Exploration of Core Microorganisms and Synthetic Microbial Communities in Low-Temperature Daqu
Abstract
1. Introduction
2. Tapping into Core Microorganisms
2.1. Core Microbiota
2.1.1. Based on Dominant Microbiota
2.1.2. Core Microorganisms Based on Flavor Compounds
2.1.3. Based on Microbial Interactions
2.2. Identification of Microbiological Techniques
2.2.1. HTS and SMRT
2.2.2. Transcriptomics
2.2.3. Metagenomics
2.2.4. Metaproteomics
2.2.5. Metabolomics
3. SynComs
3.1. Concepts
3.2. Advantages and Applications
3.3. Shortcomings and Challenges
3.4. Construction Methodology
4. Summarizing the Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LFB | Light-flavor Baijiu |
LTD | Low-temperature Daqu |
SynComs | Synthetic Microbial Communities |
PCR | Polymerase chain reaction |
HTS | High-throughput sequencing |
SMRT | Single-molecule real-time sequencing |
GC-MS | Gas chromatography–mass spectrometry |
LC-MS | Liquid chromatography–mass spectrometry |
APM | Artificial Pit Mud |
References
- Ge, D.Y.; Cai, W.C.; Guo, Z.; Liu, Z.J.; Xu, Y.Y.; Shan, C.H. Comparative Analysis of Microbial Community Structure in the Peel and Core of Houhuo Low-Temperature Daqu. Food Biosci. 2024, 58, 103596. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, J.; Jiang, X.Y.; Huang, M.Q.; Liu, H.Q.; Meng, N.; Wu, J.H.; Zhao, D.R. Comparative Study on Key Odorants of Jiujiang Fenggang Huangjiu and Their Succession Regularities During Aging Using Sensory-Directed Flavor Analysis. Food Chem. 2024, 430, 137052. [Google Scholar] [CrossRef] [PubMed]
- He, C.L.; Peng, B.; Zhang, D.S.; Fei, L.Y.; Mao, Y.W.; Lu, Z.Y.; Li, Y.; Wei, S.Y.; Cai, W.C. Comparative Analysis of Strong-Flavor Baijiu and Brandy: Volatile and Nonvolatile Metabolic Compounds Identified Using Non-Targeted Metabolomics. Eur. Food Res. Technol. 2025, 251, 1225–1239. [Google Scholar] [CrossRef]
- Cai, W.C.; Xue, Y.A.; Tang, F.X.; Wang, Y.R.; Yang, S.Y.; Liu, W.H.; Hou, Q.C.; Yang, X.Q.; Guo, Z.; Shan, C.H. The Depth-Depended Fungal Diversity and Non-Depth-Depended Aroma Profiles of Pit Mud for Strong-Flavor Baijiu. Front. Microbiol. 2022, 12, 789845. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.C.; Wang, Y.R.; Wang, W.P.; Shu, N.; Hou, Q.C.; Tang, F.X.; Shan, C.H.; Yang, X.Q.; Guo, Z. Insights into the Aroma Profile of Sauce-Flavor Baijiu by GC-IMS Combined with Multivariate Statistical Analysis. J. Anal. Methods Chem. 2022, 2022, 4614330. [Google Scholar] [CrossRef]
- Chen, S.X.; Perez-Samper, G.; Herrera-Malaver, B.; Zhu, L.P.; Liu, Y.C.; Steensels, J.; Yang, Q.; Verstrepen, K.J. Breeding of New Saccharomyces cerevisiae Hybrids with Reduced Higher Alcohol Production for Light-Aroma-Type-Xiaoqu Baijiu Production. J. Am. Soc. Brew. Chem. 2023, 81, 233–241. [Google Scholar] [CrossRef]
- Lin, B.; Tang, J.; Yang, Q.; Su, Z.X.; Zhu, L.P.; Li, Q.; Jiang, W.; Zhang, L.; Liu, Y.C.; Chen, S.X. Microbial Succession and Its Effect on Key Aroma Components During Light-Aroma-Type Xiaoqu Baijiu Brewing Process. World J. Microbiol. Biotechnol. 2022, 38, 166. [Google Scholar] [CrossRef]
- Du, P.; Jiao, G.H.; Zhang, Z.Y.; Wang, J.Q.; Li, P.W.; Dong, J.K.; Wang, R.M. Relationship Between Representative Trace Components and Health Functions of Chinese Baijiu: A Review. Fermentation 2023, 9, 658. [Google Scholar] [CrossRef]
- Hu, Y.A.; Huang, X.N.; Yang, B.; Zhang, X.; Han, Y.; Chen, X.X.; Han, B.Z. Contrasting the Microbial Community and Metabolic Profile of Three Types of Light-Flavor Daqu. Food Biosci. 2021, 44, 101395. [Google Scholar] [CrossRef]
- Li, H.S.; Han, X.L.; Liu, H.R.; Hao, J.Q.; Jiang, W.; Li, S.Z. Silage Fermentation on Sweet Sorghum Whole Plant for Fen-Flavor Baijiu. Foods 2021, 10, 1477. [Google Scholar] [CrossRef]
- Xue, Y.; Tang, F.X.; Cai, W.C.; Zhao, X.X.; Song, W.; Zhong, J.a.; Liu, Z.J.; Guo, Z.; Shan, C.H. Bacterial Diversity, Organic Acid, and Flavor Analysis of Dacha and Ercha Fermented Grains of Fen Flavor Baijiu. Front. Microbiol. 2022, 12, 769290. [Google Scholar] [CrossRef]
- Cai, W.C.; Wang, Y.R.; Ni, H.; Liu, Z.J.; Liu, J.M.; Zhong, J.a.; Hou, Q.C.; Shan, C.H.; Yang, X.Q.; Guo, Z. Diversity of Microbiota, Microbial Functions, and Flavor in Different Types of Low-Temperature Daqu. Food Res. Int. 2021, 150, 110734. [Google Scholar] [CrossRef]
- Zhang, Z.D.; Meng, Y.L.; Zhan, J.; Guo, Z.; Haibo, Z.; Dong, X.Y.; Li, L.; Hou, Q.C.; Wang, Y.R. Comparative Analysis of Microbial Diversity and Functional Characteristics of Low-Temperature Daqu from Different Regions in China. Food Bioprod. Process. 2024, 147, 483–494. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Liang, F.; Wu, Y.; Ban, S.B.; Huang, H.Q.; Xu, Y.; Wang, X.L.; Wu, Q. Unraveling Multifunction of Low-Temperature Daqu in Simultaneous Saccharification and Fermentation of Chinese Light Aroma Type Liquor. Int. J. Food Microbiol. 2023, 397, 110202. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Fei, L.; Lu, Z.; Mao, Y.; Zhang, Q.; Zhao, X.; Tang, F.; Shan, C.; Zhang, D.; Cai, W. Effects of Different Yeasts on the Physicochemical Properties and Aroma Compounds of Fermented Sea Buckthorn Juice. Fermentation 2025, 11, 195. [Google Scholar] [CrossRef]
- Hu, Y.L.; Wang, L.Y.; Zhang, Z.J.; Yang, Q.; Chen, S.X.; Zhang, L.; Xia, X.; Tu, J.M.; Liang, Y.X.; Zhao, S.M. Microbial Community Changes During the Mechanized Production of Light Aroma Xiaoqu Baijiu. Biotechnol. Biotechnol. Equip. 2021, 35, 487–495. [Google Scholar] [CrossRef]
- Fu, G.M.; Deng, M.F.; Chen, K.D.; Chen, Y.R.; Cai, W.Q.; Wu, C.F.; Liu, C.M.; Wu, S.W.; Wan, Y. Peak-Temperature Effects of Starter Culture (Daqu) on Microbial Community Succession and Volatile Substances in Solid-State Fermentation (Jiupei) During Traditional Chinese Special-Flavour Baijiu Production. LWT-Food Sci. Technol. 2021, 152, 112132. [Google Scholar] [CrossRef]
- Li, Z.; Fernandez, K.X.; Vederas, J.C.; Gänzle, M.G. Composition and Activity of Antifungal Lipopeptides Produced by Bacillus Spp. In Daqu Fermentation. Food Microbiol. 2023, 111, 104211. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.M.; Ruan, Y.L.; Ma, D.; Wang, H.; Yang, S.Z.; Lyu, L.; Yang, F.J.; Wu, X.L.; Chen, Y.F. Core Microbes Identification and Synthetic Microbiota Construction for the Production of Xiaoqu Light-Aroma Baijiu. Food Res. Int. 2024, 183, 114196. [Google Scholar] [CrossRef]
- Du, R.B.; Jiang, J.; Qu, G.Y.; Wu, Q.; Xu, Y. Directionally Controlling Flavor Compound Profile Based on the Structure of Synthetic Microbial Community in Chinese Liquor Fermentation. Food Microbiol. 2023, 114, 104305. [Google Scholar] [CrossRef]
- Peng, Q.; Zheng, H.J.; Quan, L.P.; Li, S.S.; Huang, J.X.; Li, J.C.; Xie, G.F. Development of a Flavor-Oriented Synthetic Microbial Community for Pour-over Rice Wine: A Comprehensive Microbial Community Analysis. Food Microbiol. 2025, 126, 104677. [Google Scholar] [CrossRef]
- Cai, W.C.; Fei, L.Y.; Zhang, D.S.; Ni, H.; Peng, B.; Zhao, X.X.; Zhang, Q.; Tang, F.X.; Zhang, Y.; Shan, C.H. Impact of Ultra-High-Pressure Treatment on Microbial Community Composition and Flavor Quality of Jujube Juice: Insights from High-Throughput Sequencing Technology, Intelligent Bionic Sensory System, and Metabolomics Approach. Food Res. Int. 2024, 191, 114688. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.C.; Wang, Y.R.; Hou, Q.C.; Zhang, Z.D.; Tang, F.X.; Shan, C.H.; Yang, X.Q.; Guo, Z. Pacbio Sequencing Combined with Metagenomic Shotgun Sequencing Provides Insight into the Microbial Diversity of Zha-Chili. Food Biosci. 2021, 40, 100884. [Google Scholar] [CrossRef]
- Li, C.L.; Han, Y.F.; Zou, X.; Zhang, X.Q.; Ran, Q.S.; Dong, C.B. A Systematic Discussion and Comparison of the Construction Methods of Synthetic Microbial Community. Synth. Syst. Biotechnol. 2024, 9, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Durán, P.; Vailleau, F.; Roux, F. Building Microbial Synthetic Communities: Get Inspired by the Design of Synthetic Plant Communities. New Phytol. 2025, 246, 402–405. [Google Scholar] [CrossRef]
- Jin, R.T.; Song, J.; Liu, C.; Lin, R.; Liang, D.; Aweya, J.J.; Weng, W.Y.; Zhu, L.J.; Shang, J.Q.; Yang, S. Synthetic Microbial Communities: Novel Strategies to Enhance the Quality of Traditional Fermented Foods. Compr. Rev. Food. Sci. Food Saf. 2024, 23, e13388. [Google Scholar] [CrossRef]
- Min, Y.K.; Zhang, Q.; Liu, J.L.; Shang, Y.L.; Hou, Y.L.; Zhang, M.; Dai, J.W.; Li, Z.Y.; Xiang, W.L.; Tang, J. Effects of Synthetic Microbial Community Fermentation on Volatile Flavor and Quality Characteristics of Ginger Pickle. Food Res. Int. 2025, 207, 116077. [Google Scholar] [CrossRef]
- Northen, T.R.; Kleiner, M.; Torres, M.; Kovács, A.T.; Nicolaisen, M.H.; Krzyzanowska, D.M.; Sharma, S.; Lund, G.; Jelsbak, L.; Baars, O.; et al. Community Standards and Future Opportunities for Synthetic Communities in Plant-Microbiota Research. Nat. Microbiol. 2024, 9, 2774–2784. [Google Scholar] [CrossRef]
- Van Leeuwen, P.T.; Brul, S.; Zhang, J.B.; Wortel, M.T. Synthetic Microbial Communities (Syncoms) of the Human Gut: Design, Assembly, and Applications. FEMS Microbiol. Rev. 2023, 47, fuad012. [Google Scholar] [CrossRef]
- He, G.Q.; Dong, Y.; Huang, J.; Wang, X.J.; Zhang, S.Y.; Wu, C.D.; Jin, Y.; Zhou, R.Q. Alteration of Microbial Community for Improving Flavor Character of Daqu by inoculation with Bacillus velezensis and Bacillus subtilis. LWT-Food Sci. Technol. 2019, 111, 1–8. [Google Scholar] [CrossRef]
- Du, H.; Ji, M.; Xing, M.Y.; Wang, X.S.; Xu, Y. The Effects of Dynamic Bacterial Succession on the Flavor Metabolites During Baijiu Fermentation. Food Res. Int. 2021, 140, 109860. [Google Scholar] [CrossRef]
- Liu, X.G.; Ma, D.N.; Yang, C.; Yin, Q.Q.; Liu, S.P.; Shen, C.H.; Mao, J. Microbial Community Succession Patterns and Drivers of Luxiang-Flavor Jiupei During Long Fermentation. Front. Microbiol. 2023, 14, 1109719. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Liu, N.; Li, Z.J.; Peng, K.; Wang, C.K.; Xia, Y.; Huang, D.; Luo, H.B. The Rate of Change in Temperature and Humidity During the Temperature Increase Period Determines the Microbial Community Structure and Function of Medium-High Temperature Daqu. Food Biosci. 2025, 70, 106990. [Google Scholar] [CrossRef]
- Tang, P.; Wang, L.Q.; Zhao, Q.; Lu, J.; Qiao, M.S.; Li, C.W.; Xiao, D.G.; Guo, X.W. Characterization of Key Aroma Compounds and Relationship Between Aroma Compounds and Sensory Attributes in Different Quality of High Temperature Daqu. LWT-Food Sci. Technol. 2024, 194, 115801. [Google Scholar] [CrossRef]
- Zhou, Q.F.; Ma, K.; Song, Y.; Wang, Z.W.; Fu, Z.J.; Wang, Y.H.; Zhang, X.Y.; Cui, M.F.; Tang, N.; Xing, X.L. Exploring the Diversity of the Fungal Community in Chinese Traditional Baijiu Daqu Starters Made at Low-, Medium- and High-Temperatures. LWT-Food Sci. Technol. 2022, 162, 113408. [Google Scholar] [CrossRef]
- Tan, Y.W.; Du, H.; Zhang, H.X.; Fang, C.; Jin, G.Y.; Chen, S.; Wu, Q.; Zhang, Y.; Zhang, M.H.; Xu, Y. Geographically Associated Fungus-Bacterium Interactions Contribute to the Formation of Geography-Dependent Flavor During High-Complexity Spontaneous Fermentation. Microbiol. Spectr. 2022, 10, e01844-22. [Google Scholar] [CrossRef]
- Wang, A.X.; Xiao, T.Z.; Xi, H.H.; Qin, W.Y.; He, Y.; Nie, M.Z.; Chen, Z.Y.; Wang, L.L.; Liu, L.Y.; Wang, F.Z.; et al. Edible Qualities, Microbial Compositions and Volatile Compounds in Fresh Fermented Rice Noodles Fermented with Different Starter Cultures. Food Res. Int. 2022, 156, 111184. [Google Scholar] [CrossRef] [PubMed]
- Li, H.D.; Liu, S.Y.; Liu, Y.B.; Hui, M.; Pan, C.M. Functional Microorganisms in Baijiu Daqu: Research Progress and fortification Strategy for Application. Front. Microbiol. 2023, 14, 1119675. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.C.; Fei, L.Y.; Zhang, D.S.; Mao, Y.W.; Lu, Z.Y.; Li, Y.; Wei, S.Y.; Zhao, X.X.; Zhang, Q.; Shan, C.H.; et al. Impact of Lactobacillus plantarum Fermentation on Jujube Juice: Insights from Intelligent Sensory Evaluation, Tolerance Index, and Acidogenic Potential. LWT-Food Sci. Technol. 2025, 217, 117185. [Google Scholar] [CrossRef]
- Cai, W.C.; Tang, F.X.; Zhao, X.X.; Guo, Z.; Zhang, Z.D.; Dong, Y.; Shan, C.H. Different Lactic Acid Bacteria Strains Affecting the Flavor Profile of Fermented Jujube Juice. J. Food Process Preserv. 2019, 43, e14095. [Google Scholar] [CrossRef]
- Luo, A.G.; Yang, N.T.; Yang, J.; Hao, J.W.; Zhao, J.; Shi, S.L.; Hu, B.F. Effects of Microbial Interspecies Relationships and Physicochemical Parameters on Volatile Flavors in Sorghum-Based Fermented Grains During the Fermentation of Shanxi Light-Flavored Liquor. Food Sci. Nutr. 2023, 11, 1452–1462. [Google Scholar] [CrossRef]
- Tang, J.; Lin, B.; Shan, Y.M.; Ruan, S.; Jiang, W.; Li, Q.; Zhu, L.P.; Li, R.; Yang, Q.; Du, H.; et al. Effects of Sorghum Varieties on Microbial Communities and Volatile Compounds in the Fermentation of Light-Flavor Baijiu. Front. Microbiol. 2024, 15, 1421928. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Gao, Z.F. Dynamic Changes in Microbial Communities and Flavor During Different Fermentation Stages of Proso Millet Baijiu, a New Product from Shanxi Light-Flavored Baijiu. Front. Microbiol. 2024, 15, 1333466. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, S.T.; Lu, Z.M.; Zhang, X.J.; Chai, L.J.; Shen, C.H.; Shi, J.S.; Xu, Z.H. Metagenomics Unveils Microbial Roles involved in Metabolic Network of Flavor Development in Medium-Temperature Daqu Starter. Food Res. Int. 2021, 140, 110037. [Google Scholar] [CrossRef] [PubMed]
- Liang, F.; Zhong, Z.M.; Ma, M.Y.; Hao, J.; Ma, P.; Wu, J.; Huang, H.Q.; Che, F.H.; Wu, Q.; Xu, Y. Effect of Storage on Microbioa and Enzyme Proteomic Profile of Low-Temperature Daqu. Food Biosci. 2024, 59, 104242. [Google Scholar] [CrossRef]
- Hu, P.P.; Wang, J.; Ali, U.; Aziz, T.; Sameeh, M.Y.; Feng, C.P. Comparative Study on Physicochemical Properties, Microbial Composition, and the Volatile Component of Different Light Flavor Daqu. Food Sci. Nutr. 2023, 11, 5174–5187. [Google Scholar] [CrossRef]
- Luo, L.J.; Song, L.; Han, Y.; Zhen, P.; Zhao, X.; Zhou, X.; Wei, Y.H.; Yu, H.X.; Han, P.J.; Bai, F.Y. Microbial Communities and their Correlation with Flavor Compound Formation During the Mechanized Production of Light-Flavor Baijiu. Food Res. Int. 2023, 172, 113139. [Google Scholar] [CrossRef]
- Cai, W.C.; Tang, F.X.; Guo, Z.; Guo, X.; Zhang, Q.; Zhao, X.X.; Ning, M.; Shan, C.H. Effects of Pretreatment Methods and Leaching Methods on Jujube Wine Quality Detected by Electronic Senses and Hs-Spme-Gc-Ms. Food Chem. 2020, 330, 127330. [Google Scholar] [CrossRef]
- Cai, W.C.; Tang, F.X.; Shan, C.H.; Hou, Q.C.; Zhang, Z.D.; Dong, Y.; Guo, Z. Pretreatment Methods Affecting the Color, Flavor, Bioactive Compounds, and Antioxidant Activity of Jujube Wine. Food Sci. Nutr. 2020, 8, 4965–4975. [Google Scholar] [CrossRef]
- Cai, W.C.; Tang, F.X.; Shan, C.H.; Yang, L.P.; Zhan, Q.; Zhao, X.X.; Ning, M. Changes in Volatile Compounds of Fermented Mixed Drink Using Commercial Yeast Strain. Przem. Chem. 2018, 97, 1398–1405. [Google Scholar] [CrossRef]
- Chen, C.; Yang, H.Q.; Liu, J.; Luo, H.B.; Zou, W. Systematic Review of Actinomycetes in the Baijiu Fermentation Microbiome. Foods 2022, 11, 3551. [Google Scholar] [CrossRef]
- Hou, Q.C.; Wang, Y.R.; Cai, W.C.; Ni, H.; Zhao, H.J.; Zhang, Z.D.; Liu, Z.J.; Liu, J.M.; Zhong, J.a.; Guo, Z. Metagenomic and Physicochemical Analyses Reveal Microbial Community and Functional Differences between Three Types of Low-Temperature Daqu. Food Res. Int. 2022, 156, 111167. [Google Scholar] [CrossRef] [PubMed]
- Ali, a.; Wu, Y.F.; Li, W.W.; Duan, Z.F.; Zhang, R.; Liu, J.N.; Patil, P.J.; Shah, H.; Li, X.T. Insight into Microorganisms and Flavor Substances in Traditional Chinese Fermented Food Starter: Daqu. Process Biochem. 2024, 146, 433–450. [Google Scholar] [CrossRef]
- Promdonkoy, P.; Sornlek, W.; Preechakul, T.; Tanapongpipat, S.; Runguphan, W. Metabolic Engineering of Saccharomyces cerevisiae for Production of Fragrant Terpenoids from Agarwood and Sandalwood. Fermentation 2022, 8, 429. [Google Scholar] [CrossRef]
- Tofalo, R.; Perpetuini, G.; Rossetti, A.P.; Gaggiotti, S.; Piva, A.; Olivastri, L.; Cichelli, A.; Compagnone, D.; Arfelli, G. Impact of Saccharomyces cerevisiae and Non Saccharomyces Yeasts to Improve Traditional Sparkling Wines Production. Food Microbiol. 2022, 108, 104097. [Google Scholar] [CrossRef]
- Huang, X.N.; Fan, Y.; Lu, T.; Kang, J.M.; Pang, X.N.; Han, B.Z.; Chen, J.Y. Composition and Metabolic Functions of the Microbiome in Fermented Grain During Light-Flavor Baijiu Fermentation. Microorganisms 2020, 8, 1281. [Google Scholar] [CrossRef]
- Guan, T.W.; Wu, X.T.; Hou, R.; Tian, L.; Huang, Q.; Zhao, F.; Liu, Y.; Jiao, S.R.; Xiang, S.Q.; Zhang, J.X.; et al. Application of Clostridium butyricum, Rummeliibacillus suwonensis, and Issatchenkia orientalis for Nongxiangxing baijiu Fermentation: Improves the Microbial Communities and Flavor of Upper Fermented Grain. Food Res. Int. 2023, 169, 112885. [Google Scholar] [CrossRef]
- Wu, X.W.; Zhao, X.L.; Wang, L.; Chen, B.; Li, F.Z.; Tang, Z.; Wu, F.C. Unraveling the Regional Environmental Ecology Dominated Baijiu Fermentation Microbial Community Succession and Associated Unique Flavor. Front. Microbiol. 2024, 15, 1487359. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Wu, M.Q.; Zhao, D.; Zheng, J.; Dai, M.Q.; Li, X.T.; Li, W.W.; Zhang, C.N.; Sun, B.G. Simulated Fermentation of Strong-Flavor Baijiu through Functional Microbial Combination to Realize the Stable Synthesis of Important Flavor Chemicals. Foods 2023, 12, 644. [Google Scholar] [CrossRef]
- Gao, L.; Zhou, J.; He, G.Q. Effect of Microbial Interaction on Flavor Quality in Chinese Baijiu Fermentation. Front. Nutr. 2022, 9, 960712. [Google Scholar] [CrossRef]
- Kang, J.M.; Huang, X.N.; Li, R.S.; Zhang, Y.D.; Chen, X.X.; Han, B.Z. Deciphering the Core Microbes and their Interactions in Spontaneous Baijiu Fermentation: A Comprehensive Review. Food Res. Int. 2024, 188, 114497. [Google Scholar] [CrossRef] [PubMed]
- Hao, H.Y.; Yan, R.Y.; Miao, Z.J.; Wang, B.W.; Sun, J.Y.; Sun, B.G. Volatile Organic Compounds Mediated Endogenous Microbial Interactions in Chinese Baijiu Fermentation. Int. J. Food Microbiol. 2022, 383, 109955. [Google Scholar] [CrossRef] [PubMed]
- Fujita, H.; Ushio, M.; Suzuki, K.; Abe, M.S.; Yamamichi, M.; Okazaki, Y.; Canarini, A.; Hayashi, I.; Fukushima, K.; Fukuda, S.; et al. Facilitative Interaction Networks in Experimental Microbial Community Dynamics. Front. Microbiol. 2023, 14, 1153952. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.D.; Guo, Z.G.; Zhou, J.; Guo, X.C.; Chen, Y.H. Biotic Interactions and Environmental Modifications Determine Symbiotic Microbial Diversity and Stability. Comp. Struct. Biotechnol. J. 2024, 23, 2717–2726. [Google Scholar] [CrossRef]
- Yan, C.; Owen, J.S.; Seo, E.Y.; Jung, D.; He, S. Microbial Interaction Is among the Key Factors for Isolation of Previous Uncultured Microbes. J. Microbiol. 2023, 61, 655–662. [Google Scholar] [CrossRef]
- Yu, Z.; Gan, Z.; Tawfik, A.; Meng, F. Exploring Interspecific Interaction Variability in Microbiota: A Review. Eng. Microbiol. 2024, 4, 100178. [Google Scholar] [CrossRef]
- Xue, T.D.; Zhang, J.H.; Wang, T.R.; Bai, B.Q.; Hou, Z.X.; Cheng, J.F.; Bo, T.; Fan, S.H. Reveal the Microbial Communities and Functional Prediction During the Fermentation of Fen-Flavor Baijiu Via Metagenome Combining Amplicon Sequencing. Ann. Microbiol. 2023, 73, 16. [Google Scholar] [CrossRef]
- Chen, C.; Xiong, Y.; Xie, Y.H.; Zhang, H.X.; Jiang, K.X.; Pang, X.N.; Huang, M.Q. Metabolic Characteristics of Lactic Acid Bacteria and Interaction with Yeast Isolated from Light-Flavor Baijiu Fermentation. Food Biosci. 2022, 50, 102102. [Google Scholar] [CrossRef]
- Liu, S.P.; Jiang, Z.F.; Ma, D.N.; Liu, X.G.; Li, Y.L.; Ren, D.L.; Zhu, Y.; Zhao, H.Y.; Qin, H.; Huang, M.Y.; et al. Distance Decay Pattern of Fermented-Related Microorganisms in the Sauce-Flavor Baijiu Producing Region. Food Biosci. 2023, 51, 102305. [Google Scholar] [CrossRef]
- Mu, Y.; Huang, J.; Zhou, R.Q.; Zhang, S.Y.; Qin, H.; Tang, H.L.; Pan, Q.L.; Tang, H.F. Response and Assembly of Abundant and Rare Taxa in Zaopei Under Different Combination Patterns of Daqu and Pit Mud: From Microbial Ecology to Baijiu Brewing Microecosystem. Food Sci. Hum. Wellness 2024, 13, 1439–1452. [Google Scholar] [CrossRef]
- Zhang, H.X.; Tan, Y.W.; Wei, J.L.; Du, H.; Xu, Y. Fungal Interactions Strengthen the Diversity-Functioning Relationship of Solid-State Fermentation Systems. mSystems 2022, 7, e00401-22. [Google Scholar] [CrossRef]
- Sakandar, H.a.; Hussain, R.; Khan, Q.F.; Zhang, H.P. Functional Microbiota in Chinese Traditional Baijiu and Mijiu Qu (Starters): A Review. Food Res. Int. 2020, 138, 109830. [Google Scholar] [CrossRef]
- Chen, L.H.; Cui, C.F.; Wang, S.X.; Zhang, Y.T.; Feng, S.B. Insight into the Dynamic Changes and Relationship between Organic Acids, Amino Acids and Microbial Communities During the Fermentation of Highland Barley Wine. J. Food Compos. Anal. 2025, 140, 107260. [Google Scholar] [CrossRef]
- Geng, X.J.; Ma, Z.Y.; Chen, E.R.; Wang, X.L.; Wang, B.W.; Zheng, F.P.; Sun, J.Y.; Sun, B.G.; Zhang, Y.H.; Li, Z.X. Interactions between Ph and Lactobacillus Drove Esters’ Metabolism During the Fermentation of Laobaigan Baijiu. Food Biosci. 2025, 67, 106297. [Google Scholar] [CrossRef]
- Chen, X.X.; Huang, X.N.; Sun, S.F.; Han, B.Z. Effect of Fortified Inoculation with Indigenous Lactobacillus Brevis on Solid-State Fermentation of Light-Flavor Baijiu. Foods 2023, 12, 4198. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.W.; Yan, C.Y.; Ma, C.L.; Huang, S.K.; Chang, X.; Li, Z.J.; Chen, X.; Li, X. Effects of Two Kinds of Bacillus on Flavour Formation of Baijiu Solid-State Fermentation with Pure Mixed Bacteria. Int. J. Food Sci. Technol. 2023, 58, 1250–1262. [Google Scholar] [CrossRef]
- Zhang, J.H.; Zhang, T.Y.; Hou, Z.X.; Dang, L.; Chen, M.; Bai, B.Q.; Yang, Y.K.; Fan, S.H.; Bo, T. Germplasm Resource Mining of Fen-Flavor Baijiu Brewing Micro-Organisms and Screening of Important Functional Strains. Fermentation 2024, 10, 484. [Google Scholar] [CrossRef]
- Jiao, W.J.; Xie, F.; Gao, L.; Du, L.Q.; Wei, Y.X.; Zhou, J.; He, G.Q. Identification of Core Microbiota in the Fermented Grains of a Chinese Strong-Flavor Liquor from Sichuan. LWT-Food Sci. Technol. 2022, 158, 113140. [Google Scholar] [CrossRef]
- Franceschetti, L.; Lodetti, G.; Blandino, A.; Amadasi, A.; Bugelli, V. Exploring the Role of the Human Microbiome in forensic Identification: Opportunities and Challenges. Int. J. Leg. Med. 2024, 138, 1891–1905. [Google Scholar] [CrossRef]
- Valles-Colomer, M.; Menni, C.; Berry, S.E.; Valdes, A.M.; Spector, T.D.; Segata, N. Cardiometabolic Health, Diet and the Gut Microbiome: A Meta-Omics Perspective. Nat. Med. 2023, 29, 551–561. [Google Scholar] [CrossRef]
- Zheng, W.S.; Zhao, S.J.; Yin, Y.H.; Zhang, H.D.; Needham, D.M.; Evans, E.D.; Dai, C.L.; Lu, P.J.; Alm, E.J.; Weitz, D.A. High-Throughput, Single-Microbe Genomics with Strain Resolution, Applied to a Human Gut Microbiome. Science 2022, 376, eabm1483. [Google Scholar] [CrossRef]
- Liu, M.K.; Tang, Y.M.; Guo, X.J.; Zhao, K.; Penttinen, P.; Tian, X.H.; Zhang, X.Y.; Ren, D.Q.; Zhang, X.P. Structural and Functional Changes in Prokaryotic Communities in Artificial Pit Mud During Chinese Baijiu Production. mSystems 2020, 5, e00829-19. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Xi, B.; Han, Y.; Li, J.Y.; Luo, L.J.; Qu, C.F.; Li, J.F.; Liu, S.; Kang, L.; Bai, B.Q.; et al. Interactions of Saccharomyces cerevisiae and Lactiplantibacillus Plantarum Isolated from Light-Flavor Jiupei at Various Fermentation Temperatures. Foods 2024, 13, 2884. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Deng, Z.; Tie, Y.; Quan, S.K.; Zhang, W.X.; Wu, Z.Y.; Pan, Z.F.; Qin, J.L.; Wu, R.F.; Luo, G.R.; et al. Unveiling the Synthesis of Aromatic Compounds in Sauce-Flavor Daqu from the Functional Microorganisms to Enzymes. Food Res. Int. 2024, 190, 114628. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Ma, N.; Tang, H. Analysis of Microbial Community Diversity and Physicochemical Factors in Pit Mud of Different Ages Based on High-Throughput Sequencing. Can. J. Microbiol. 2022, 68, 674–686. [Google Scholar] [CrossRef]
- Wu, X.Y.; Jing, R.X.; Chen, W.H.; Geng, X.J.; Li, M.; Yang, F.Z.; Yan, Y.Z.; Liu, Y. High-Throughput Sequencing of the Microbial Diversity of Roasted-Sesame-Like Flavored Daqu with Different Characteristics. 3 Biotech. 2020, 10, 502. [Google Scholar] [CrossRef]
- Xie, M.; Lv, F.; Ma, G.; Farooq, A.; Li, H.; Du, Y.; Liu, Y. High Throughput Sequencing of the Bacterial Composition and Dynamic Succession in Daqu for Chinese Sesame Flavour Liquor. J. Inst. Brew. 2020, 126, 98–104. [Google Scholar] [CrossRef]
- Wang, Z.M.; Wang, C.T.; Shen, C.H.; Wang, S.T.; Mao, J.Q.; Li, Z.; Gänzle, M.; Mao, J. Microbiota Stratification and Succession of Amylase-Producing Bacillus in Traditional Chinese Jiuqu (Fermentation Starters). J. Sci. Food Agric. 2020, 100, 3544–3553. [Google Scholar] [CrossRef]
- Wen, Z.; Han, P.J.; Han, D.Y.; Song, L.; Wei, Y.H.; Zhu, H.Y.; Chen, J.; Guo, Z.X.; Bai, F.Y. Microbial Community Assembly Patterns at the Species Level in Different Parts of the Medium Temperature Daqu During Fermentation. Curr. Res. Food Sci. 2024, 9, 100883. [Google Scholar] [CrossRef]
- Peng, J.; Zhou, X.; Rensing, C.; Liesack, W.; Zhu, Y.-G. Soil Microbial Ecology through the Lens of Metatranscriptomics. Soil Ecol. Lett. 2023, 6, 230217. [Google Scholar] [CrossRef]
- Yan, M.; Chen, S.Q.; Deng, T.Y.; Cheng, Y.C.; Lin, H.H.; Yang, J. Combined Metabolomic and Transcriptomic Analysis Evidences the Interaction between Sugars and Phosphate in Rice. J. Plant Physiol. 2022, 274, 153713. [Google Scholar] [CrossRef]
- King, L.; Weiner, K.S. Transcriptomic Contributions to a Modern Cytoarchitectonic Parcellation of the Human Cerebral Cortex. Brain Struct. Funct. 2024, 229, 919–936. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yao, S.; Xia, W.W.; Ma, X.B.; Shi, L.; Ju, H.M.; Li, Z.Y.; Zhong, Y.L.; Xie, B.G.; Tao, Y.X. Targeted Metabolome and Transcriptome Analyses Reveal Changes in Gibberellin and Related Cell Wall-Acting Enzyme-Encoding Genes During Stipe Elongation in Flammulina Filiformis. Front. Microbiol. 2023, 14, 1195709. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.C.; Han, X.; Tian, M.B.; Shi, N.; Li, M.Y.; Duan, C.Q.; He, F.; Wang, J. Integrated Metabolome and Transcriptome Analyses Reveal Insights into How Macro-Terroir Affects Polyphenols of Cabernet Sauvignon Grapes. Sci. Hortic. 2025, 341, 113996. [Google Scholar] [CrossRef]
- Din, A.U.; Ahmad, W.; Khan, T.M.; Wang, J.; Wu, J.B. Metagenomic Analysis of Liquor Starter Culture Revealed Beneficial Microbes’ Presence. Foods 2023, 12, 25. [Google Scholar] [CrossRef]
- Liang, J.L.; Deng, L.C.; Li, Z.P.; Fei, Y.T.; Bai, W.D.; Zhao, W.H.; He, S.G.; Cao, R.B. Metagenomic Analysis of Core Differential Microbes between Traditional Starter and Round-Koji-Mechanical Starter of Chi-Flavor Baijiu. Front. Microbiol. 2024, 15, 1390899. [Google Scholar] [CrossRef]
- Ali, A.; Wu, Y.F.; Li, W.W.; Chen, X.; Patil, P.J.; Han, M.Y.; Shah, H.R.; Zhao, L.; Li, X.T. Biotechnological Approaches for Targeted Strain Screening and Enhancement of Daqu for Quality Baijiu Production. Food Biosci. 2024, 61, 104885. [Google Scholar] [CrossRef]
- Yang, L.; Fan, W.L.; Xu, Y. Chameleon-Like Microbes Promote Microecological Differentiation of Daqu. Food Microbiol. 2023, 109, 104144. [Google Scholar] [CrossRef]
- Xu, L.; Du, R.B.; Wu, Q.; Xu, Y. Species-Level Distribution of Microbiota with Secondary Metabolic Potential in Chinese Baijiu Fermentation. Food Biosci. 2024, 59, 104231. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Zhao, J.R.; Liu, X.; Zhang, C.S.; Zhao, Z.G.; Li, X.T.; Sun, B.G. Flavor Mystery of Chinese Traditional Fermented Baijiu: The Great Contribution of Ester Compounds. Food Chem. 2022, 369, 130920. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, C.Y.; Xiang, X.Q.; Xu, H.L.; Han, G.Q. Analysis of Microbial Diversity and Succession During Xiaoqu Baijiu Fermentation Using High-Throughput Sequencing Technology. Eng. Life Sci. 2022, 22, 495–504. [Google Scholar] [CrossRef]
- Wei, Y.W.; Zhang, S.Y.; Guan, G.K.; Wan, Z.R.; Wang, R.M.; Li, P.W.; Liu, Y.; Wang, J.Q.; Jiao, G.H.; Wang, H.; et al. A Specific and Rapid Method for Detecting Bacillus and Acinetobacter Species in Daqu. Front. Bioeng. Biotechnol. 2023, 11, 1261563. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.C.; Feng, S.B.; Wu, Q.; Huang, H.Q.; Chen, Z.X.; Li, S.W.; Xu, Y. Raw Material Regulates Flavor Formation Via Driving Microbiota in Chinese Liquor Fermentation. Front. Microbiol. 2019, 10, 1520. [Google Scholar] [CrossRef] [PubMed]
- Mao, F.J.; Huang, J.; Zhou, R.Q.; Qin, H.; Zhang, S.Y.; Cai, X.B.; Qiu, C.F. Succession of Microbial Community of the Pit Mud Under the Impact of Daqu of Nongxiang Baijiu. J. Biosci. Bioeng. 2023, 136, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.X.; Hao, S.Y.; Ren, Q. Analysis of Bacterial Diversity in Fermented Grains of Baijiu Based on Culturomics and Amplicon Sequencing. Fermentation 2023, 9, 260. [Google Scholar] [CrossRef]
- Shen, D.J.; Shen, H.Y.; Yang, Q.; Chen, S.X.; Dun, Y.H.; Liang, Y.X.; Zheng, J.S.; Zhao, S.M. Deciphering Succession and Assembly Patterns of Microbial Communities in a Two-Stage Solid-State Fermentation System. Microbiol. Spectr. 2021, 9, e00718-21. [Google Scholar] [CrossRef]
- Qiu, F.H.; Du, B.H.; Zhang, C.N.; Zhu, L.N.; Yan, Y.T.; Li, W.W.; Leng, W.J.; Pang, Z.M.; Li, X.T.; Sun, B.G. Effects of Saccharomyces cerevisiae on Microbial Community and Flavor Metabolites in Solid-State Fermentation of Strong-Flavor Baijiu. Food Biosci. 2024, 59, 103925. [Google Scholar] [CrossRef]
- Jin, G.Y.; Zhu, Y.; Xu, Y. Mystery Behind Chinese Liquor Fermentation. Trends Food Sci. Technol. 2017, 63, 18–28. [Google Scholar] [CrossRef]
- Wang, X.S.; Du, H.; Xu, Y. Source Tracking of Prokaryotic Communities in Fermented Grain of Chinese Strong-Flavor Liquor. Int. J. Food Microbiol. 2017, 244, 27–35. [Google Scholar] [CrossRef]
- Han, P.J.; Song, L.; Wen, Z.; Zhu, H.Y.; Wei, Y.H.; Wang, J.W.; Bai, M.; Luo, L.J.; Wang, J.W.; Chen, S.X.; et al. Species-Level Understanding of the Bacterial Community in Daqu Based on Full-Length 16S Rrna Gene Sequences. Food Microbiol. 2024, 123, 104566. [Google Scholar] [CrossRef]
- Mishra, A.K.; Sudalaimuthuasari, N.; Hazzouri, K.M.; Saeed, E.E.; Shah, I.; Amiri, K.M.A. Tapping into Plant-Microbiome Interactions through the Lens of Multi-Omics Techniques. Cells 2022, 11, 3254. [Google Scholar] [CrossRef]
- Xu, S.S.; Hu, W.Q.; Zhou, H.; Xu, B.Y.; Wang, R.J.; Liu, W.Y.; Zhang, H.; Xu, Q.X.; Liu, Y.X.; Li, X.J. Metatranscriptomic Insights into the Mechanism of ‘Multiple Qu’ Utilization in Jian-Flavor Baijiu Fermentation. Food Res. Int. 2025, 200, 115463. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.Q.; Wan, Y.; Chen, Y.R.; Fan, H.W.; Li, M.X.; Wu, S.W.; Lin, P.; Zeng, T.T.; Luo, H.B.; Huang, D.; et al. Transcriptomics to Evaluate the Influence Mechanisms of Ethanol on the Ester Production of Wickerhamomyces anomalus with the Induction of Lactic Acid. Food Microbiol. 2024, 122, 104556. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.L.; Bin, Z.Q.; Wang, L.Q.; Zhu, G.J.; Tang, S.P.; Chen, Y.F.; Xiao, D.G.; Guo, X.W. Metagenomic and Metabolomic Profiling Analyses to Unravel the Formation Mechanism of N-Propanol During the First and Second Round of Jiangxiangxing Baijiu Fermentation. Food Res. Int. 2025, 200, 115459. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, M.Q.; Qu, C.Y.; Fei, Y.T.; Liang, J.L.; Bai, W.D.; Zhao, W.H.; Xiao, G.S.; Liu, G.L. Characterization and Correlation of Microbiota and Higher Alcohols Based on Metagenomic and Metabolite Profiling During Rice-Flavor Baijiu Fermentation. Foods 2023, 12, 2720. [Google Scholar] [CrossRef]
- Hu, Y.L.; Yang, Q.; Chen, D.; Fu, B.a.; Zhang, Y.; Zhang, Y.; Xia, X.; Peng, N.; Liang, Y.X.; Zhao, S.M. Study on Microbial Communities and Higher Alcohol Formations in the Fermentation of Chinese Xiaoqu Baijiu Produced by Traditional and New Mechanical Technologies. Food Res. Int. 2021, 140, 109876. [Google Scholar] [CrossRef]
- Liu, M.K.; Tang, Y.M.; Liu, C.Y.; Tian, X.H.; Zhang, J.W.; Fan, X.L.; Jiang, K.F.; Ni, X.L.; Zhang, X.Y. Variation in Microbiological Heterogeneity in Chinese Strong-Flavor Baijiu Fermentation for Four Representative Varieties of Sorghum. Int. J. Food Microbiol. 2023, 397, 110212. [Google Scholar] [CrossRef]
- Xiao, M.M.; Yang, J.J.; Feng, Y.X.; Zhu, Y.; Chai, X.; Wang, Y.F. Metaproteomic Strategies and Applications for Gut Microbial Research. Appl. Microbiol. Biotechnol. 2017, 101, 3077–3088. [Google Scholar] [CrossRef]
- Xia, Y.; Zhu, M.; Du, Y.K.; Wu, Z.Y.; Gomi, K.; Zhang, W.X. Metaproteomics Reveals Protein Composition of Multiple Saccharifying Enzymes in Nongxiangxing Daqu and Jiangxiangxing Daqu under Different Thermophilic Temperatures. Int. J. Food Sci. Technol. 2022, 57, 5102–5113. [Google Scholar] [CrossRef]
- Wang, B.W.; Wu, Q.; Xu, Y.; Sun, B.G. Specific Volumetric Weight-Driven Shift in Microbiota Compositions with Saccharifying Activity Change in Starter for Chinese Baijiu Fermentation. Front. Microbiol. 2018, 9, 02349. [Google Scholar] [CrossRef]
- Suo, B.; Castro, M.P.; Sreenivasa, M.Y. Editorial: Microbiota Biodiversity of Traditional Fermented Products. Front. Microbiol. 2024, 15, 1380205. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Niu, M.S.; Yu, H.; Shi, W.; Chai, L.J.; Lu, Z.M.; Liu, X.T.; Shen, C.H.; Xu, Z.H.; Wang, S.T.; et al. Exploring the Contribution of Temperature-Adapted Microbiota to Enzyme Profile of Saccharification in Daqu Using Metagenomics and Metaproteomics. LWT-Food Sci. Technol. 2024, 197, 115916. [Google Scholar] [CrossRef]
- Fei, L.Y.; Zhang, D.S.; Mao, Y.W.; Mkunga, J.J.; Chen, P.P.; He, C.L.; Shan, C.H.; Yang, X.Q.; Cai, W.C. Metabolomics Combined with Network Pharmacology Reveals the Regional and Variety Heterogeneity of Grape Metabolites and Their Potential Antioxidant Mechanisms. Food Res. Int. 2025, 211, 116443. [Google Scholar] [CrossRef]
- Wei, J.L.; Nie, Y.; Du, H.; Xu, Y. Reduced Lactic Acid Strengthens Microbial Community Stability and Function During Jiang-Flavour Baijiu Fermentation. Food Biosci. 2024, 59, 103935. [Google Scholar] [CrossRef]
- Cheng, W.; Zhou, D.; Chen, X.F.; Zeng, H.W.; Guo, Y.X.; Fu, H. The Microbial Diversity and Flavour Metabolism of Chinese Strong Flavour Baijiu: A Review. J. Inst. Brew. 2023, 129, 15–38. [Google Scholar] [CrossRef]
- Zhao, J.Z.; Yang, Y.; Teng, M.J.; Zheng, J.X.J.; Wang, B.; Mallawaarachchi, V.; Lin, Y.; Fang, Z.Y.; Shen, C.P.; Yu, S.N.; et al. Metaproteomics Profiling of the Microbial Communities in Fermentation Starters (Daqu) During Multi-Round Production of Chinese Liquor. Front. Nutr. 2023, 10, 1139836. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, P.Y.; Zhou, X.L.; Zheng, J.; Ma, Y.; Liu, C.G.; Wu, T.; Li, H.; Wang, X.Q.; Wang, H.; et al. Isolation, Identification, and Characterization of an Acid-Tolerant Pichia Kudriavzevii and Exploration of Its Acetic Acid Tolerance Mechanism. Fermentation 2023, 9, 540. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Xing, G.; Zhang, Z.; Sun, H.Y.; Zhao, K.R.; Chen, Y.D. Combined Analysis of Transcriptome and Metabolome Reveals the Effects of Novel Aroma-Producing Naumovozyma Castellii on Feng-Flavor Baijiu. LWT-Food Sci. Technol. 2024, 211, 116901. [Google Scholar] [CrossRef]
- He, C.L.; Mkunga, J.J.; Zhang, D.S.; Mao, Y.W.; Fei, L.Y.; Chen, P.P.; Shan, C.H.; Yang, X.Q.; Cai, W.C. Integrative Analysis of the Fermentation Mechanisms, Antioxidant Properties, and Potential Health Benefits of Mulberry Wine Using Multiple Bioinformatics Approaches. Food Biosci. 2025, 66, 106185. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, M.; Zhang, G.; Huang, Y. Construction of Synthetic Microbial Community and Its Application in Polyhydroxyalkanoate Biosynthesis. Sheng Wu Gong. Cheng Xue Bao = Chin. J. Biotechnol. 2024, 40, 722–738. [Google Scholar] [CrossRef]
- Niu, C.T.; Xing, X.L.; Zuo, W.J.; Zuo, Z.C.; Liu, F.M.; Liu, C.F.; Li, Q. Construction and Application of a Synthetic Microbial Community in Reduced Salinity Fermentation of Raw-Materials Based Broad Bean Paste. Food Biosci. 2024, 61, 104851. [Google Scholar] [CrossRef]
- Shi, H.Q.; Li, W.; Chen, H.Y.; Meng, Y.; Wu, H.F.; Wang, J.; Shen, S. Synthetic Microbial Community Members interact to Metabolize Caproic Acid to Inhibit Potato Dry Rot Disease. Int. J. Mol. Sci. 2024, 25, 4437. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.M.; Xue, Y.S.; Chen, X.X.; Han, B.Z. Integrated Multi-Omics Approaches to Understand Microbiome Assembly in Jiuqu, a Mixed-Culture Starter. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4076–4107. [Google Scholar] [CrossRef]
- Guo, L.C.; Xi, B.W.; Lu, L.S. Strategies to Enhance Production of Metabolites in Microbial Co-Culture Systems. Bioresour. Technol. 2024, 406, 131049. [Google Scholar] [CrossRef]
- Jiang, W.; Guo, Y.J.; Liang, X.S.; Zhang, Y.; Kang, J.N.; Jin, Z.X.; Ning, B. A Dual Light-Controlled Co-Culture System Enables the Regulation of Population Composition. Synth. Syst. Biotechnol. 2025, 10, 574–582. [Google Scholar] [CrossRef]
- Lin, Q.H.; Yang, Y.Y.; Zhang, S.S.; Sun, F.Q.; Shen, C.F.; Su, X.M. Enhanced Biodegradation of Polychlorinated Biphenyls by Co-Cultivation of Resuscitated Strains with Unique Advantages. Environ. Res. 2024, 261, 119699. [Google Scholar] [CrossRef]
- Mook, A.; Herzog, J.; Walther, P.; Dürre, P.; Bengelsdorf, F.R. Lactate-Mediated Mixotrophic Co-Cultivation of Clostridium Drakei and Recombinant Acetobacterium Woodii for Autotrophic Production of Volatile Fatty Acids. Microb. Cell. Fact. 2024, 23, 213. [Google Scholar] [CrossRef]
- Zhang, H.X.; Wang, L.; Tan, Y.W.; Wang, H.Y.; Yang, F.; Chen, L.Q.; Hao, F.; Lv, X.B.; Du, H.; Xu, Y. Effect of Pichia on Shaping the Fermentation Microbial Community of Sauce-Flavor Baijiu. Int. J. Food Microbiol. 2021, 336, 108898. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, P.; Qiu, X.; Mao, Y.; Yu, J.; Tian, L.; Li, Y.; Zhang, J.; Zhu, X.; Liu, Y.; et al. Inoculation of Zaopei with Biofortification: Inducing Variation in Community Structure and Improving Flavor Compounds in Nongxiangxing Baijiu. J. Food Sci. 2024, 89, 4730–4744. [Google Scholar] [CrossRef]
- Liu, Y.B.; Li, H.D.; Liu, W.X.; Ren, K.J.; Li, X.H.; Zhang, Z.K.; Huang, R.N.; Han, S.N.; Hou, J.G.; Pan, C.M. Bioturbation Analysis of Microbial Communities and Flavor Metabolism in a High-Yielding Cellulase Bacillus subtilis Biofortified Daqu. Food Chem. X 2024, 22, 101382. [Google Scholar] [CrossRef]
- Yan, R.Y.; Bai, Y.; Miao, Z.J.; Zhou, Q.J.; Wang, B.W.; Sun, J.Y.; Sun, B.G. Cross-Feeding, Cooperation and Competition within a Guaiacols-Synthetic Community for Food Fermentations. Food Biosci. 2024, 61, 104578. [Google Scholar] [CrossRef]
- Liang, C.; Liu, L.X.; Liu, J.; Aihaiti, A.; Tang, X.J.; Liu, Y.G. New Insights on Low-Temperature Fermentation for Food. Fermentation 2023, 9, 477. [Google Scholar] [CrossRef]
- Karkaria, B.D.; Fedorec, A.J.H.; Barnes, C.P. Automated Design of Synthetic Microbial Communities. Nat. Commun. 2021, 12, 672. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, D.; Mu, Y.; Zhu, Z.; Wu, Y.; Qi, Q.; Mu, Y.; Su, W. Exploring the Heterogeneity of Community and Function and Correspondence of “Species-Enzymes” among Three Types of Daqu with Different Fermentation Peak-Temperature Via High-Throughput Sequencing and Metagenomics. Food Res. Int. 2024, 176, 113805. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Huang, J.; Zhou, R.Q.; Zhang, S.Y.; Qin, H.; Tang, H.L.; Pan, Q.L.; Tang, H.F. Bioaugmented Daqu-Induced Variation in Community Succession Rate Strengthens the Interaction and Metabolic Function of Microbiota During Strong-Flavor Baijiu Fermentation. LWT-Food Sci. Technol. 2023, 182, 114806. [Google Scholar] [CrossRef]
- Jiang, X.Y.; Peng, Z.; Zhang, J. Starting with Screening Strains to Construct Synthetic Microbial Communities (Syncoms) for Traditional Food Fermentation. Food Res. Int. 2024, 190, 114557. [Google Scholar] [CrossRef]
- Yang, S.B.; Fu, J.J.; He, J.H.; Zhang, X.J.; Chai, L.J.; Shi, J.S.; Wang, S.T.; Zhang, S.Y.; Shen, C.H.; Lu, Z.M.; et al. Decoding the Qu- Aroma of Medium-Temperature Daqu Starter by Volatilomics, Aroma Recombination, Omission Studies and Sensory Analysis. Food Chem. 2024, 457, 140186. [Google Scholar] [CrossRef]
- Ishizawa, H.; Tashiro, Y.; Inoue, D.; Ike, M.; Futamata, H. Learning Beyond- Pairwise Interactions Enables the Bottom-Up Prediction of Microbial Community Structure. Proc. Natl. Acad. Sci. USA 2024, 121, e2312396121. [Google Scholar] [CrossRef]
- Pan, F.S.; Qiu, S.Y.; Lv, Y.Y.; Li, D.A. Exploring the Controllability of the Baijiu Fermentation Process with Microbiota Orientation. Food Res. Int. 2023, 173, 113249. [Google Scholar] [CrossRef]
- Huang, X.N.; Kang, J.M.; Zhang, Y.D.; Chen, X.X.; Han, B.Z. Initial Abiotic Factors As Key Drivers in Core Microbe Assembly: Regulatory Effects on Flavor Profiles in Light-Flavor Baijiu. Food Chem. X 2025, 25, 101982. [Google Scholar] [CrossRef]
- Tu, W.Y.; Cao, X.N.; Cheng, J.; Li, L.J.; Zhang, T.; Wu, Q.; Xiang, P.; Shen, C.H.; Li, Q. Chinese Baijiu: The Perfect Works of Microorganisms. Front. Microbiol. 2022, 13, 919044. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xu, Y. Microbial Succession and Metabolite Changes During the Fermentation of Chinese Light Aroma-Style Liquor. J. Inst. Brew. 2019, 125, 162–170. [Google Scholar] [CrossRef]
- Hong, T.; Luo, Q. Advances in the Rna-Targeting Crispr-Cas Systems. Sheng Wu Gong Cheng Xue Bao = Chin. J. Biotechnol. 2023, 39, 1363–1373. [Google Scholar] [CrossRef]
- Wang, S.L.; Wu, Q.; Nie, Y.; Wu, J.F.; Xu, Y. Construction of Synthetic Microbiota for Reproducible Flavor Compound Metabolism in Chinese Light-Aroma-Type Liquor Produced by Solid-State Fermentation. Appl. Environ. Microbiol. 2019, 85, e03090-18. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.Y.; Peng, Z.; Liu, H.L.; Zhang, L.P.; Zhang, J. Assembly of a Lignocellulose-Degrading Synthetic Community from the Strong-Flavor Daqu by a Stepwise Method. Food Res. Int. 2025, 205, 115986. [Google Scholar] [CrossRef]
Type of Interaction | Typical Combinations | Functional Performance | References |
---|---|---|---|
Symbiosis | Rhizopus and Saccharomyces | Saccharification–fermentation synergy; Rhizopus has a strong amylase production capacity, which can directly degrade the starch in raw materials into reducing sugars that can be utilized by Saccharomyces, thus stimulating the growth of Saccharomyces, and the two synergistically promote the smooth progress of the fermentation process | [72,73] |
Lactobacillus and Saccharomyces | Lactobacillus metabolizes organic acids to lower the environmental pH and inhibit the growth of harmful microorganisms, while at the same time providing a suitable environment for Saccharomyces, which produces ethanol and carbon dioxide through fermentation, providing carbon and energy for Lactobacillus | [68,73,74] | |
Competition | Lactobacillus and Bacillus | Lactobacillus utilizes the raw materials to produce organic acids such as lactic acid during the fermentation of macrocystis, which leads to a lowering of the pH of macrocystis, thus inhibiting the growth of Bacillus, which competes for nutrients and space to live with Lactobacillus, and the two compete with each other, affecting the growth and metabolism of each other | [75] |
Lactobacillus and Acetobacter | In the context of pH regulation during LTD fermentation, Lactobacillus and Acetobacter compete for sugars and other nutrients. When Lactobacillus dominates, it produces lactic acid, which reduces the pH, inhibits spoilage bacteria, and contributes to aroma through the formation of ethyl lactate. In contrast, dominance by Acetobacter leads to the production of acetic acid and ethyl acetate, which may adversely affect wine quality | [9] | |
Antagonism | Bacillus produces antimicrobial peptides to inhibit bacteria | Bacillus exerts an inhibitory effect on other microorganisms, and in LTD fermentations this inhibitory effect is usually controlled to maintain the balance of the microbial community | [76] |
Identification of Microbiological Techniques | Strengths | Weaknesses | References |
---|---|---|---|
HTS | Comprehensive detection; high sensitivity; high resolution and efficiency; multidisciplinary application | Complexity of data processing and analysis; high cost of technology; difficulty in validating microbial functions; technical limitations | [85,86,87] |
SMRT | Long reads spanning repeated sequences; complete gene assembly; real-time monitoring of base modifications; capturing transient changes; high accuracy and flexibility | Low throughput; limited sample coverage; high cost; complex data analysis and processing | [88,89] |
Transcriptomics | Visualizes the actual functional status of microbial communities; captures gene expression in rapid response; applicable to a wide range of sample types and treatment conditions; compares differentially expressed genes and functional pathways in different environments to reveal microbial adaptive strategies | Different bacterial sequences in microbiome samples are intertwined with each other, making it difficult to accurately distinguish the species origin of homologous sequences; it is difficult to analyze intercellular heterogeneity; it is difficult to extract RNA, and mRNA is unstable and out of sync with protein expression, so it needs to be integrated with multiple histologies; the amount of data is large, and the analysis requirements are high | [90,91,92,93,94] |
Metagenomics | Direct DNA sequencing of environmental samples without culturing microorganisms; comprehensively analyzes microbial communities; analyzes species composition, functional genes, and metabolic potential; reveals diversity and function; explores functional genes and discovers genes with potential application value; studies microbial interactions and their relationship with the environment; applicable to a wide range of environmental samples | Complexity of data analysis; limited species resolution; difficult to distinguish highly similar species or strains; incomplete functional annotations; limitations in functional prediction; easy to introduce bias in sample processing, affecting the accuracy of the results; high cost, limiting large-scale studies | [45,67,95,96,97] |
Metaproteomics | Directly reflects functional information; breaks through uncultured microbial limitations; reveals microbe–host interactions; integrates multi-omics data; high sensitivity and resolution | Complex sample preparation; difficult data analysis; difficult quantitative analysis; large variation in protein abundance; poor database | [32,45,98] |
Metabolomics | Comprehensive detection; comprehensive analysis of metabolites; complementary with other histologies, revealing regulatory mechanisms; easy to detect; wide range of applications; high sensitivity; diverse technical means | Difficulty in detection and quantification; low-abundance metabolites are difficult to detect; complexity of data analysis, lack of uniform standards; difficulty in metabolite identification; high research costs | [36,56,99,100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Zhang, D.; Mkunga, J.J.; Zhai, W.; Shan, C.; Yang, X.; Cai, W. Exploration of Core Microorganisms and Synthetic Microbial Communities in Low-Temperature Daqu. Microorganisms 2025, 13, 2044. https://doi.org/10.3390/microorganisms13092044
Chen P, Zhang D, Mkunga JJ, Zhai W, Shan C, Yang X, Cai W. Exploration of Core Microorganisms and Synthetic Microbial Communities in Low-Temperature Daqu. Microorganisms. 2025; 13(9):2044. https://doi.org/10.3390/microorganisms13092044
Chicago/Turabian StyleChen, Panpan, Dongsheng Zhang, Johane Johari Mkunga, Wenxi Zhai, Chunhui Shan, Xinquan Yang, and Wenchao Cai. 2025. "Exploration of Core Microorganisms and Synthetic Microbial Communities in Low-Temperature Daqu" Microorganisms 13, no. 9: 2044. https://doi.org/10.3390/microorganisms13092044
APA StyleChen, P., Zhang, D., Mkunga, J. J., Zhai, W., Shan, C., Yang, X., & Cai, W. (2025). Exploration of Core Microorganisms and Synthetic Microbial Communities in Low-Temperature Daqu. Microorganisms, 13(9), 2044. https://doi.org/10.3390/microorganisms13092044