.38 ± 0.2 a | 8.77 ± 0.2 a | 8.9 ± 0.1 a | 0 | 0 | 0 |
L. rhamnosus + sample 1 | 5.86 ± 0.2 | 8.43 ± 0.3 a | 8.88 ± 0.4 a | 8.87 ± 0.5 a | 0.05 | 0.11 | –0.03 |
L. rhamnosus + sample 2 | 5.86 ± 0.1 | 8.41 ± 0.4 a | 8.84 ± 0.3 a | 8.86 ± 0.4 a | 0.03 | 0.07 | –0.04 |
L. rhamnosus + sample 3 | 5.86 ± 0.3 | 8.38 ± 0.3 a | 8.89 ± 0.2 a | 8.9 ± 0.3 a | 0 | 0.12 | 0 |
B. lactis (Bb-12) control | 3.99 ± 0.3 | 5.85 ± 0.2 a | 6.74 ± 0.2 a | 5.08 ± 0.2 c | 0 | 0 | 0 |
B. lactis(Bb-12) + sample 1 | 3.99 ± 0.2 | 5.88 ± 0.5 a | 6.82 ± 0.1 a | 6.83 ± 0.1 b | 0.03 | 0.08 | 1.75 * |
B. lactis(Bb-12) + sample 2 | 3.99 ± 0.3 | 5.98 ± 0.4 a | 6.78 ± 0.2 a | 6.88 ± 0.2 b | 0.13 | 0.04 | 1.8 * |
B. lactis(Bb-12) + sample 3 | 3.99 ± 0.1 | 6.08 ± 0.5 a | 6.84 ± 0.2 a | 7.08 ± 0.1 a | 0.23 | 0.1 | 2 * |
B. longum(Bb-46) control | 5.54 ± 0.3 | 6.46 ± 0.3 a | 7.87 ± 0.1 a | 7.85 ± 0.2 a | 0 | 0 | 0 |
B. longum(Bb-46) + sample 1 | 5.54 ± 0.2 | 6.49 ± 0.5 a | 7.98 ± 0.2 a | 8.08 ± 0.2 a | 0.03 | 0.11 | 0.23 |
B. longum(Bb-46) + sample 2 | 5.54 ± 0.2 | 6.47 ± 0.4 a | 7.89 ± 0.4 a | 7.91 ± 0.1 a | 0.01 | 0.02 | 0.06 |
B.longum(Bb-46) + sample 3 | 5.54 ± 0.1 | 6.38 ± 0.3 b | 7.99 ± 0.3 a | 8.11 ± 0.2 a | –0.08 | 0.12 | 0.26 |
Population (log cfu/mL) during Incubation in Simulated Gastric Juice | |||||
---|---|---|---|---|---|
0 h | 1 h | 3 h | Mean Delta log cfu/mL at 1 h | Mean Delta log cfu/mL at 3 h | |
L, casei | 9.04 ± 0.3 | 8.14 ± 0.2 a | 7.57 ± 0.2 a | 0 | 0 |
L, casei + sample 1 | 9.04 ± 0.4 | 8.23 ± 0.3 a | 7.75 ± 0.3 a | 0.09 | 0.18 |
L, casei + sample 2 | 9.04 ± 0.2 | 8.16 ± 0.4 a | 7.65 ± 0.2 a | 0.02 | 0.08 |
L, casei + sample 3 | 9.04 ± 0.3 | 8.21 ± 0.3 a | 7.73 ± 0.4 a | 0.07 | 0.16 |
B. lactis (Bb-12®) | 8.91 ± 0.2 | 8.32 ± 0.2 b | 7.17 ± 0.2 c | 0 | 0 |
B. lactis(Bb-12) + sample 1 | 8.91 ± 0.1 | 8.41 ± 0.4 b | 7.84 ± 0.2 b | 0.09 | 0.67 * |
B. lactis(Bb-12) + sample 2 | 8.91 ± 0.2 | 8.39 ± 0.3 b | 7.8 ± 0.1 b | 0.07 | 0.63 * |
B. lactis(Bb-12) + sample 3 | 8.91 ± 0.3 | 8.62 ± 0.3 ab | 8.15 ± 0.1 a | 0.3 | 0.98 * |
B, longum(Bb-46) | 8.84 ± 0.3 | 7.35 ± 0.2 c | 4.7 ± 0.2 c | 0 | 0 |
B, longum(Bb-46) + sample 1 | 8.84 ± 0.2 | 7.68 ± 0.1 b | 5.3 ± 0.3 b | 0.33 * | 0.6 * |
B, longum(Bb-46) + sample 2 | 8.84 ± 0.1 | 7.66 ± 0.1 b | 5.29 ± 0.2 b | 0.31 * | 0.59 * |
B, longum(Bb-46) + sample 3 | 8.84 ± 0.3 | 8.61 ± 0.3 a | 7.02 ± 0.4 a | 1.26 * | 2.32 * |
Population (log cfu/mL) during Incubation in Simulated Intestinal Juice | |||||
---|---|---|---|---|---|
0 h | 1 h | 3 h | Mean Delta log cfu/mL at 1 h | Mean Delta log cfu/mL at 3 h | |
L. casei | 9.04 ± 0.3 | 2.0 ± 0.6 b | <1 | 0 | ND |
L. casei + sample 1 | 9.04 ± 0.4 | 3.5 ± 0.1 a | <1 | 1.5 * | ND |
L. casei + sample 2 | 9.04 ± 0.2 | 2.9 ± 0.2 a | <1 | 0.9 * | ND |
L. casei + sample 3 | 9.04 ± 0.3 | 3.8 ± 0.3 a | <1 | 1.8 * | ND |
B. lactis (Bb-12®) | 8.91 ± 0.2 | 5.7 ± 0.3 b | 3.5 ± 0.1 b | 0 | 0 |
B. lactis(Bb-12®) + sample 1 | 8.91 ± 0.1 | 5.9 ± 0.2 ab | 3.84 ± 0.2 a | 0.2 | 0.34 * |
B. lactis(Bb-12®) + sample 2 | 8.91 ± 0.2 | 5.8 ± 0.3 ab | 3.82 ± 0.1 a | 0.1 | 0.32 * |
B. lactis(Bb-12®) + sample 3 | 8.91 ± 0.3 | 6.5 ± 0.2 a | 4.32 ± 0.3 a | 0.8 * | 0.82 * |
B. longum(Bb-46) | 8.84 ± 0.3 | 6.99 ± 0.3 b | 5.45 ± 0.2 b | 0 | 0 |
B. longum(Bb-46) + sample 1 | 8.84 ± 0.2 | 7.58 ± 0.2 a | 6.41 ± 0.2 a | 0.59 * | 0.96 * |
B. longum(Bb-46) + sample 2 | 8.84 ± 0.1 | 7.6 ± 0.1 a | 6.39 ± 0.2 a | 0.61 * | 0.94 * |
B. longum(Bb-46) + sample 3 | 8.84 ± 0.3 | 7.93 ± 0.3 a | 6.61 ± 0.1 a | 0.94 * | 1.16 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skenderidis, P.; Mitsagga, C.; Lampakis, D.; Petrotos, K.; Giavasis, I. The Effect of Encapsulated Powder of Goji Berry (Lycium barbarum) on Growth and Survival of Probiotic Bacteria. Microorganisms 2020, 8, 57. https://doi.org/10.3390/microorganisms8010057
Skenderidis P, Mitsagga C, Lampakis D, Petrotos K, Giavasis I. The Effect of Encapsulated Powder of Goji Berry (Lycium barbarum) on Growth and Survival of Probiotic Bacteria. Microorganisms. 2020; 8(1):57. https://doi.org/10.3390/microorganisms8010057
Chicago/Turabian StyleSkenderidis, Prodromos, Chrysanthi Mitsagga, Dimitrios Lampakis, Konstantinos Petrotos, and Ioannis Giavasis. 2020. "The Effect of Encapsulated Powder of Goji Berry (Lycium barbarum) on Growth and Survival of Probiotic Bacteria" Microorganisms 8, no. 1: 57. https://doi.org/10.3390/microorganisms8010057
APA StyleSkenderidis, P., Mitsagga, C., Lampakis, D., Petrotos, K., & Giavasis, I. (2020). The Effect of Encapsulated Powder of Goji Berry (Lycium barbarum) on Growth and Survival of Probiotic Bacteria. Microorganisms, 8(1), 57. https://doi.org/10.3390/microorganisms8010057