A Retrospective Study on Coinfections, Antimicrobial Resistance, and Mortality Risk Among COVID-19 Patients (2020–2021) with Consideration of Long-COVID Outcomes
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Study Participants and Data Collection
2.3. Study Variables
2.4. Diagnostic Procedures
2.4.1. Detection of COVID-19
2.4.2. Respiratory Coinfection Methods
2.4.3. Antibiotic Resistance Detection Method
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics and Comparison Between the 2020 and 2021 Cohorts
3.2. Analysis of Type of Coinfection
3.2.1. Distribution of Coinfecting Microorganisms Reveals Predominant Pathogens
3.2.2. Impact of Coinfections on Patient Outcomes and Prognosis
3.3. Prevalence of Resistant Bacteria Highlights Challenges in Empirical Antibiotic Therapy
3.4. Possible Factors Associated with Mortality
4. Discussion
4.1. Higher Prevalence of Coinfections in 2020 and Increased Mortality in Non-Respiratory Cases in 2021
4.2. Shifts in Coinfection Patterns and Predominant Pathogens Between 2020 and 2021
4.3. Antimicrobial Resistance Patterns Remain Consistent Despite Empirical Treatment
4.4. Coinfections and Comorbidities Are Associated with Increased Mortality and Long-COVID Risk
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Resistance Mechanisms | ESBL | Vancomycin-Resistant Enterococcus | Carbapenem Resistance | AMP-C | MRSA | Total |
---|---|---|---|---|---|---|
2020 | 6 | 0 | 1 | 0 | 1 | 8 |
2021 | 6 | 0 | 3 | 2 | 5 | 16 |
p-value | 1.000 | - | 0.314 | 0.157 | 0.157 | 0.149 |
References
- Arnold, F.W.; Fuqua, J.L. Viral Respiratory Infections: A Cause of Community-Acquired Pneumonia or a Predisposing Factor? Curr. Opin. Pulm. Med. 2020, 26, 208–214. [Google Scholar] [CrossRef]
- Orosz, L.; Burián, K. The “COVID Effect” in Culture-Based Clinical Microbiology: Changes Induced by COVID-19 Pandemic in a Hungarian Tertiary Care Center. J. Infect. Public Health 2024, 17, 102453. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Westwood, D.; MacFadden, D.R.; Soucy, J.-P.R.; Daneman, N. Bacterial Co-Infection and Secondary Infection in Patients with COVID-19: A Living Rapid Review and Meta-Analysis. Clin. Microbiol. Infect. 2020, 26, 1622–1629. [Google Scholar] [CrossRef] [PubMed]
- Russell, C.D.; Fairfield, C.J.; Drake, T.M.; Turtle, L.; Seaton, R.A.; Wootton, D.G.; Sigfrid, L.; Harrison, E.M.; Docherty, A.B.; de Silva, T.I.; et al. Co-Infections, Secondary Infections, and Antimicrobial Use in Patients Hospitalised with COVID-19 during the First Pandemic Wave from the ISARIC WHO CCP-UK Study: A Multicentre, Prospective Cohort Study. Lancet Microbe 2021, 2, e354–e365. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, F.; Gabler, C.; Nussbaumer-Pröll, A.; Wölfl-Duchek, M.; Blaschke, A.; Radtke, C.; Zeitlinger, M.; Jorda, A. Early Bacterial Coinfections in Patients Admitted to the ICU with COVID-19 or Influenza: A Retrospective Cohort Study. Crit. Care Explor. 2023, 5, e0895. [Google Scholar] [CrossRef]
- Joseph, C.; Togawa, Y.; Shindo, N. Bacterial and Viral Infections Associated with Influenza. Influenza Other Respir. Viruses 2013, 7, 105–113. [Google Scholar] [CrossRef]
- Klein, E.Y.; Monteforte, B.; Gupta, A.; Jiang, W.; May, L.; Hsieh, Y.; Dugas, A. The Frequency of Influenza and Bacterial Coinfection: A Systematic Review and Meta-analysis. Influenza Other Respir. Viruses 2016, 10, 394–403. [Google Scholar] [CrossRef]
- Kilani, M.A.; Aljohar, B.A.; Alayed, Y.A.; Alshahrani, N.Z.; Shiha, H.R.; Bin Saleh, G.; Alshanbari, N.H.; Alanazi, K.H. Epidemiological Patterns of Bacterial and Fungal Healthcare-Associated Infection Outbreaks in Ministry of Health Hospitals in Saudi Arabia, 2020–2021. J. Infect. Public Health 2024, 17, 551–558. [Google Scholar] [CrossRef]
- Gan, Y.; Zhang, G.; Sun, H.; Lyu, X. Clinical Characteristics and Risk Factors for Bacterial Co-Infections in COVID-19 Patients: A Retrospective Study. J. Glob. Antimicrob. Resist. 2024, 38, 6–11. [Google Scholar] [CrossRef]
- Yang, Z.; Cai, K.; Liao, Y.; Wu, W.-C.; Xing, L.; Hu, M.; Ren, J.; Zhang, J.; Zhu, X.; Yuan, K.; et al. Total Infectome Characterization of Respiratory Infections during the 2022–23 COVID-19 Outbreak in China Revealed Extensive Coinfections with Links to SARS-CoV-2 Status, Age, and Disease Severity. Pathogens 2024, 13, 216. [Google Scholar] [CrossRef]
- Debaco, I.S.S.; Kluck, H.M.; Marx, R.; da Rosa, P.R.M.; Teixeira, C. Bacterial Coinfections in COVID-19-Hospitalized Patients. Rev. Assoc. Med. Bras. 2024, 70, e20230469. [Google Scholar] [CrossRef]
- Yasir, M.; Al-Sharif, H.A.; Al-Subhi, T.; Sindi, A.A.; Bokhary, D.H.; El-Daly, M.M.; Alosaimi, B.; Hamed, M.E.; Karim, A.M.; Hassan, A.M.; et al. Analysis of the Nasopharyngeal Microbiome and Respiratory Pathogens in COVID-19 Patients from Saudi Arabia. J. Infect. Public Health 2023, 16, 680–688. [Google Scholar] [CrossRef]
- Moreno-Torres, V.; de Mendoza, C.; de la Fuente, S.; Sánchez, E.; Martínez-Urbistondo, M.; Herráiz, J.; Gutiérrez, A.; Gutiérrez, Á.; Hernández, C.; Callejas, A.; et al. Bacterial Infections in Patients Hospitalized with COVID-19. Intern. Emerg. Med. 2022, 17, 431–438. [Google Scholar] [CrossRef]
- Fan, H.; Zhou, L.; Lv, J.; Yang, S.; Chen, G.; Liu, X.; Han, C.; Tan, X.; Qian, S.; Wu, Z.; et al. Bacterial Coinfections Contribute to Severe COVID-19 in Winter. Cell Res. 2023, 33, 562–564. [Google Scholar] [CrossRef]
- Haddad, N.; Zeenny, R.M.; El Halabi, C.; Abdallah, T.; El Helou, R.; Zahreddine, N.K.; Kanj, S.S.; Rizk, N.A. The Experience of an Antimicrobial Stewardship Program and Antibiotic Consumption and Resistance Trends during the COVID-19 Pandemic at a Tertiary Care Center in Beirut. J. Infect. Public Health 2024, 17, 254–262. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Living Guidance for Clinical Management of COVID-19; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Jin, X.; Zeng, L.; Zhang, L.; Zhu, Z. Co-Infection in COVID-19 Patients Performed Microbiology Detection: Discovering Multidrug Resistant Microorganisms Increased during the COVID-19 Pandemic in Shanghai, China. J. Glob. Antimicrob. Resist. 2023, 35, 48–50. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, E.; Keynan, Y. Vancomycin Revisited €” 60 Years Later. Front. Public Health 2014, 2, 217. [Google Scholar] [CrossRef] [PubMed]
- Petrakis, V.; Panopoulou, M.; Rafailidis, P.; Lemonakis, N.; Lazaridis, G.; Terzi, I.; Papazoglou, D.; Panagopoulos, P. The Impact of the COVID-19 Pandemic on Antimicrobial Resistance and Management of Bloodstream Infections. Pathogens 2023, 12, 780. [Google Scholar] [CrossRef]
- Granata, G.; Cicalini, S. The Evolving Challenge of Appropriate Antibiotics Use in Hospitalized COVID-19 Patients: A Systematic Literature Review. Antibiotics 2024, 13, 545. [Google Scholar] [CrossRef]
- Centros Para El Control y La Prevención de Enfermedades (CDC) ¿Qué Es La Reinfección Por COVID-19? Available online: https://www.cdc.gov/covid/about/reinfection.html?CDC_AAref_Val=https://www.cdc.gov/coronavirus/2019-ncov/your-health/reinfection.html (accessed on 30 July 2024).
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Available online: https://www.eucast.org/clinical_breakpoints (accessed on 30 July 2024).
- Pandey, M.; May, A.; Tan, L.; Hughes, H.; Jones, J.P.; Harrison, W.; Bradburn, S.; Tyrrel, S.; Muthuswamy, B.; Berry, N.; et al. Comparative Incidence of Early and Late Bloodstream and Respiratory Tract Co-Infection in Patients Admitted to ICU with COVID-19 Pneumonia versus Influenza A or B Pneumonia versus No Viral Pneumonia: Wales Multicentre ICU Cohort Study. Crit. Care 2022, 26, 158. [Google Scholar] [CrossRef]
- Rawson, T.M.; Moore, L.S.P.; Castro-Sanchez, E.; Charani, E.; Davies, F.; Satta, G.; Ellington, M.J.; Holmes, A.H. COVID-19 and the Potential Long-Term Impact on Antimicrobial Resistance. J. Antimicrob. Chemother. 2020, 75, 1681–1684. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.-L.; Sakr, Y.; Singer, M.; Martin-Loeches, I.; Machado, F.R.; Marshall, J.C.; Finfer, S.; Pelosi, P.; Brazzi, L.; Aditianingsih, D.; et al. Prevalence and Outcomes of Infection Among Patients in Intensive Care Units in 2017. JAMA 2020, 323, 1478. [Google Scholar] [CrossRef] [PubMed]
- Rawson, T.M.; Ming, D.; Ahmad, R.; Moore, L.S.P.; Holmes, A.H. Antimicrobial Use, Drug-Resistant Infections and COVID-19. Nat. Rev. Microbiol. 2020, 18, 409–410. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Kim, J.; Hwang, M.; Kim, Y.-H.; Chung, M.J.; Jeong, W.G.; Jeong, Y.J. Clinical and Imaging Characteristics of SARS-CoV-2 Breakthrough Infection in Hospitalized Immunocompromised Patients. Korean J. Radiol. 2024, 25, 481. [Google Scholar] [CrossRef]
- Chen, L.; Shen, L.; Wu, W.; Guan, W.; Zhou, J.; Luo, G.; Chen, Q.; Zhou, H.; Deng, Z.; Chen, Y.; et al. Co-Infecting Pathogens Can Contribute to Inflammatory Responses and Severe Symptoms in COVID-19. J. Thorac. Dis. 2022, 14, 355–370. [Google Scholar] [CrossRef]
2020 [n = 171 (48.7%)] | 2021 [n = 180 (51.3%)] | p-Value | |
---|---|---|---|
Deceased (n = 95) | 68 (39.77%) | 27 (15.00%) | <0.001 |
Age (median) | 73.72 (61.72–82.93) | 65.83 (52.40–76.79) | <0.001 |
Sex (n = men) | 89 (52.05%) | 114 (63.33%) | 0.032 |
Comorbidity (n = 259) | 130 (76.02%) | 129 (71.67%) | 0.354 |
Intensive care unit (n = 23) | 20 (11.70%) | 3 (1.67%) | <0.001 |
Arterial hypertension (n = 184) | 87 (50.88%) | 97 (53.89%) | 0.142 |
Diabetes mellitus (n = 100) | 52 (30.41%) | 48 (26.67%) | 0.645 |
Cardiovascular disease (n = 115) | 56 (32.75%) | 59 (32.78%) | 0.667 |
Chronic obstructive pulmonary disease (n = 58) | 31 (18.13%) | 27 (15.00%) | 0.574 |
Cancer (n = 41) | 18 (10.53%) | 23 (12.78%) | 0.410 |
Chronic kidney disease (n = 46) | 21 (12.28%) | 25 (13.89%) | 0.497 |
Immunosuppression (n = 26) | 6 (3.51%) | 20 (11.11%) | 0.004 |
Long-COVID (n = 62) | 30 (17.54%) | 32 (17.78%) | 0.157 |
Reinfection (n = 37) | 11 (6.43%) | 26 (14.44%) | 0.163 |
COVID symptoms (n = 327) | 170 (99.42%) | 157 (87.22%) | <0.001 |
Days hospitalized | 9 (5.00–16.00) | 11 (7.00–23.75) | 0.008 |
Pneumonia (n = 246) | 143 (83.63%) | 106 (58.89%) | <0.001 |
Fever (n = 109) | 122 (71.35%) | 87 (48.33%) | 0.002 |
Cough (n = 173) | 106 (62.00%) | 67 (37.22%) | <0.001 |
Empirical antibiotic (n = 176) | 86 (50.29%) | 90 (50.00%) | 0.956 |
Empirical cephalosporin treatment (n = 118) | 46 (26.90%) | 72 (40.00%) | 0.009 |
(A) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pathogen | Onset Type | Site of Infection | |||||||||||
2020 | Community Onset | Row % | Hospital-Onset | Row % | Respiratory | Row % | Non-Respiratory | ||||||
Blood | Row% | Urine | Row % | Other * | Row % | ||||||||
VIRUS | Coronavirus OC43 | 0 | 0 | 2 | 50 | 2 | 50 | 0 | 0 | 0 | 0 | 0 | 0 |
Rhinovirus | 0 | 0 | 2 | 50 | 2 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | |
Flu A-H1pdm09 | 0 | 0 | 5 | 50 | 5 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | |
Parainfluenza virus 4 | 0 | 0 | 3 | 50 | 3 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | |
Respiratory syncytial virus A | 1 | 8.33 | 5 | 41.67 | 6 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | |
FUNGUS | Candida albicans | 3 | 42.86 | 0 | 0 | 0 | 0 | 1 | 14.29 | 2 | 28.57 | 1 | 14.29 |
Candida parapsilosis | 1 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 50 | 0 | 0 | |
Candida glabrata | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 100 | |
Aspergillus fumigatus | 1 | 50 | 0 | 0 | 1 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | |
GRAM − Bacteria | Escherichia coli | 6 | 18.75 | 8 | 25 | 1 | 3.13 | 1 | 3.13 | 12 | 37.5 | 4 | 12.5 |
Pseudomonas aeruginosa | 2 | 28.57 | 1 | 14.29 | 1 | 14.29 | 1 | 14.29 | 1 | 14.29 | 1 | 14.29 | |
Klebsiella pneumoniae | 3 | 30 | 2 | 20 | 1 | 10 | 1 | 10 | 3 | 30 | 0 | 0 | |
Proteus hauseri | 0 | 0 | 1 | 50 | 0 | 0 | 0 | 0 | 1 | 50 | 0 | 0 | |
Providenza stuarti | 0 | 0 | 1 | 50 | 0 | 0 | 0 | 0 | 1 | 50 | 0 | 0 | |
Serratia marcescens | 1 | 16.67 | 2 | 33.33 | 2 | 33.33 | 0 | 0 | 1 | 16.67 | 0 | 0 | |
Campylobacter jejuni | 0 | 0 | 1 | 50 | 0 | 0 | 1 | 50 | 0 | 0 | 0 | 0 | |
Stenotrophomonas maltofilia | 1 | 50 | 0 | 0 | 1 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | |
Serratia species | 1 | 50 | 0 | 0 | 1 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | |
Haemofilus influenza | 0 | 0 | 15 | 48.39 | 15 | 48.39 | 0 | 0 | 0 | 0 | 1 | 3.23 | |
Bacillus cereus | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 100 | |
Klebsiella oxytoca | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Proteus mirabilis | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 100 | |
GRAM + Bacteria | Enterococcus faecalis | 9 | 29.03 | 6 | 19.35 | 0 | 0 | 1 | 3.23 | 14 | 45.16 | 1 | 3.23 |
Enterococcus faecium | 11 | 23.91 | 12 | 26.09 | 0 | 0 | 0 | 0 | 23 | 50 | 0 | 0 | |
Staphylococcus epidermidis | 2 | 50 | 0 | 0 | 1 | 25 | 0 | 0 | 1 | 25 | 0 | 0 | |
Streptococcus agalactie | 0 | 0 | 1 | 50 | 0 | 0 | 0 | 0 | 1 | 50 | 0 | 0 | |
Aerococcus viridans | 0 | 0 | 1 | 50 | 0 | 0 | 0 | 0 | 1 | 50 | 0 | 0 | |
Staphylococcus hominis | 1 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 50 | 0 | 0 | |
Listeria monocytogenes | 1 | 50 | 0 | 0 | 0 | 0 | 1 | 50 | 0 | 0 | 0 | 0 | |
Streptococcus pnuemoniae | 0 | 0 | 5 | 50 | 4 | 40 | 1 | 10 | 0 | 0 | 0 | 0 | |
Staphylococcus aureus | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 100 | |
Clostridioides difficile | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 100 | |
(B) | |||||||||||||
Pathogen | Onset Type | Site of Infection | |||||||||||
2021 | Community Onset | Row % | Hospital-Onset | Row % | Respiratory | Row % | Non-Respiratory | ||||||
Blood | Row % | Urine | Row % | Other | Row % | ||||||||
VIRUS | Adenovirus | 0 | 0 | 1 | 50 | 1 | 50 | 0 | 0 | 0 | 0 | 0 | 0 |
FUNGUS | Candida albicans | 4 | 40 | 1 | 10 | 0 | 0 | 0 | 0 | 5 | 50 | 0 | 0 |
Candida glabrata | 1 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 50 | 0 | 0 | |
Aspergillus fumigatus | 5 | 50 | 0 | 0 | 5 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | |
Aspergillus sp. | 1 | 50 | 0 | 0 | 1 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | |
Parasites | Blastocistis hominis | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 100 |
GRAM − Bacteria | Escherichia coli | 9 | 26.47 | 7 | 20.59 | 3 | 8.82 | 3 | 8.82 | 10 | 29.41 | 2 | 5.88 |
Enterobacter aerobius | 1 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 50 | 0 | 0 | |
Enterobacter aerogenes | 2 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 50 | 0 | 0 | |
Enterobacter cloacae | 1 | 33.33 | 0 | 0 | 0 | 0 | 1 | 33.33 | 0 | 0 | 1 | 33.33 | |
Pseudomonas aeruginosa | 4 | 20 | 5 | 25 | 4 | 20 | 1 | 5 | 4 | 20 | 2 | 10 | |
Klebsiella pneumoniae | 1 | 14.29 | 2 | 28.57 | 1 | 14.29 | 1 | 14.29 | 1 | 14.29 | 1 | 14.29 | |
Cibrobacter kosseri | 1 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 50 | 0 | 0 | |
Proteus mirabilis | 0 | 0 | 1 | 50 | 0 | 0 | 1 | 50 | 0 | 0 | 0 | 0 | |
Stenotrophomonas maltofilia | 1 | 25 | 1 | 25 | 2 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | |
Serratia marcescens | 1 | 50 | 0 | 0 | 1 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | |
Klebsiella sp. | 1 | 16.67 | 2 | 33.33 | 3 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | |
Moraxella catarrhalis | 1 | 50 | 0 | 0 | 1 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | |
Mycobacterium lentiflavus | 0 | 0 | 1 | 50 | 1 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | |
Achromobacter dentrificans | 1 | 50 | 0 | 0 | 1 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | |
Achromobacter xyloxidans | 1 | 50 | 0 | 0 | 1 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | |
Raoutella ornhithinoli | 1 | 50 | 0 | 0 | 1 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | |
Bacteroides fragilis | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 100 | |
GRAM + Bacteria | Enterococcus faecalis | 12 | 31.57 | 7 | 18.42 | 0 | 0 | 5 | 13.16 | 14 | 36.84 | 0 | 0 |
Enterococcus faecium | 13 | 41.94 | 2 | 6.45 | 0 | 0 | 2 | 6.45 | 13 | 41.95 | 1 | 3.22 | |
Staphylococcus epidermidis | 6 | 37.5 | 2 | 12.5 | 0 | 0 | 7 | 43.75 | 1 | 6.25 | 0 | 0 | |
Streptococcus agalactie | 1 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 50 | 0 | 0 | |
Staphylococcus haemolyticus | 0 | 0 | 1 | 50 | 0 | 0 | 0 | 0 | 1 | 50 | 0 | 0 | |
Staphylococcus aureus | 10 | 32.26 | 4 | 12.90 | 11 | 35.48 | 3 | 9.68 | 0 | 0 | 3 | 9.68 | |
Staphylococcus hominis | 1 | 50 | 0 | 0 | 0 | 0 | 1 | 50 | 0 | 0 | 0 | 0 | |
Streptococcus mitis | 1 | 50 | 0 | 0 | 0 | 0 | 1 | 50 | 0 | 0 | 0 | 0 | |
Clostridioides difficile | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 100 |
Non-Coinfected Patients (n = 215) | Coinfected Patients (n = 136) | p-Value (χ2) | Univariate | p-Value | Multivariate (Odds Ratio, IC:95%) | p-Value | |
---|---|---|---|---|---|---|---|
Age | 68.32 (54.56–78.88) | 72.11 (57.13–81.28) | 0.117 | ||||
Days hospitalized | 8 (4.00–13.00) | 16 (9.00–33.00) | <0.001 | 1.076 (1.053–1.110) | <0.001 | 1.077 (1.041–1.114) | <0.001 |
Empirical antibiotic (n = 176) | 121 (56.28%) | 55 (40.44%) | 0.004 | 0.527 (0.341–0.816) | 0.004 | 1.077 (0.121–1.127) | 0.080 |
Empirical cephalosporin (n = 55) | 84 (39.07%) | 34 (25.00%) | 0.007 | 0.520 (0.323–0.836) | 0.007 | 0.665 (0.217–2.042) | 0.476 |
Deceased (n = 95) | 55 (25.58%) | 40 (29.41%) | 0.431 | ||||
Sex (men, n = 203) | 126 (58.60%) | 77 (56.62%) | 0.713 | ||||
Comorbidity (n = 259) | 148 (68.84%) | 111 (81.62%) | 0.008 | 2.010 (1.194–3.385) | 0.009 | * | |
Arterial hypertension (n = 184) | 103 (47.01%) | 81 (59.56%) | 0.553 | ||||
Diabetes mellitus (n = 100) | 51 (23.72%) | 49 (36.03%) | 0.113 | ||||
Cardiovascular disease (n = 115) | 62 (28.84%) | 53 (38.97%) | 0.348 | ||||
Chronic obstructive pulmonary disease (n = 58) | 32 (14.88%) | 26 (19.12%) | 0.731 | ||||
Cancer (n = 41) | 21 (9.77%) | 20 (14.71%) | 0.403 | ||||
Chronic kidney disease (n = 46) | 24 (11.16%) | 22 (16.18%) | 0.453 | ||||
Immunosuppression (n = 26) | 9 (4.19%) | 17 (12.50%) | 0.014 | 2.793 (1.195–6.530) | 0.018 | 1.816 (0.447–7.373) | 0.404 |
Symptoms (n = 327) | 200 (93.02%) | 127 (93.38%) | 0.897 | ||||
Pneumonia (n = 269) | 165 (76.74%) | 84 (61.76%) | 0.001 | 0.414 (0.247–0.695) | 0.001 | 0.487 (0.200–1.184) | 0.113 |
Fever (n = 209) | 136 (63.26%) | 73 (53.68%) | 0.054 | ||||
Cough (n = 173) | 115 (53.48%) | 58 (42.65%) | 0.037 | 0.621 (0.397–0.972) | 0.037 | 0.709 (0.324–1.551) | 0.389 |
Long COVID (n = 62) | 32 (14.88%) | 30 (22.06%) | 0.045 | 1.804 (1.010–3.222) | 0.046 | 1.773 (0.710–4.432) | 0.220 |
ICU (Intensive Care Unit) (n = 97) | 17 (7.91%) | 6 (4.41%) | 0.197 | ||||
Reinfection (n = 37) | 30 (13.95%) | 7 (5.15%) | 0.008 | 0.322 (0.136–0.767) | 0.010 | 0.364 (0.087–1.528) | 0.168 |
Alive Patients (n = 256) | Deceased Patients (n = 95) | p-Value (χ2) | Univariate | p-Value | Multivariate (Odds Ratio, IC:95%) | p-Value | |
---|---|---|---|---|---|---|---|
Age | 65.29 (51.23–74.49) | 80.91 (74.31–87.52) | <0.001 | 1.077 (1.054–1.100) | <0.001 | 1.049 (1.025–1.075) | <0.001 |
Days hospitalized | 11 (6–19.75) | 9.00 (6–16) | 0.052 | 0.981 (0.963–1.000) | 0.047 | 0.954 (0.927–0.980) | 0.001 |
Empirical antibiotic (n = 176) | 128 (50.00%) | 48 (50.53%) | 0.930 | 1.021 (0.638–1.636) | 0.930 | ||
Empirical cephalosporin (n = 55) | 29 (11.33%) | 26 (27.37%) | 0.131 | 0.672 (0.400–1.128) | 0.132 | ||
Sex (men, n = 203) | 149 (58.20%) | 54 (56.84%) | 0.819 | 1.057 (0.657–1.702) | 0.819 | ||
Comorbidity (n = 259) | 174 (67.97%) | 85 (89.47%) | <0.001 | 4.006 (1.978–8.114) | <0.001 | * | |
Arterial hypertension (n = 184) | 121 (47.27%) | 63 (66.32%) | 0.446 | 1.254 (0.700–2.247) | 0.446 | ||
Diabetes mellitus (n = 100) | 63 (24.61%) | 37 (38.95%) | 0.256 | 1.358 (0.801–2.304) | 0.256 | ||
Cardiovascular disease (n = 115) | 64 (25.00%) | 51 (53.68%) | <0.001 | 2.578 (1.514–4.390) | <0.001 | 2.153 (1.169–3.962) | 0.014 |
Chronic obstructive pulmonary disease (n = 58) | 35 (13.67%) | 23 (24.21%) | 0.208 | 1.473 (0.804–2.699) | 0.210 | ||
Cancer (n = 41) | 22 (8.59%) | 19 (20.00%) | 0.044 | 1.989 (1.009–3.920) | 0.047 | 2.741 (1.256–5.980) | 0.011 |
Chronic kidney disease (n = 46) | 25 (9.77%) | 21 (22.11%) | 0.041 | 1.956 (1.021–3.746) | 0.043 | 1.736 (0.812–3.713) | 0.155 |
Immunosuppression (n = 26) | 16 (6.25%) | 10 (10.53%) | 0.518 | 1.317 (0.570–3.039) | 0.519 | ||
Symptoms (n = 327) | 236 (92.19%) | 91 (95.79%) | 0.235 | 1.928 (0.641–5.794) | 0.242 | ||
Pneumonia (n = 269) | 174 (67.97%) | 95 (100.00%) | 0.098 | 1.670 (0.905–3.082) | 0.101 | ||
Fever (n = 209) | 153 (59.77%) | 56 (58.95%) | 0.579 | 0.868 (0.527–1.431) | 0.579 | ||
Cough (n = 173) | 123 (48.05%) | 50 (52.63%) | 0.646 | 1.120 (0.689–1.821) | 0.646 | ||
Respiratory coinfection (n = 67) | 49 (19.14%) | 18 (18.95%) | 0.967 | 0.988 (0.542–1.800) | 0.967 | ||
No respiratory coinfection (n = 97) | 67 (26.17%) | 30 (31.58%) | 0.324 | 1.295 (0.774–2.167) | 0.325 | ||
Blood infection (n = 22) | 22 (8.59%) | 7 (7.37%) | 0.388 | 1.385 (0.660–2.905) | 0.389 | ||
Both coinfections (n = 28) | 20 (7.81%) | 8 (8.42%) | 0.859 | 1.080 (0.459–2.543) | 0.859 | ||
Antimicrobial resistance (n = 103) | 15 (5.86%) | 6 (6.32%) | 0.864 | 0.912 (0.317–2.625) | 0.864 | ||
ESBL (n = 56) | 6 (2.34%) | 6 (6.32%) | 0.478 | 1.005 (0.992–1.018) | 0.480 | ||
Vancomycin-resistant enterococcus (n = 24) | 0 ( 0.00%) | 0 (0.00%) | . | - | |||
Carbapenem resistance (n = 56) | 4 (1.56%) | 0 (0.00%) | 0.084 | 0.811 (0.000–19.370) | 0.999 | ||
AMP-C (n = 56) | 1 (0.39%) | 1 (1.05%) | 0.794 | 1.004 (0.976–1.033) | 0.795 | ||
MRSA (n = 17) | 5 (1.95%) | 1 (1.05%) | 0.643 | 1.007 (0.977–1.037) | 0.648 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rescalvo-Casas, C.; Fernández-Villegas, R.; Hernando-Gozalo, M.; Seijas-Pereda, L.; Lledó García, L.; Arendt-Nielsen, L.; Cuadros-González, J.; Pérez-Tanoira, R. A Retrospective Study on Coinfections, Antimicrobial Resistance, and Mortality Risk Among COVID-19 Patients (2020–2021) with Consideration of Long-COVID Outcomes. Microorganisms 2025, 13, 2141. https://doi.org/10.3390/microorganisms13092141
Rescalvo-Casas C, Fernández-Villegas R, Hernando-Gozalo M, Seijas-Pereda L, Lledó García L, Arendt-Nielsen L, Cuadros-González J, Pérez-Tanoira R. A Retrospective Study on Coinfections, Antimicrobial Resistance, and Mortality Risk Among COVID-19 Patients (2020–2021) with Consideration of Long-COVID Outcomes. Microorganisms. 2025; 13(9):2141. https://doi.org/10.3390/microorganisms13092141
Chicago/Turabian StyleRescalvo-Casas, Carlos, Rocío Fernández-Villegas, Marcos Hernando-Gozalo, Laura Seijas-Pereda, Lourdes Lledó García, Lars Arendt-Nielsen, Juan Cuadros-González, and Ramón Pérez-Tanoira. 2025. "A Retrospective Study on Coinfections, Antimicrobial Resistance, and Mortality Risk Among COVID-19 Patients (2020–2021) with Consideration of Long-COVID Outcomes" Microorganisms 13, no. 9: 2141. https://doi.org/10.3390/microorganisms13092141
APA StyleRescalvo-Casas, C., Fernández-Villegas, R., Hernando-Gozalo, M., Seijas-Pereda, L., Lledó García, L., Arendt-Nielsen, L., Cuadros-González, J., & Pérez-Tanoira, R. (2025). A Retrospective Study on Coinfections, Antimicrobial Resistance, and Mortality Risk Among COVID-19 Patients (2020–2021) with Consideration of Long-COVID Outcomes. Microorganisms, 13(9), 2141. https://doi.org/10.3390/microorganisms13092141