Effects of Porphyromonas gingivalis Bacteria on Inflammation, Oxidative Stress and Lipid Metabolism in Models of Obese db/db Mice and 3T3-L1 Adipose Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Bacteria Culture
2.3. Adipose Cell Culture
2.4. Assessment of Cell Viability
2.5. Evaluation of Lipid Droplet Accumulation
2.6. Evaluation of Triglyceride, Cholesterol and C-Reactive Protein (CRP) Levels
2.7. Protein Extraction and Quantification
2.8. Quantification of Adipo-Cytokines
2.9. Evaluation of SOD and Catalase Activities
2.10. Measurement of Intracellular ROS Levels
2.11. Evaluation of Gene Expression
2.12. Statistical Analysis
3. Results
3.1. Effect of P. gingivalis Bacteria on Lipid Markers in db/db Mice
3.2. Effect of P. gingivalis Bacteria on Inflammatory Markers in db/db Mice
3.3. Effect of P. gingivalis Bacteria on Adipose Tissue Redox Markers in db/db Mice
3.4. Effect of P. gingivalis Bacteria and LPS on Adipose Cell Viability and Lipid Accumulation
3.5. Effect of P. gingivalis Bacteria and LPS on the Inflammatory Response of Adipocytes
3.6. Effect of P. gingivalis Bacteria and LPS on Oxidative Stress Markers in Adipocytes
3.7. Effect of P. gingivalis Bacteria and LPS on Metabolic Markers in Adipocytes
3.8. Effect of Polyphenols on Inflammation and Oxidative Stress Markers in Adipocytes Exposed to P. gingivalis LPS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ATGL | Adipose triglyceride lipase |
BCA | Bicinchoninic acid |
CRP | C-reactive protein |
C/EBPα | CCAAT enhancer binding protein alpha |
Cu/ZnSOD | Copper-zinc superoxide dismutase |
Col1a1 | Collagen type I alpha 1 chain |
Col3a1 | Collagen type III alpha 1 chain |
DCFH-DA | 2′,7′-dichlorofluorescein diacetate |
FAS | Fatty acid synthase |
FN1 | Fibronectin 1 |
GAPDH | Glyceraldehyde-3-phosphate dehydrogenase |
GLUT4 | Glucose transporter type 4 |
GPx | Glutathione peroxidase |
HO-1 | Heme oxygenase-1 |
HSL | Hormone-sensitive lipase |
IL | Interleukin |
iNOS | Inducible nitric oxide synthase |
LDL | Low-density lipoprotein |
LDLR | LDL receptor |
LPL | Lipoprotein lipase |
LPS | Lipopolysaccharides |
MCP-1 | Monocyte chemoattractant protein-1 |
MnSOD | Manganese-dependent superoxide dismutase |
MyD88 | Myeloid differentiation primary response 88 |
NFκB | Nuclear factor κappa B |
NOX | NADPH oxidase |
Nrf2 | Nuclear factor erythroid 2-related factor 2 |
OMV | Outer membrane vesicles |
PBS | Phosphate-buffer saline |
PCSK9 | Proprotein convertase subtilisin/kexin type 9 |
PGC-1α | Peroxisome proliferator-activated receptor-gamma coactivator-1alpha |
PPARγ | Peroxisome proliferator-activated receptor |
ROS | Reactive oxygen species |
SOCS3 | Suppressor of cytokine signaling 3 |
SREBP1c | Sterol regulatory element binding transcription factor 1c |
T2DM | Type 2 diabetes mellitus |
TGFβ | Transforming growth factor-β |
TLR | Toll-like receptor |
TNFα | Tumor necrosis factor-alpha |
VLDL | Very-low-density lipoprotein |
References
- Hajishengallis, G.; Chavakis, T. Local and Systemic Mechanisms Linking Periodontal Disease and Inflammatory Comorbidities. Nat. Rev. Immunol. 2021, 21, 426–440. [Google Scholar] [CrossRef]
- Taylor, G.W. Bidirectional Interrelationships between Diabetes and Periodontal Diseases: An Epidemiologic Perspective. Ann. Periodontol. 2001, 6, 99–112. [Google Scholar] [CrossRef]
- Mealey, B.L.; Ocampo, G.L. Diabetes Mellitus and Periodontal Disease. Periodontol. 2000 2007, 44, 127–153. [Google Scholar] [CrossRef]
- Graziani, F.; Gennai, S.; Solini, A.; Petrini, M. A Systematic Review and Meta-Analysis of Epidemiologic Observational Evidence on the Effect of Periodontitis on Diabetes An Update of the EFP-AAP Review. J. Clin. Periodontol. 2018, 45, 167–187. [Google Scholar] [CrossRef]
- Stelzel, M.; Conrads, G.; Pankuweit, S.; Maisch, B.; Vogt, S.; Moosdorf, R.; Flores-de-Jacoby, L. Detection of Porphyromonas gingivalis DNA in Aortic Tissue by PCR. J. Periodontol. 2002, 73, 868–870. [Google Scholar] [CrossRef] [PubMed]
- Delbosc, S.; Alsac, J.-M.; Journe, C.; Louedec, L.; Castier, Y.; Bonnaure-Mallet, M.; Ruimy, R.; Rossignol, P.; Bouchard, P.; Michel, J.-B.; et al. Porphyromonas gingivalis Participates in Pathogenesis of Human Abdominal Aortic Aneurysm by Neutrophil Activation. Proof of Concept in Rats. PLoS ONE 2011, 6, e18679. [Google Scholar] [CrossRef]
- Dominy, S.S.; Lynch, C.; Ermini, F.; Benedyk, M.; Marczyk, A.; Konradi, A.; Nguyen, M.; Haditsch, U.; Raha, D.; Griffin, C.; et al. Porphyromonas gingivalis in Alzheimer’s Disease Brains: Evidence for Disease Causation and Treatment with Small-Molecule Inhibitors. Sci. Adv. 2019, 5, eaau3333. [Google Scholar] [CrossRef]
- Ilievski, V.; Toth, P.T.; Valyi-Nagy, K.; Valyi-Nagy, T.; Green, S.J.; Marattil, R.S.; Aljewari, H.W.; Wicksteed, B.; O’Brien-Simpson, N.M.; Reynolds, E.C.; et al. Identification of a Periodontal Pathogen and Bihormonal Cells in Pancreatic Islets of Humans and a Mouse Model of Periodontitis. Sci. Rep. 2020, 10, 9976. [Google Scholar] [CrossRef] [PubMed]
- Mysak, J.; Podzimek, S.; Sommerova, P.; Lyuya-Mi, Y.; Bartova, J.; Janatova, T.; Prochazkova, J.; Duskova, J. Porphyromonas gingivalis: Major Periodontopathic Pathogen Overview. J. Immunol. Res. 2014, 2014, 476068. [Google Scholar] [CrossRef] [PubMed]
- Endo, Y.; Tomofuji, T.; Ekuni, D.; Irie, K.; Azuma, T.; Tamaki, N.; Yamamoto, T.; Morita, M. Experimental Periodontitis Induces Gene Expression of Proinflammatory Cytokines in Liver and White Adipose Tissues in Obesity. J. Periodontol. 2010, 81, 520–526. [Google Scholar] [CrossRef]
- Su, Y.; Wang, D.; Xuan, D.; Ni, J.; Luo, S.; Xie, B.; Zhang, J. Periodontitis as a Novel Contributor of Adipose Tissue Inflammation Promotes Insulin Resistance in Rat Model. J. Periodontol. 2013, 84, 1617–1626. [Google Scholar] [CrossRef]
- Arimatsu, K.; Yamada, H.; Miyazawa, H.; Minagawa, T.; Nakajima, M.; Ryder, M.I.; Gotoh, K.; Motooka, D.; Nakamura, S.; Iida, T.; et al. Oral Pathobiont Induces Systemic Inflammation and Metabolic Changes Associated with Alteration of Gut Microbiota. Sci. Rep. 2015, 4, 4828. [Google Scholar] [CrossRef]
- Blasco-Baque, V.; Garidou, L.; Pomié, C.; Escoula, Q.; Loubieres, P.; Le Gall-David, S.; Lemaitre, M.; Nicolas, S.; Klopp, P.; Waget, A.; et al. Periodontitis Induced by Porphyromonas gingivalis Drives Periodontal Microbiota Dysbiosis and Insulin Resistance via an Impaired Adaptive Immune Response. Gut 2017, 66, 872–885. [Google Scholar] [CrossRef]
- Akira, S.; Takeda, K. Toll-like Receptor Signalling. Nat. Rev. Immunol. 2004, 4, 499–511. [Google Scholar] [CrossRef]
- Houstis, N.; Rosen, E.D.; Lander, E.S. Reactive Oxygen Species Have a Causal Role in Multiple Forms of Insulin Resistance. Nature 2006, 440, 944–948. [Google Scholar] [CrossRef]
- Kang, Y.E.; Kim, J.M.; Joung, K.H.; Lee, J.H.; You, B.R.; Choi, M.J.; Ryu, M.J.; Ko, Y.B.; Lee, M.A.; Lee, J.; et al. The Roles of Adipokines, Proinflammatory Cytokines, and Adipose Tissue Macrophages in Obesity-Associated Insulin Resistance in Modest Obesity and Early Metabolic Dysfunction. PLoS ONE 2016, 11, e0154003. [Google Scholar] [CrossRef] [PubMed]
- Bullón, P.; Román-Malo, L.; Marín-Aguilar, F.; Alvarez-Suarez, J.M.; Giampieri, F.; Battino, M.; Cordero, M.D. Lipophilic Antioxidants Prevent Lipopolysaccharide-Induced Mitochondrial Dysfunction through Mitochondrial Biogenesis Improvement. Pharmacol. Res. 2015, 91, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Marimoutou, M.; Le Sage, F.; Smadja, J.; Lefebvre d’Hellencourt, C.; Gonthier, M.-P.; Robert-Da Silva, C. Antioxidant Polyphenol-Rich Extracts from the Medicinal Plants Antirhea Borbonica, Doratoxylon Apetalum and Gouania Mauritiana Protect 3T3-L1 Preadipocytes against H2O2, TNFα and LPS Inflammatory Mediators by Regulating the Expression of Superoxide Dismutase and NF-κB Genes. J. Inflamm. 2015, 12, 10. [Google Scholar] [CrossRef]
- Le Sage, F.; Meilhac, O.; Gonthier, M.-P. Porphyromonas gingivalis Lipopolysaccharide Induces Pro-Inflammatory Adipokine Secretion and Oxidative Stress by Regulating Toll-like Receptor-Mediated Signaling Pathways and Redox Enzymes in Adipocytes. Mol. Cell. Endocrinol. 2017, 446, 102–110. [Google Scholar] [CrossRef]
- Aleksijević, L.H.; Aleksijević, M.; Škrlec, I.; Šram, M.; Šram, M.; Talapko, J. Porphyromonas gingivalis Virulence Factors and Clinical Significance in Periodontal Disease and Coronary Artery Diseases. Pathogens 2022, 11, 1173. [Google Scholar] [CrossRef]
- Artese, H.P.C.; Foz, A.M.; Rabelo, M.D.S.; Gomes, G.H.; Orlandi, M.; Suvan, J.; D’Aiuto, F.; Romito, G.A. Periodontal Therapy and Systemic Inflammation in Type 2 Diabetes Mellitus: A Meta-Analysis. PLoS ONE 2015, 10, e0128344. [Google Scholar] [CrossRef] [PubMed]
- Siriwardhana, N.; Kalupahana, N.S.; Cekanova, M.; LeMieux, M.; Greer, B.; Moustaid-Moussa, N. Modulation of Adipose Tissue Inflammation by Bioactive Food Compounds. J. Nutr. Biochem. 2013, 24, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Charlat, O.; Tartaglia, L.A.; Woolf, E.A.; Weng, X.; Ellis, S.J.; Lakey, N.D.; Culpepper, J.; Moore, K.J.; Breitbart, R.E.; et al. Evidence That the Diabetes Gene Encodes the Leptin Receptor: Identification of a Mutation in the Leptin Receptor Gene in Db/Db Mice. Cell 1996, 84, 491–495. [Google Scholar] [CrossRef]
- Burke, S.J.; Batdorf, H.M.; Burk, D.H.; Noland, R.C.; Eder, A.E.; Boulos, M.S.; Karlstad, M.D.; Collier, J.J. Db/Db Mice Exhibit Features of Human Type 2 Diabetes That Are Not Present in Weight-Matched C57BL/6J Mice Fed a Western Diet. J. Diabetes. Res. 2017, 2017, 8503754. [Google Scholar] [CrossRef]
- Patche, J.; Girard, D.; Catan, A.; Boyer, F.; Dobi, A.; Planesse, C.; Diotel, N.; Guerin-Dubourg, A.; Baret, P.; Bravo, S.B.; et al. Diabetes-Induced Hepatic Oxidative Stress: A New Pathogenic Role for Glycated Albumin. Free. Radic. Biol. Med. 2017, 102, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, H.; Tabeta, K.; Miyauchi, S.; Aoki-Nonaka, Y.; Domon, H.; Honda, T.; Nakajima, T.; Yamazaki, K. Effect of Porphyromonas gingivalis Infection on Post-Transcriptional Regulation of the Low-Density Lipoprotein Receptor in Mice. Lipids Health Dis. 2012, 11, 121. [Google Scholar] [CrossRef]
- Le Sage, F.; Meilhac, O.; Gonthier, M.-P. Anti-Inflammatory and Antioxidant Effects of Polyphenols Extracted from Antirhea Borbonica Medicinal Plant on Adipocytes Exposed to Porphyromonas gingivalis and Escherichia Coli Lipopolysaccharides. Pharmacol. Res. 2017, 119, 303–312. [Google Scholar] [CrossRef]
- Taïlé, J.; Arcambal, A.; Clerc, P.; Gauvin-Bialecki, A.; Gonthier, M.-P. Medicinal Plant Polyphenols Attenuate Oxidative Stress and Improve Inflammatory and Vasoactive Markers in Cerebral Endothelial Cells during Hyperglycemic Condition. Antioxidants 2020, 9, 573. [Google Scholar] [CrossRef]
- Taïlé, J.; Patché, J.; Veeren, B.; Gonthier, M.-P. Hyperglycemic Condition Causes Pro-Inflammatory and Permeability Alterations Associated with Monocyte Recruitment and Deregulated NFκB/PPARγ Pathways on Cerebral Endothelial Cells: Evidence for Polyphenols Uptake and Protective Effect. Int. J. Mol. Sci. 2021, 22, 1385. [Google Scholar] [CrossRef]
- Bainor, A.; Chang, L.; McQuade, T.J.; Webb, B.; Gestwicki, J.E. Bicinchoninic Acid (BCA) Assay in Low Volume. Anal. Biochem. 2011, 410, 310–312. [Google Scholar] [CrossRef]
- Wang, H.; Joseph, J.A. Quantifying Cellular Oxidative Stress by Dichlorofluorescein Assay Using Microplate Reader1. Free. Radic. Biol. Med. 1999, 27, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Noack, B.; Genco, R.J.; Trevisan, M.; Grossi, S.; Zambon, J.J.; De Nardin, E. Periodontal Infections Contribute to Elevated Systemic C-Reactive Protein Level. J. Periodontol. 2001, 72, 1221–1227. [Google Scholar] [CrossRef] [PubMed]
- Demmer, R.T.; Squillaro, A.; Papapanou, P.N.; Rosenbaum, M.; Friedewald, W.T.; Jacobs, D.R.; Desvarieux, M. Periodontal Infection, Systemic Inflammation, and Insulin Resistance. Diabetes Care 2012, 35, 2235–2242. [Google Scholar] [CrossRef]
- Miyashita, H.; Honda, T.; Maekawa, T.; Takahashi, N.; Aoki, Y.; Nakajima, T.; Tabeta, K.; Yamazaki, K. Relationship between Serum Antibody Titres to Porphyromonas gingivalis and Hs-CRP Levels as Inflammatory Markers of Periodontitis. Arch. Oral Biol. 2012, 57, 820–829. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Tian, M.; Wang, L.; Qian, H.; Zhang, S.; Pang, H.; Liu, Z.; Fang, L.; Shen, Z. C-Reactive Protein for Predicting Cardiovascular and All-Cause Mortality in Type 2 Diabetic Patients: A Meta-Analysis. Cytokine 2019, 117, 59–64. [Google Scholar] [CrossRef]
- Khovidhunkit, W.; Kim, M.-S.; Memon, R.A.; Shigenaga, J.K.; Moser, A.H.; Feingold, K.R.; Grunfeld, C. Thematic Review Series: The Pathogenesis of Atherosclerosis. Effects of Infection and Inflammation on Lipid and Lipoprotein Metabolism Mechanisms and Consequences to the Host1. J. Lipid Res. 2004, 45, 1169–1196. [Google Scholar] [CrossRef]
- Lösche, W.; Karapetow, F.; Pohl, A.; Pohl, C.; Kocher, T. Plasma Lipid and Blood Glucose Levels in Patients with Destructive Periodontal Disease. J. Clin. Periodontol. 2000, 27, 537–541. [Google Scholar] [CrossRef]
- Katz, J.; Flugelman, M.Y.; Goldberg, A.; Heft, M. Association between Periodontal Pockets and Elevated Cholesterol and Low Density Lipoprotein Cholesterol Levels. J. Periodontol. 2002, 73, 494–500. [Google Scholar] [CrossRef]
- Lambert, G.; Charlton, F.; Rye, K.-A.; Piper, D.E. Molecular Basis of PCSK9 Function. Atherosclerosis 2009, 203, 1–7. [Google Scholar] [CrossRef]
- Yokoji-Takeuchi, M.; Tabeta, K.; Takahashi, N.; Arimatsu, K.; Miyazawa, H.; Matsuda-Matsukawa, Y.; Sato, K.; Yamada, M.; Yamazaki, K. Indirect Regulation of PCSK9 Gene in Inflammatory Response by Porphyromonas gingivalis Infection. Heliyon 2019, 5, e01111. [Google Scholar] [CrossRef]
- Feingold, K.R.; Grunfeld, C. Tumor Necrosis Factor-Alpha Stimulates Hepatic Lipogenesis in the Rat in Vivo. J. Clin. Investig. 1987, 80, 184–190. [Google Scholar] [CrossRef]
- Feingold, K.R.; Staprans, I.; Memon, R.A.; Moser, A.H.; Shigenaga, J.K.; Doerrler, W.; Dinarello, C.A.; Grunfeld, C. Endotoxin Rapidly Induces Changes in Lipid Metabolism That Produce Hypertriglyceridemia: Low Doses Stimulate Hepatic Triglyceride Production While High Doses Inhibit Clearance. J. Lipid Res. 1992, 33, 1765–1776. [Google Scholar] [CrossRef]
- Hardardottir, I.; Sipe, J.; Moser, A.; Fielding, C.; Feingold, K.; Grunfeld, C. LPS and Cytokines Regulate Extra Hepatic mRNA Levels of Apolipoproteins during the Acute Phase Response in Syrian Hamsters. Biochim. Et Biophys. Acta (BBA)-Lipids Lipid Metab. 1997, 1344, 210–220. [Google Scholar] [CrossRef]
- Singh, S.P.; Huck, O.; Abraham, N.G.; Amar, S. Kavain Reduces Porphyromonas gingivalis–Induced Adipocyte Inflammation: Role of PGC-1α Signaling. J. Immunol. 2018, 201, 1491–1499. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, L.; Ran, X.; Long, M.; Zhang, M.; Tao, Y.; Luo, X.; Wang, Y.; Jiao, Y.; Mao, X.; et al. Lipopolysaccharides Reduce Adipogenesis in 3T3-L1 Adipocytes through Activation of NF-κB Pathway and Downregulation of AMPK Expression. Cardiovasc. Toxicol. 2013, 13, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Mohapatra, J.; Malik, U.; Nagar, J.; Chatterjee, A.; Ramachandran, B.; Jain, M.R. Effect of pioglitazone on metabolic features in endotoxemia model in obese diabetic db/db mice. J. Diabetes 2017, 9, 613–621. [Google Scholar] [CrossRef]
- Emanuelli, B.; Peraldi, P.; Filloux, C.; Chavey, C.; Freidinger, K.; Hilton, D.J.; Hotamisligil, G.S.; Van Obberghen, E. SOCS-3 Inhibits Insulin Signaling and Is up-Regulated in Response to Tumor Necrosis Factor-Alpha in the Adipose Tissue of Obese Mice. J. Biol. Chem. 2001, 276, 47944–47949. [Google Scholar] [CrossRef]
- Darveau, R.P.; Pham, T.-T.T.; Lemley, K.; Reife, R.A.; Bainbridge, B.W.; Coats, S.R.; Howald, W.N.; Way, S.S.; Hajjar, A.M. Porphyromonas gingivalis Lipopolysaccharide Contains Multiple Lipid A Species That Functionally Interact with Both Toll-Like Receptors 2 and 4. Infect. Immun. 2004, 72, 5041–5051. [Google Scholar] [CrossRef]
- Herath, T.D.K.; Darveau, R.P.; Seneviratne, C.J.; Wang, C.-Y.; Wang, Y.; Jin, L. Tetra- and Penta-Acylated Lipid A Structures of Porphyromonas gingivalis LPS Differentially Activate TLR4-Mediated NF-κB Signal Transduction Cascade and Immuno-Inflammatory Response in Human Gingival Fibroblasts. PLoS ONE 2013, 8, e58496. [Google Scholar] [CrossRef]
- Abdi, K.; Chen, T.; Klein, B.A.; Tai, A.K.; Coursen, J.; Liu, X.; Skinner, J.; Periasamy, S.; Choi, Y.; Kessler, B.M.; et al. Mechanisms by Which Porphyromonas gingivalis Evades Innate Immunity. PLoS ONE 2017, 12, e0182164. [Google Scholar] [CrossRef]
- Seki, E.; De Minicis, S.; Osterreicher, C.H.; Kluwe, J.; Osawa, Y.; Brenner, D.A.; Schwabe, R.F. TLR4 Enhances TGF-Beta Signaling and Hepatic Fibrosis. Nat. Med. 2007, 13, 1324–1332. [Google Scholar] [CrossRef]
- Fain, J.N.; Tichansky, D.S.; Madan, A.K. Transforming Growth Factor Β1 Release by Human Adipose Tissue Is Enhanced in Obesity. Metab.-Clin. Exp. 2005, 54, 1546–1551. [Google Scholar] [CrossRef]
- Vila, I.K.; Badin, P.-M.; Marques, M.-A.; Monbrun, L.; Lefort, C.; Mir, L.; Louche, K.; Bourlier, V.; Roussel, B.; Gui, P.; et al. Immune Cell Toll-like Receptor 4 Mediates the Development of Obesity- and Endotoxemia-Associated Adipose Tissue Fibrosis. Cell Rep. 2014, 7, 1116–1129. [Google Scholar] [CrossRef] [PubMed]
- Walton, K.L.; Johnson, K.E.; Harrison, C.A. Targeting TGF-β Mediated SMAD Signaling for the Prevention of Fibrosis. Front. Pharmacol. 2017, 8, 461. [Google Scholar] [CrossRef] [PubMed]
- Canakci, V.; Yildirim, A.; Canakci, C.F.; Eltas, A.; Cicek, Y.; Canakci, H. Total Antioxidant Capacity and Antioxidant Enzymes in Serum, Saliva, and Gingival Crevicular Fluid of Preeclamptic Women with and Without Periodontal Disease. J. Periodontol. 2007, 78, 1602–1611. [Google Scholar] [CrossRef]
- Wang, Y.; Andrukhov, O.; Rausch-Fan, X. Oxidative Stress and Antioxidant System in Periodontitis. Front. Physiol. 2017, 8, 910. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, X.; Zheng, M.; Luan, Q.X. Mitochondrial Reactive Oxygen Species Mediate the Lipopolysaccharide-Induced pro-Inflammatory Response in Human Gingival Fibroblasts. Exp. Cell Res. 2016, 347, 212–221. [Google Scholar] [CrossRef]
- Vogel, C.; Marcotte, E.M. Insights into the Regulation of Protein Abundance from Proteomic and Transcriptomic Analyses. Nat. Rev. Genet. 2012, 13, 227–232. [Google Scholar] [CrossRef]
- Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W. Obesity Is Associated with Macrophage Accumulation in Adipose Tissue. J. Clin. Investig. 2003, 112, 1796–1808. [Google Scholar] [CrossRef]
- Lu, S.-H.; Hsu, W.-L.; Chen, T.-H.; Chou, T.-C. Activation of Nrf2/HO-1signaling Pathway Involves the Anti-Inflammatory Activity of Magnolol in Porphyromonas gingivalis Lipopolysaccharide-Stimulated Mouse RAW 264.7 Macrophages. Int. Immunopharmacol. 2015, 29, 770–778. [Google Scholar] [CrossRef]
- Sun, W.; Wu, J.; Lin, L.; Huang, Y.; Chen, Q.; Ji, Y. Porphyromonas gingivalis Stimulates the Release of Nitric Oxide by Inducing Expression of Inducible Nitric Oxide Synthases and Inhibiting Endothelial Nitric Oxide Synthases. J. Periodontal. Res. 2010, 45, 381–388. [Google Scholar] [CrossRef]
- Singh, S.P.; Grant, I.; Meissner, A.; Kappas, A.; Abraham, N.G. Ablation of Adipose-HO-1 Expression Increases White Fat over Beige Fat through Inhibition of Mitochondrial Fusion and of PGC1α in Female Mice. Horm. Mol. Biol. Clin. Investig. 2017, 31, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Pilon, G.; Charbonneau, A.; White, P.J.; Dallaire, P.; Perreault, M.; Kapur, S.; Marette, A. Endotoxin Mediated-iNOS Induction Causes Insulin Resistance via ONOO− Induced Tyrosine Nitration of IRS-1 in Skeletal Muscle. PLoS ONE 2010, 5, e15912. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food Sources and Bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef]
- Singh, A.; Yau, Y.F.; Leung, K.S.; El-Nezami, H.; Lee, J.C.-Y. Interaction of Polyphenols as Antioxidant and Anti-Inflammatory Compounds in Brain–Liver–Gut Axis. Antioxidants 2020, 9, 669. [Google Scholar] [CrossRef] [PubMed]
- Hatia, S.; Septembre-Malaterre, A.; Le Sage, F.; Badiou-Bénéteau, A.; Baret, P.; Payet, B.; Lefebvre d’hellencourt, C.; Gonthier, M.P. Evaluation of Antioxidant Properties of Major Dietary Polyphenols and Their Protective Effect on 3T3-L1 Preadipocytes and Red Blood Cells Exposed to Oxidative Stress. Free. Radic. Res. 2014, 48, 387–401. [Google Scholar] [CrossRef] [PubMed]
Gene | Forward Sequence | Reverse Sequence |
---|---|---|
ATGL | CAC-TTT-AGC-TCC-AAG-GAT-GA | TGG-TTC-AGT-AGG-CCA-TTC-CT |
Catalase | CCT-CCT-CGT-TCA-GGA-TGT-GGT-T | CGA-GGG-TCA-CGA-ACT-GTG-TCA-G |
C/EBPα | GAG-CCG-AGA-TAA-AGC-CAA-AC | GCG-CAG-GCG-GTC-ATT-G |
Col1a1 | CATAAA-GGG-TCA-TCG-TGG-CT | TTG-AGT-CCG-TCT-TTG-CCA-G |
Col3a1 | GAA-GTC-TCT-GAA-GCT-GAT-GGG | TTG-CCT-TGC-GTG-TTT-GAT-ATT-C |
Cu/ZnSOD | GCA-GGG-AAC-ACT-CCA-CTT | ATG-AAC-CTC-TGG-ACC-CGT |
FAS | ACT-CCA-CAG-GTG-GGA-ACA-AG | CCC-TTG-ATG-AAG-AGG-GAT-CA |
FN1 | CTT-TGG-CAG-TGG-TCA-TTT-CAG | ATT-CTC-CCT-TTC-CAT-TCC-CG |
GAPDH | CTT-TGT-CAA-GCT-CAT-TTC-CTG-G | TCT-TGC-TCA-GTG-TCC-TTG-C |
GLUT4 | TGC-TGG-GCA-CAG-CTA-CCC | CGG-TCA-GGC-GCT-TTA-GAC |
GPx | TGC-TCA-TTG-AGA-ATG-TCG-CGT-CTC | AGG-CAT-TCC-GCA-GGA-AGG-TAA-AGA |
HSL | TTC-GCC-ATA-GAC-CCA-GAG-TT | TGT-GCC-AAG-GGA-GGT-GAG-AT |
iNOS | GCA-GCC-TGT-GAG-ACC-TTT-G | GCA-TTG-GAA-GTG-AAG-CGT-TTC |
MnSOD | ATG-TTG-TGT-CGG-GCG-GCG | AGG-TAG-TAA-GCG-TGC-TCC-CAC-ACG |
MyD88 | TCG-AGT-TTG-TGC-AGG-AGA-TG | AGG-CTG-AGT-GCA-AAC-TTG-GT |
NFκB | GTG-ATG-GGC-CTT-CAC-ACA-CA | CAT-TTG-AAC-ACT-GCT-TTG-ACT-CAC-T |
NOX2 | ACC-TTA-CTG-GCT-GGG-ATG-AA | TGC-AAT-GGT-CTT-GAA-CTC-GT |
NOX4 | GAT-CAC-AGA-AGG-TCC-CTA-GCA-G | GTT-GAG-GGC-ATT-CAC-CAA-GT |
Nrf2 | TTG-GCA-GAG-ACA-TTC-CCA-T | GCT-GCC-ACC-GTC-ACT-GGG |
LPL | CCA-CAG-CAG-CAA-GAC-CTT-C | AGG-GGC-GGC-CAC-AAG-TTT-G |
PPARγ | AAA-CTC-TGG-GAG-ATT-CTC-CT | TGG-CAT-CTC-TGT-GTC-AAC |
SREBP1c | GAT-CAA-AGA-GGA-GCC-AGT-GC | TAG-ATG-GTG-GCT-GCT-GAG-TG |
TGFβ | CCT-GAG-TGG-CTG-TCT-TTT-GA | CGT-GGA-GTT-TGT-TAT-CTT-TGC-TG |
TLR2 | CGT-TGT-TCC-CTG-TGT-TGC | AAA-GTG-GTT-GTC-GCC-TGC-T |
TLR4 | TTC-ACC-TCT-GCC-TTC-ACT-ACA | GGG-ACT-TCT-CAA-CCT-TCT-CAA |
db/db Mice | db/db+ Mice | |
---|---|---|
Total body weight (g) | 46.78 ± 3.39 ** | 26.56 ± 3.04 |
Subcutaneous adipose tissue (g) | 1.03 ± 0.41 *** | 0.10 ± 0.03 |
Visceral adipose tissue (g) | 1.25 ± 0.53 ** | 0.46 ± 0.09 |
Liver (g) | 2.31 ± 0.37 * | 0.99 ± 0.27 |
Pancreas (g) | 0.15 ± 0.05 | 0.18 ± 0.02 |
Heart (g) | 0.17 ± 0.01 | 0.18 ± 0.03 |
Fasting glycemia (mg/dL) | 595.80 ± 3.77 *** | 346.20 ± 6.91 |
Genes | Differentiated Adipocytes Exposed to P. gingivalis Bacteria and LPS for 48 h | Adipocytes Differentiated in the Presence of P. gingivalis Bacteria and LPS During 12 d | ||||
---|---|---|---|---|---|---|
Control | Bacteria | LPS | Control | Bacteria | LPS | |
TGFβ | 1.00 ± 0.02 | 1.51 ± 0.12 ** | 1.25 ± 0.03 | 1.00 ± 0.05 | 1.39 ± 0.12 * | 1.02 ± 0.04 |
FN1 | 1.00 ± 0.06 | 1.53 ± 0.17 * | 1.13 ± 0.14 | 1.00 ± 0.11 | 1.60 ± 0.07 ** | 1.35 ± 0.04 * |
Col1a1 | 1.00 ± 0.11 | 1.21 ± 0.21 | 1.13 ± 0.23 | 1.00 ± 0.06 | 1.24 ± 0.11 | 1.03 ± 0.09 |
Col3a1 | 1.00 ± 0.09 | 1.11 ± 0.10 | 1.12 ± 0.19 | 1.00 ± 0.04 | 1.69 ± 0.25 * | 1.50 ± 0.07 |
Genes | Differentiated Adipocytes Exposed to P. gingivalis Bacteria and LPS for 48 h | Adipocytes Differentiated in the Presence of P. gingivalis Bacteria and LPS During 12 d | ||||
---|---|---|---|---|---|---|
Control | Bacteria | LPS | Control | Bacteria | LPS | |
NOX2 | 1.00 ± 0.07 | 1.81 ± 0.23 * | 1.86 ± 0.26 * | 1.00 ± 0.04 | 1.98 ± 0.16 ** | 1.55 ± 0.12 * |
NOX4 | 1.00 ± 0.07 | 1.56 ± 0.09 ** | 1.59 ± 0.11 ** | 1.00 ± 0.09 | 2.37 ± 0.24 ** | 2.25 ± 0.28 * |
iNOS | 1.00 ± 0.05 | 1.49 ± 0.09 * | 1.22 ± 0.20 | 1.00 ± 0.06 | 1.73 ± 0.19 * | 0.93 ± 0.24 |
GPx | 1.00 ± 0.04 | 1.15 ± 0.08 | 1.47 ± 0.19 * | 1.00 ± 0.07 | 1.51 ± 0.03 * | 1.92 ± 0.19 ** |
Cu/ZnSOD | 1.00 ± 0.07 | 1.15 ± 0.13 | 1.02 ± 0.13 | 1.00 ± 0.04 | 1.37 ± 0.08 * | 1.34 ± 0.06 * |
MnSOD | 1.00 ± 0.01 | 1.57 ± 0.11 ** | 1.71 ± 0.14 ** | 1.00 ± 0.04 | 1.67 ± 0.13 * | 1.75 ± 0.17 * |
Catalase | 1.00 ± 0.01 | 1.58 ± 0.09 *** | 1.35 ± 0.09 * | 1.00 ± 0.07 | 1.96 ± 0.30 * | 1.80 ± 0.12 * |
Nrf2 | 1.00 ± 0.01 | 1.67 ± 0.06 * | 1.94 ± 0.30 * | 1.00 ± 0.08 | 1.20 ± 0.05 * | 1.26 ± 0.06 * |
Genes | Differentiated Adipocytes Exposed to P. gingivalis Bacteria and LPS for 48 h | Adipocytes Differentiated in the Presence of P. gingivalis Bacteria and LPS During 12 d | ||||
---|---|---|---|---|---|---|
Control | Bacteria | LPS | Control | Bacteria | LPS | |
C/EBPα | 1.00 ± 0.08 | 1.02 ± 0.10 | 0.90 ± 0.09 | 1.00 ± 0.06 | 1.33 ± 0.10 * | 0.98 ± 0.05 |
PPARγ | 1.00 ± 0.01 | 0.95 ± 0.08 | 0.90 ± 0.07 | 1.00 ± 0.08 | 1.09 ± 0.11 | 1.10 ± 0.08 |
SREBP1c | 1.00 ± 0.03 | 1.25 ± 0.10 | 1.23 ± 0.19 | 1.00 ± 0.07 | 1.10 ± 0.10 | 0.97 ± 0.08 |
FAS | 1.00 ± 0.04 | 1.23 ± 0.08 | 1.08 ± 0.14 | 1.00 ± 0.02 | 1.07 ± 0.11 | 0.87 ± 0.04 |
LPL | 1.00 ± 0.05 | 1.22 ± 0.12 | 1.06 ± 0.08 | 1.00 ± 0.14 | 1.27 ± 0.06 | 1.09 ± 0.06 |
ATGL | 1.00 ± 0.092 | 1.08 ± 0.19 | 1.06 ± 0.17 | 1.00 ± 0.07 | 1.76 ± 0.10 ** | 1.48 ± 0.11 * |
HSL | 1.00 ± 0.06 | 0.90 ± 0.16 | 1.02 ± 0.16 | 1.00 ± 0.09 | 1.01 ± 0.15 | 1.21 ± 0.09 |
GLUT4 | 1.00 ± 0.12 | 0.97 ± 0.10 | 0.96 ± 0.17 | 1.00 ± 0.09 | 1.37 ± 0.31 | 1.17 ± 0.27 |
Markers | LPS + | ||||
---|---|---|---|---|---|
Control | LPS | Caffeic Acid | Quercetin | Epicatechin | |
Cell viability | 100.00 ± 4.14 | 100.47 ± 6.10 | 103.07 ± 5.87 | 98.98 ± 3.44 | 101.71 ± 3.67 |
Inflammatory markers | |||||
TLR2 | 1.00 ± 0.02 | 1.39 ± 0.04 *** | 1.17 ± 0.03 ## | 1.16 ± 0.05 ## | 1.07 ± 0.08 ### |
TLR4 | 1.00 ± 0.05 | 1.03 ± 0.04 | 0.89 ± 0.06 | 0.94 ± 0.07 | 0.90 ± 0.11 |
NFκB | 1.00 ± 0.08 | 1.32 ± 0.04 ** | 1.04 ± 0.05 # | 0.99 ± 0.04 ## | 0.99 ± 0.11 # |
MyD88 | 1.00 ± 0.03 | 1.24 ± 0.01 * | 0.90 ± 0.02 ## | 0.90 ± 0.01 ## | 0.81 ± 0.04 ## |
IL-6 | 9.61 ± 0.36 | 18.77 ± 2.13 ** | 14.53 ± 1.56 | 12.39 ± 1.03 # | 12.03 ± 0.65 # |
MCP-1 | 712.37 ± 69.22 | 1328.18 ± 113.99 *** | 1097.03 ± 88.63 | 1044.45 ± 90.04 | 976.69 ± 58.07 # |
Resistin | 37.79 ± 0.082 | 46.54 ± 1.84 * | 37.20 ± 1.73 # | 37.39 ± 2.60 # | 34.13 ± 0.92 ## |
Leptin | 17.69 ± 1.91 | 19.21 ± 2.87 | 14.25 ± 3.35 | 14.28 ± 2.62 | 16.24 ± 1.57 |
Adiponectin | 3083.36 ± 104.68 | 2575.44 ± 93.56 * | 2626.13 ± 194.13 | 2245.06 ± 230.11 | 2131.96 ± 158.57 |
Oxidative stress markers | |||||
Intracellular ROS levels (3 h) | 100.00 ± 3.13 | 119.44 ± 5.17 ** | 84.97 ± 2.80 ### | 78.95 ± 2.61 ### | 80.60 ± 3.81 ### |
Intracellular ROS levels (6 h) | 100.00 ± 2.59 | 113.97 ± 2.49 * | 89.98 ± 2.51 ### | 80.57 ± 1.76 ### | 83.72 ± 2.64 ### |
Intracellular ROS levels (48 h) | 100.00 ± 3.79 | 107.09 ± 5.87 | 95.51 ± 5.02 | 92.42 ± 4.01 # | 81.06 ± 1.85 ## |
NOX2 | 1.00 ± 0.06 | 1.79 ± 0.12 * | 1.13 ± 0.09 # | 1.15 ± 0.10 # | 1.21 ± 0.02 # |
NOX4 | 1.00 ± 0.04 | 1.61 ± 0.10 *** | 1.04 ± 0.06 ### | 1.08 ± 0.04 ## | 1.07 ± 0.10 ## |
iNOS | 1.00 ± 0.12 | 1.05 ± 0.16 | 1.19 ± 0.03 | 0.96 ± 0.28 | 1.25 ± 0.20 |
GPx | 1.00 ± 0.09 | 1.34 ± 0.05 ** | 1.09 ± 0.04 # | 1.08 ± 0.03 # | 1.12 ± 0.07 |
CuZnSOD | 1.00 ± 0.04 | 1.25 ± 0.02 | 1.14 ± 0.07 | 1.08 ± 0.07 | 1.27 ± 0.11 |
MnSOD | 1.00 ± 0.03 | 1.31 ± 0.05 * | 1.10 ± 0.06 | 1.00 ± 0.04 # | 1.06 ± 0.11 |
Catalase | 1.00 ± 0.07 | 0.98 ± 0.03 | 0.83 ± 0.05 | 0.84 ± 0.02 | 0.81 ± 0.04 |
Nrf2 | 1.00 ± 0.02 | 1.28 ± 0.06 ** | 1.04 ± 0.05 # | 1.01 ± 0.07 # | 0.96 ± 0.04 ## |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thouvenot, K.; Sage, F.L.; Arcambal, A.; Couret, D.; Viranaïcken, W.; Rondeau, P.; Meilhac, O.; Gonthier, M.-P. Effects of Porphyromonas gingivalis Bacteria on Inflammation, Oxidative Stress and Lipid Metabolism in Models of Obese db/db Mice and 3T3-L1 Adipose Cells. Microorganisms 2025, 13, 2074. https://doi.org/10.3390/microorganisms13092074
Thouvenot K, Sage FL, Arcambal A, Couret D, Viranaïcken W, Rondeau P, Meilhac O, Gonthier M-P. Effects of Porphyromonas gingivalis Bacteria on Inflammation, Oxidative Stress and Lipid Metabolism in Models of Obese db/db Mice and 3T3-L1 Adipose Cells. Microorganisms. 2025; 13(9):2074. https://doi.org/10.3390/microorganisms13092074
Chicago/Turabian StyleThouvenot, Katy, Fanny Le Sage, Angélique Arcambal, David Couret, Wildriss Viranaïcken, Philippe Rondeau, Olivier Meilhac, and Marie-Paule Gonthier. 2025. "Effects of Porphyromonas gingivalis Bacteria on Inflammation, Oxidative Stress and Lipid Metabolism in Models of Obese db/db Mice and 3T3-L1 Adipose Cells" Microorganisms 13, no. 9: 2074. https://doi.org/10.3390/microorganisms13092074
APA StyleThouvenot, K., Sage, F. L., Arcambal, A., Couret, D., Viranaïcken, W., Rondeau, P., Meilhac, O., & Gonthier, M.-P. (2025). Effects of Porphyromonas gingivalis Bacteria on Inflammation, Oxidative Stress and Lipid Metabolism in Models of Obese db/db Mice and 3T3-L1 Adipose Cells. Microorganisms, 13(9), 2074. https://doi.org/10.3390/microorganisms13092074