Phylogenetic Analysis of Grapevine Fanleaf Virus, Grapevine Virus A, and Grapevine Leafroll-Associated Virus 3 in Kazakhstan
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and RNA Extraction
2.2. Reverse Transcription
2.3. Multiplex RT-qPCR
2.4. Amplification and Sanger Sequencing of the Coat Protein Gene
2.5. Data Analysis and Phylogenetic Methods
2.6. Amino-Acid Substitution Analysis
3. Results
3.1. Alignment Metrics and Entropy Profiles
3.1.1. Number of Sequences, Alignment Length, Gap, and Ambiguity Content
3.1.2. GC-Content Ranges and Pairwise Identity Statistics
3.1.3. Shannon Entropy and Indel Characteristics
3.2. Amino-Acid Substitution Patterns
3.2.1. Total Substitutions per Isolate and Their Classification
3.2.2. Functional-Impact Categories (No, Low, and Moderate Impact)
3.2.3. Summary Statistics Across All Eleven Isolates
3.3. Evolutionary Model Selection and Phylogenetic Inference
3.3.1. Best-Fit Substitution Models for GFLV, GVA, and GLRaV-3
3.3.2. ML Tree Construction and Bootstrap-Support Summaries
3.3.3. Correlation of Model Complexity, Sequence Diversity, and Tree Resolution
3.3.4. Possible Geographic Origins of the Kazakh Isolates
4. Discussion
4.1. Molecular–Epidemiological Insight
- Transmission mode governs genetic diversity. Sequence variability—quantified by Shannon entropy, gap frequency and amino-acid substitution load—was highest in GVA, intermediate in GFLV, and lowest in GLRaV-3. This gradient mirrors the shift from frequent mechanical and mixed-vector transmission (GVA), through nematode-plus-mechanical spread (GFLV), to strictly vector-borne dissemination (GLRaV-3). The data therefore support the view that transmission ecology, rather than genome size, is the principal driver of evolutionary rate in plant RNA viruses [23,39].
- Phylogenetic structure reflects recent trade pathways. The single Kazakh GFLV isolate nests in a well-supported North American clade, implicating modern nursery imports rather than ancient Silk-Road movement. Five GVA isolates are grouped into two well-supported but geographically distinct groups, indicating at least two independent introduction events via disparate supply chains. Low CP variability in GLRaV-3 precludes fine-scale origin tracing, consistent with its globally clonal population structure. We acknowledge that GLRaV-3 diversity is organized into well-defined phylogenetic groups (I–IX and supergroups), even though our CP-based analysis cannot reliably assign our isolates to specific groups [22].
- Functional constraints are pervasive. Across 359 amino-acid substitutions, 85% were synonymous and only 3.6% reached a moderate functional impact; no high-impact (stop-gain) variants were detected. This underscores strong purifying selection on the coat protein, particularly in GLRaV-3, where only four missense changes were observed.
4.2. Practical Implications
4.3. Limitations and Future Work
5. Conclusions
- Hypothesis 1: Phylogeographic integration. All Kazakh coat-protein sequences were nested within established international clades, confirming recent introductions rather than endemic diversification.
- Hypothesis 2: Transmission-driven diversity. Genetic variability declined in the expected order, GVA > GFLV > GLRaV-3, mirroring the gradient from frequent mechanical spread to strictly vector-borne transmission.
- Hypothesis 3: Diversity versus tree resolution. Mean bootstrap support tracked sequence entropy—high in GVA (85%) and GFLV (84%), and low in GLRaV-3 (68%)—validating the predicted link between variability and phylogenetic resolution.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AIC | Akaike Information Criterion |
AICc | Corrected Akaike Information Criterion |
AICw | AIC weight |
BIC | Bayesian Information Criterion |
BLAST | Basic Local Alignment Search Tool |
bp | Base pair |
BS | Bootstrap support |
CP | Coat protein |
CTAB | Cetyl-trimethyl-ammonium bromide |
df | Degrees of freedom |
G(4) | Gamma-distributed rate heterogeneity with four categories |
GFLV | Grapevine fanleaf virus |
GLRaV-3 | Grapevine leafroll-associated virus 3 |
GVA | Grapevine virus A |
H | Shannon entropy (bits) |
IC | Internal control (18S rRNA) |
kb | Kilobase (103 bp) |
kt | Kiloton (103 t, grape production) |
logLik | Log-likelihood |
ML | Maximum likelihood |
nt | Nucleotide |
OIV | International Organisation of Vine and Wine |
ORF | Open reading frame |
PVP | Polyvinylpyrrolidone |
RNA | Ribonucleic acid |
RT-PCR | Reverse-transcription polymerase chain reaction |
RT-qPCR | Quantitative RT-PCR |
References
- Fust, C.; Lameront, P.; Shabanian, M.; Song, Y.; Abou Kubaa, R.; Bester, R.; Maree, H.J.; Al Rwahnih, M.; Meng, B. Grapevine leafroll-associated virus 3: A global threat to the grapevine and wine industries but a gold mine for scientific discovery. J. Exp. Bot. 2025, 75, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kubina, J.; Hily, J.-M.; Mustin, P.; Komar, V.; Garcia, S.; Martin, I.R.; Poulicard, N.; Velt, A.; Bonnet, V.; Mercier, L.; et al. Characterization of Grapevine fanleaf virus isolates in ‘Chardonnay’ vines exhibiting severe and mild symptoms in two vineyards. Viruses 2022, 14, 2303. [Google Scholar] [CrossRef]
- Wardeh, M.; Pilgrim, J.; Hui, M.; Kotsiri, A.; Baylis, M.; Blagrove, M.S.C. Features that matter: Evolutionary signatures can predict viral transmission routes. PLoS Pathog. 2024, 20, e1012629. [Google Scholar] [CrossRef]
- Rubino, L.; Abrahamian, P.; An, W.; Aranda, M.A.; Ascencio-Ibañez, J.T.; Bejerman, N.; Blouin, A.G.; Candresse, T.; Canto, T.; Cao, M.; et al. Summary of taxonomy changes ratified by the International Committee on Taxonomy of Viruses from the Plant Viruses Subcommittee, 2025. J. Gen. Virol. 2025, 106, 002114. [Google Scholar] [CrossRef] [PubMed]
- International Committee on Taxonomy of Viruses (ICTV). ICTV Report Chapter: Family Secoviridae, Genus Nepovirus. Available online: https://ictv.global/report/chapter/secoviridae/secoviridae/nepovirus (accessed on 4 September 2025).
- Choi, J.; Pakbaz, S.; Yepes, L.M.; Cieniewicz, E.J.; Schmitt-Keichinger, C.; Labarile, R.; Minutillo, S.A.; Heck, M.; Hua, J.; Fuchs, M. Grapevine fanleaf virus RNA1-encoded proteins 1A and 1BHel suppress RNA silencing. Mol. Plant–Microbe Interact. 2023, 36, 558–571. [Google Scholar] [CrossRef]
- CABI. Xiphinema index (fan-leaf virus nematode). In Invasive Species Compendium; CABI: Wallingford, UK, 2022. [Google Scholar] [CrossRef]
- M’Rabet Samaali, B.; Mougou Hamdane, A.; Toumi, A.; Dhaouadi, S.; Kallel, S. Transmission and translocation of Grapevine fanleaf virus (GFLV) from Vitis vinifera L. pollen to seeds and grape. Arch. Phytopathol. Plant Prot. 2022, 55, 2040–2056. [Google Scholar] [CrossRef]
- International Committee on Taxonomy of Viruses (ICTV). ICTV Report Chapter: Family Betaflexiviridae (Interim), Genus Vitivirus. Available online: https://ictv.global/report/chapter/betaflexiviridae/betaflexiviridae (accessed on 4 September 2025).
- Caruso, A.G.; Bertacca, S.; Ragona, A.; Matić, S.; Davino, S.; Panno, S. Evolutionary analysis of Grapevine virus A: Insights into its dispersion in Sicily (Italy). Agriculture 2022, 12, 835. [Google Scholar] [CrossRef]
- Hommay, G.; Beuve, M.; Herrbach, É. Transmission of grapevine leafroll-associated viruses and Grapevine virus A by vineyard-sampled soft scales (Parthenolecanium corni, Hemiptera: Coccidae). Viruses 2022, 14, 2679. [Google Scholar] [CrossRef]
- Vončina, D.; Jagunić, M.; De Stradis, A.; Diaz-Lara, A.; Al Rwahnih, M.; Šćepanović, M.; Almeida, R.P.P. New host plant species of Grapevine virus A identified with vector-mediated infections. Plant Dis. 2024, 108, 125–130. [Google Scholar] [CrossRef]
- Gharouni Kardani, S.; Karimi Shahri, M.R.; Pakbaz, S. Phylogenetic analysis of Grapevine virus A from vineyards of Khorasan Razavi Province (Iran) based on partial ORF5 gene. Appl. Res. Plant Prot. 2023, 2, 1–12. [Google Scholar] [CrossRef]
- Wu, Q.; Kinoti, W.M.; Habili, N.; Tyerman, S.D.; Rinaldo, A.; Constable, F.E. Genetic diversity of Grapevine virus A in three Australian vineyards using amplicon high-throughput sequencing (Amplicon-HTS). Viruses 2024, 16, 42. [Google Scholar] [CrossRef] [PubMed]
- International Committee on Taxonomy of Viruses (ICTV). ICTV Report Chapter: Family Closteroviridae, Genus Ampelovirus. Available online: https://ictv.global/report/chapter/closteroviridae/closteroviridae/ampelovirus (accessed on 4 September 2025).
- Gazel, M.; Tunç, B.; Elçi, E.; Çağlayan, K. Incidence and genetic diversity of grapevine leafroll-associated virus 3 (GLRaV-3) isolates in Turkey. Physiol. Mol. Plant Pathol. 2022, 122, 101896. [Google Scholar] [CrossRef]
- Cabaleiro, C.; Pesqueira, A.M.; García-Berrios, J.J. Assessment of symptoms of grapevine leafroll disease and relationship with yield and quality of Pinot Noir grape must in a 10-year study period. Plants 2023, 12, 2127. [Google Scholar] [CrossRef]
- Mostert, I.; Bester, R.; Burger, J.T.; Maree, H.J. Investigating protein–protein interactions between grapevine leafroll-associated virus 3 and Vitis vinifera. Phytopathology 2023, 113, 1994–2005. [Google Scholar] [CrossRef]
- Hančević, K.; Čarija, M.; Radić Brkanac, S.; Gaši, E.; Likar, M.; Zdunić, G.; Regvar, M.; Radić, T. Grapevine leafroll-associated virus 3 in single and mixed infections triggers changes in the oxidative balance of four grapevine varieties. Int. J. Mol. Sci. 2023, 24, 8. [Google Scholar] [CrossRef]
- Song, Y.; Hanner, R.H.; Meng, B. Transcriptomic analyses of grapevine leafroll-associated virus 3 infection in leaves and berries of ‘Cabernet Franc’. Viruses 2022, 14, 1831. [Google Scholar] [CrossRef]
- Ryabushkina, N.; Askapuly, A.; Stanbekova, G.; Galiakparov, N. First report of three grapevine viruses in Kazakhstan. In Crop Plant Resistance to Biotic and Abiotic Factors: Current Potential and Future Demands; Proceedings of the 3rd International Symposium on Plant Protection and Plant Health in Europe (ISPPHE), Julius Kühn-Institut, Berlin-Dahlem, Germany, 14–16 May 2009; Feldmann, F., Alford, D.V., Furk, C., Eds.; Deutsche Phytomedizinische Gesellschaft e.V. Verlag: Braunschweig, Germany, 2009; p. 105. [Google Scholar]
- Diaz-Lara, A.; Klaassen, V.; Stevens, K.; Sudarshana, M.R.; Rowhani, A.; Maree, H.J.; Chooi, K.M.; Blouin, A.G.; Habili, N.; Song, Y.; et al. Characterization of Grapevine Leafroll-Associated Virus 3 Genetic Variants and Application towards RT-qPCR Assay Design. PLoS ONE 2018, 13, e0208862. [Google Scholar] [CrossRef]
- Butković, A.; González, R. A brief view of factors that affect plant virus evolution. Front. Virol. 2022, 2, 994057. [Google Scholar] [CrossRef]
- McGovern, P.E. Ancient Wine: The Search for the Origins of Viniculture, Updated ed.; Princeton University Press: Princeton, NJ, USA, 2019; p. 464. ISBN 978-0-691-19720-3. [Google Scholar] [CrossRef]
- International Organisation of Vine and Wine (OIV). State of the World Vine & Wine Sector in 2024; OIV: Paris, France, 2025; Available online: https://www.oiv.int (accessed on 7 July 2025).
- Shepard, W. How Kazakhstan is Becoming the Next Frontier for World-Class Wine. Forbes. 29 February 2016. Available online: https://www.forbes.com/sites/wadeshepard/2016/02/29/could-kazakhstan-become-the-next-frontier-for-world-class-wine/ (accessed on 7 July 2025).
- Aubakirova, K.P.; Bakytzhanova, Z.N.; Erbolova, L.S.; Rakhhatkyzy, A.; Galiakparov, N.N. An improved method of RNA isolation for molecular diagnostics of fruit and berry viruses. Izdenister Natizheler–Issled. Rezult. 2024, 3, 108–114. [Google Scholar] [CrossRef]
- Galiakparov, N.N.; Aubakirova, K.P.; Yerbolova, L.S.; Rakhatkyzy, A.; Bakytzhanova, Z.N. Set of Synthetic Oligonucleotides and Probes for Identification and Detection of Grapevine Viruses by Real-Time PCR. Kazakhstan Patent KZ37459, 1 August 2025. [Google Scholar]
- Hysom, D.A.; Naraghi-Arani, P.; Elsheikh, M.; Carrillo, A.C.; Williams, P.L.; Gardner, S.N. Skip the Alignment: Degenerate, Multiplex Primer and Probe Design Using K-mer Matching Instead of Alignments. PLoS ONE 2012, 7, e34560. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 1–11. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 7 July 2025).
- Huber, W.; Carey, V.J.; Gentleman, R.; Anders, S.; Carlson, M.; Carvalho, B.S.; Corrada Bravo, H.; Davis, S.; Gatto, L.; Girke, T.; et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods 2015, 12, 115–121. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Paradis, E. pegas: An R package for population genetics with an integrated–modular approach. Bioinformatics 2010, 26, 419–420. [Google Scholar] [CrossRef]
- Charif, D.; Lobry, J.R. SeqinR 1.0-2: A contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. In Structural Approaches to Sequence Evolution; Bastolla, U., Porto, M., Roman, E., Vendruscolo, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 207–232. [Google Scholar] [CrossRef]
- Darriba, D.; Posada, D.; Kozlov, A.M.; Stamatakis, A.; Morel, B.; Flouri, T. ModelTest-NG: A new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 2020, 37, 291–294. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Yu, G.; Smith, D.K.; Zhu, H.; Guan, Y.; Lam, T.T. ggtree: An R package for visualization and annotation of phylogenetic trees. Methods Ecol. Evol. 2017, 8, 28–36. [Google Scholar] [CrossRef]
- Elena, S.F.; Fraile, A.; García-Arenal, F. Evolution and Emergence of Plant Viruses. Adv. Virus Res. 2014, 88, 161–191. [Google Scholar] [CrossRef]
- Cabrera Mederos, D.; Giolitti, F.; Torres, C.; Portal, O. Distribution and phylodynamics of papaya ringspot virus on Carica papaya in Cuba. Plant Pathol. 2019, 68, 239–250. [Google Scholar] [CrossRef]
Virus | Accession ID | Total Substitutions | Synonymous (%) | Conservative (%) | Non-Conservative (%) |
---|---|---|---|---|---|
GFLV | OR454495 | 61 | 50 (82.0) | 6 (9.8) | 5 (8.2) |
GVA | OR454490 | 61 | 54 (88.5) | 6 (9.8) | 1 (1.6) |
OR454491 | 56 | 51 (91.1) | 4 (7.1) | 1 (1.8) | |
OR454492 | 41 | 33 (80.5) | 8 (19.5) | 0 (0.0) | |
OR454493 | 63 | 55 (87.3) | 6 (9.5) | 2 (3.2) | |
OR454494 | 62 | 55 (88.7) | 5 (8.1) | 2 (3.2) | |
GLRaV-3 | OR454485 | 3 | 3 (100.0) | 0 (0.0) | 0 (0.0) |
OR454486 | 2 | 2 (100.0) | 0 (0.0) | 0 (0.0) | |
OR454487 | 2 | 2 (100.0) | 0 (0.0) | 0 (0.0) | |
OR454488 | 4 | 2 (50.0) | 1 (25.0) | 1 (25.0) | |
OR454489 | 4 | 2 (50.0) | 1 (25.0) | 1 (25.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frolov, I.G.; Aubakirova, K.P.; Bakytzhanova, Z.N.; Rakhatkyzy, A.; Yerbolova, L.S.; Galiakparov, N.N. Phylogenetic Analysis of Grapevine Fanleaf Virus, Grapevine Virus A, and Grapevine Leafroll-Associated Virus 3 in Kazakhstan. Microorganisms 2025, 13, 2142. https://doi.org/10.3390/microorganisms13092142
Frolov IG, Aubakirova KP, Bakytzhanova ZN, Rakhatkyzy A, Yerbolova LS, Galiakparov NN. Phylogenetic Analysis of Grapevine Fanleaf Virus, Grapevine Virus A, and Grapevine Leafroll-Associated Virus 3 in Kazakhstan. Microorganisms. 2025; 13(9):2142. https://doi.org/10.3390/microorganisms13092142
Chicago/Turabian StyleFrolov, Ivan G., Karlygash P. Aubakirova, Zhibek N. Bakytzhanova, Akbota Rakhatkyzy, Laura S. Yerbolova, and Nurbol N. Galiakparov. 2025. "Phylogenetic Analysis of Grapevine Fanleaf Virus, Grapevine Virus A, and Grapevine Leafroll-Associated Virus 3 in Kazakhstan" Microorganisms 13, no. 9: 2142. https://doi.org/10.3390/microorganisms13092142
APA StyleFrolov, I. G., Aubakirova, K. P., Bakytzhanova, Z. N., Rakhatkyzy, A., Yerbolova, L. S., & Galiakparov, N. N. (2025). Phylogenetic Analysis of Grapevine Fanleaf Virus, Grapevine Virus A, and Grapevine Leafroll-Associated Virus 3 in Kazakhstan. Microorganisms, 13(9), 2142. https://doi.org/10.3390/microorganisms13092142