Enzymatic Activity and Organic Acid Profile of Phosphate-Solubilizing Bacterial Inoculants and Their Agronomic Effectiveness in Soybean
Abstract
1. Introduction
2. Material and Methods
2.1. Bacterial Isolates
2.2. In Vitro Analysis
2.2.1. Intra- and Extracellular Phytase Production
2.2.2. Phytate Mineralization
2.2.3. Acid and Alkaline Phosphatase Production
2.2.4. Organic Acid Production
2.3. Field Trials
2.3.1. Preparation of Bacterial Isolates
2.3.2. Field Trials
2.4. Data Analysis
3. Results
3.1. Phytase Production
3.2. Acid and Alkaline Phosphatase Production
3.3. Organic Acid Production
3.4. Field Trials
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soybean Market. Available online: https://marketviewdb.centrec.com/?bi=Global_MealandOil_Consumption_Annual (accessed on 13 May 2025).
- Data and Analysis|USDA Foreign Agricultural Service. Available online: https://www.fas.usda.gov/data (accessed on 13 May 2025).
- Índices Exportação do Agronegócio. Available online: https://www.gov.br/agricultura/pt-br/assuntos/noticias/exportacoes-do-agronegocio-ultrapassam-us-153-bilhoes-no-acumulado-de-2024 (accessed on 13 May 2025).
- Umburanas, R.C.; Kawakami, J.; Anderle, L.Z.; Favoretto, V.R.; Dourado Neto, D.; Reichardt, K. Soybean Production Overview in Brazil: Yield Improvements Over Time and Prospects. In Soybean Production Technology; Springer Nature: Singapore, 2025; pp. 105–124. [Google Scholar]
- Basso, M.F.; Neves, M.F.; Grossi-de-Sa, M.F. Agriculture Evolution, Sustainability and Trends, Focusing on Brazilian Agribusiness: A Review. Front. Sustain. Food Syst. 2024, 7, 1296377. [Google Scholar] [CrossRef]
- Bigolin, T.; Talamini, E. Impacts of Climate Change Scenarios on the Corn and Soybean Double-Cropping System in Brazil. Climate 2024, 12, 42. [Google Scholar] [CrossRef]
- Gotz, L.F.; Alves, E.E.N.; de Oliveira, T.D.Z.; de Souza Nunes, R.; Condron, L.M.; Vergütz, L.; Pavinato, P.S. Long-Term Management Strategies to Optimize Phosphorus Utilization in a Tropical Maize and Soybean Succession. Field Crops Res. 2025, 322, 109767. [Google Scholar] [CrossRef]
- Rodrigues, M.; Pavinato, P.S.; Withers, P.J.A.; Teles, A.P.B.; Herrera, W.F.B. Legacy Phosphorus and No Tillage Agriculture in Tropical Oxisols of the Brazilian Savanna. Sci. Total Environ. 2016, 542, 1050–1061. [Google Scholar] [CrossRef] [PubMed]
- Pavinato, P.S.; Cherubin, M.R.; Soltangheisi, A.; Rocha, G.C.; Chadwick, D.R.; Jones, D.L. Revealing Soil Legacy Phosphorus to Promote Sustainable Agriculture in Brazil. Sci. Rep. 2020, 10, 15615. [Google Scholar] [CrossRef]
- Massucato, L.R.; Almeida, S.R.D.A.; Silva, M.B.; Mosela, M.; Zeffa, D.M.; Nogueira, A.F.; de Lima Filho, R.B.; Mian, S.; Higashi, A.Y.; Teixeira, G.M.; et al. Efficiency of Combining Strains Ag87 (Bacillus megaterium) and Ag94 (Lysinibacillus sp.) as Phosphate Solubilizers and Growth Promoters in Maize. Microorganisms 2022, 10, 1401. [Google Scholar] [CrossRef]
- Mosela, M.; Andrade, G.; Massucato, L.R.; de Araújo Almeida, S.R.; Nogueira, A.F.; de Lima Filho, R.B.; Zeffa, D.M.; Mian, S.; Higashi, A.Y.; Shimizu, G.D.; et al. Bacillus velezensis Strain Ag75 as a New Multifunctional Agent for Biocontrol, Phosphate Solubilization and Growth Promotion in Maize and Soybean Crops. Sci. Rep. 2022, 12, 15284. [Google Scholar] [CrossRef]
- Brasil. Brasília: SAE, 2021. 2022. Available online: https://www.gov.br/mdic/pt-br/assuntos/sdic/confert/pnf/pnf-v-08-06-12-23.pdf (accessed on 13 May 2025).
- Gotz, L.F.; de Almeida, A.N.F.; de Souza Nunes, R.; Condron, L.M.; Pavinato, P.S. Assessment of Phosphorus Use and Availability by Contrasting Crop Plants in a Tropical Soil. Biol. Fertil. Soils 2024, 60, 603–612. [Google Scholar] [CrossRef]
- Pavinato, P.S.; Gotz, L.F.; Teles, A.P.B.; Arruda, B.; Herrera, W.B.; Chadwick, D.R.; Jones, D.L.; Withers, P.J. Legacy soil phosphorus bioavailability in tropical and temperate soils: Implications for sustainable crop production. Soil Tillage Res. 2024, 244, 106228. [Google Scholar] [CrossRef]
- Silva, F.M.; Queirós, C.; Pereira, M.; Pinho, T.; Barroso, T.; Magalhães, S.; Boaventura, J.; Santos, F.; Cunha, M.; Martins, R.C. Precision Fertilization: A Critical Review Analysis on Sensing Technologies for Nitrogen, Phosphorous and Potassium Quantification. Comput. Electron. Agric. 2024, 224, 109220. [Google Scholar] [CrossRef]
- Lambers, H. Phosphorus Acquisition and Utilization in Plants. Annu. Rev. Plant Biol. 2022, 73, 17–42. [Google Scholar] [CrossRef] [PubMed]
- Raniro, H.R.; Papera, J.; José, L.U.; Valença, R.M.; Pavinato, P.S.; Hermann, L.; Santner, J. New Investments in Phosphorus Research and Training Are Paramount for Brazilian Long-Term Environmental and Food Security. Environ. Syst. Decis. 2023, 43, 504–508. [Google Scholar] [CrossRef]
- Andreata, M.F.L.; Afonso, L.; Niekawa, E.T.G.; Salomão, J.M.; Basso, K.R.; Silva, M.C.D.; Alves, L.C.; Alarcon, S.F.; Parra, M.E.A.; Grzegorczyk, K.G.; et al. Microbial Fertilizers: A Study on the Current Scenario of Brazilian Inoculants and Future Perspectives. Plants 2024, 13, 2246. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Kuai, Y.; Guo, M.; Zhang, H.; Yuan, Y.; Hong, H. Phosphate-Solubilizing Microorganisms for Soil Health and Ecosystem Sustainability: A Forty-Year Scientometric Analysis (1984–2024). Front. Microbiol. 2025, 16, 1546852. [Google Scholar] [CrossRef]
- Ramos Cabrera, E.V.; Delgado Espinosa, Z.Y.; Solis Pino, A.F. Use of Phosphorus-Solubilizing Microorganisms as a Biotechnological Alternative: A Review. Microorganisms 2024, 12, 1591. [Google Scholar] [CrossRef]
- Rawat, P.; Das, S.; Shankhdhar, D.; Shankhdhar, S.C. Phosphate-Solubilizing Microorganisms: Mechanism and Their Role in Phosphate Solubilization and Uptake. J. Soil. Sci. Plant Nutr. 2021, 21, 49–68. [Google Scholar] [CrossRef]
- Panchal, P.; Miller, A.J.; Giri, J. Organic Acids: Versatile Stress-Response Roles in Plants. J. Exp. Bot. 2021, 72, 4038–4052. [Google Scholar] [CrossRef]
- Pang, F.; Li, Q.; Solanki, M.K.; Wang, Z.; Xing, Y.-X.; Dong, D.-F. Soil Phosphorus Transformation and Plant Uptake Driven by Phosphate-Solubilizing Microorganisms. Front. Microbiol. 2024, 15, 1383813. [Google Scholar] [CrossRef]
- Rizwanuddin, S.; Kumar, V.; Singh, P.; Naik, B.; Mishra, S.; Chauhan, M.; Saris, P.E.J.; Verma, A.; Kumar, V. Insight into Phytase-Producing Microorganisms for Phytate Solubilization and Soil Sustainability. Front. Microbiol. 2023, 14, 1127249. [Google Scholar] [CrossRef]
- Vashishth, A.; Tehri, N.; Tehri, P.; Sharma, A.; Sharma, A.K.; Kumar, V. Unraveling the Potential of Bacterial Phytases for Sustainable Management of Phosphorous. Biotechnol. Appl. Biochem. 2023, 70, 1690–1706. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Diksha; Sindhu, S.S.; Kumar, R. Harnessing Phosphate-Solubilizing Microorganisms for Mitigation of Nutritional and Environmental Stresses, and Sustainable Crop Production. Planta 2025, 261, 95. [Google Scholar] [CrossRef]
- de Oliveira-Paiva, C.A.; Bini, D.; de Sousa, S.M.; Ribeiro, V.P.; dos Santos, F.C.; de Paula Lana, U.G.; de Souza, F.F.; Gomes, E.A.; Marriel, I.E. Inoculation with Bacillus megaterium CNPMS B119 and Bacillus subtilis CNPMS B2084 Improve P-Acquisition and Maize Yield in Brazil. Front. Microbiol. 2024, 15, 1426166. [Google Scholar] [CrossRef]
- Bhandari, Y.; Sonwane, B.; Vamkudoth, K.R. Isolation and Biochemical Characterization of Acid Phytase from Aspergillus Niger and Its Applications in Dephytinization of Phytic Acid in Poultry Feed Ingredients. Microbiology 2023, 92, 221–229. [Google Scholar] [CrossRef]
- Nautiyal, C.S. An Efficient Microbiological Growth Medium for Screening Phosphate Solubilizing Microorganisms. FEMS Microbiol. Lett. 1999, 170, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Tabatabai, M.A.; Bremner, J.M. Use of P-Nitrophenyl Phosphate for Assay of Soil Phosphatase Activity. Soil. Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Yan, Z.; Zheng, X.-W.; Chen, J.-Y.; Han, J.-S.; Han, B.-Z. Effect of Different Bacillus Strains on the Profile of Organic Acids in a Liquid Culture of Daqu. J. Inst. Brew. 2013, 119, 78–83. [Google Scholar] [CrossRef]
- Shimizu, G.D.; Marubayashi, R.Y.P.; Gonçalves, L.S.A. AgroR: An R Package and a Shiny Interface for Agricultural Experiment Analysis. Acta Sci. Agron. 2025, 47, e73889. [Google Scholar] [CrossRef]
- Singh, B.; Satyanarayana, T. Microbial Phytases in Phosphorus Acquisition and Plant Growth Promotion. Physiol. Mol. Biol. Plants 2011, 17, 93–103. [Google Scholar] [CrossRef]
- Han, S.E.; Kim, K.Y.; Maung, C.E.H. Bacillus subtilis PE7-Mediated Alleviation of Phosphate Starvation and Growth Promotion of Netted Melon (Cucumis melo L. Var. Reticulatus Naud.). Microorganisms 2024, 12, 2384. [Google Scholar] [CrossRef]
- Idriss, E.E.; Makarewicz, O.; Farouk, A.; Rosner, K.; Greiner, R.; Bochow, H.; Richter, T.; Borriss, R. Extracellular Phytase Activity of Bacillus amyloliquefaciens FZB45 Contributes to Its Plant-Growth-Promoting Effect a AThe GenBank Accession Numbers for the Sequences Determined in This Work Are AY055219 to AY055226. Microbiology 2002, 148, 2097–2109. [Google Scholar] [CrossRef] [PubMed]
- Mazhar, S.; Simon, A.; Khokhlova, E.; Colom, J.; Leeuwendaal, N.; Deaton, J.; Rea, K. In Vitro Safety and Functional Characterization of the Novel Bacillus coagulans Strain CGI314. Front. Microbiol. 2024, 14, 1302480. [Google Scholar] [CrossRef] [PubMed]
- Kaur, C.; Selvakumar, G.; Upreti, K.K. Organic Acid Profiles of Phosphate Solubilizing Bacterial Strains in the Presence of Different Insoluble Phosphatic Sources Under In Vitro Buffered Conditions. J. Pure Appl. Microbiol. 2021, 15, 1006–1015. [Google Scholar] [CrossRef]
- Vyas, P.; Gulati, A. Organic Acid Production in Vitro and Plant Growth Promotion in Maize under Controlled Environment by Phosphate-Solubilizing Fluorescent Pseudomonas. BMC Microbiol. 2009, 9, 174. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Yang, F.; Zhang, L.; Wang, J. Organic Acid Secretion and Phosphate Solubilizing Efficiency of Pseudomonas sp. PSB12: Effects of Phosphorus Forms and Carbon Sources. Geomicrobiol. J. 2016, 33, 870–877. [Google Scholar] [CrossRef]
- Skorochod, I.; Roy, A.; Kurdish, I.; Erdenezogt, U. Content of organic acids in the cultural medium of Bacillus subtilis IMV B-7023 AT cultivation with different sources of the phosphorus nutrient. J. Microbiol. Biotechnol. Food Sci. 2020, 10, 73–77. [Google Scholar] [CrossRef]
- Lelapalli, S.; Baskar, S.; Jacob, S.M.; Paranthaman, S. Characterization of Phosphate Solubilizing Plant Growth Promoting Rhizobacterium Lysinibacillus pakistanensis Strain PCPSMR15 Isolated from Oryza sativa. Curr. Res. Microb. Sci. 2021, 2, 100080. [Google Scholar] [CrossRef]
- Jha, Y.; Mohamed, H.I. Inoculation with Lysinibacillus fusiformis Strain YJ4 and Lysinibacillus sphaericus Strain YJ5 Alleviates the Effects of Cold Stress in Maize Plants. Gesunde Pflanz. 2023, 75, 77–95. [Google Scholar] [CrossRef]
- Pan, L.; Xu, Q.; Wei, Q.; Kong, Y.; Zhu, L.; Tian, W.; Yan, Y.; Wang, H.; Chi, C.; Zhang, J.; et al. Isolation of the Inorganic Phosphorus-Solubilizing Bacteria Lysinibacillus sphaericus and Assessing Its Role in Promoting Rice Growth. Int. Microbiol. 2024, 28, 119–131. [Google Scholar] [CrossRef]
- Vitorino, L.C.; da Silva, E.J.; Oliveira, M.S.; Silva, I.D.O.; da Silva Santos, L.; Mendonça, M.A.C.; Oliveira, T.C.S.; Bessa, L.A. Effect of a Bacillus velezensis and Lysinibacillus fusiformis-Based Biofertilizer on Phosphorus Acquisition and Grain Yield of Soybean. Front. Plant Sci. 2024, 15, 1433828. [Google Scholar] [CrossRef]
Organic Acids | Strains | |||
---|---|---|---|---|
Ag87 (CCT 8090) | Ag94 (CCT 8108) | B119 | B2084 | |
Ca3(PO4)2 | ||||
Gluconic | 6.37 | 6.16 | 73.53 | 28.17 |
Malic | 18.02 | 0.47 | 20.65 | 53.52 |
Lactic | 342.43 | 123.85 | 21.31 | 35.82 |
Acetic | 18.00 | 8.11 | 6.07 | 11.01 |
Citric | ND | ND | ND | ND |
Succinic | 2.71 | 1.39 | ND | 2.86 |
Total | 387.53 | 139.98 | 121.56 | 131.37 |
FePO4 | ||||
Gluconic | 6.25 | 7.59 | 15.6 | ND |
Malic | 1.25 | 0.48 | 0.92 | ND |
Lactic | 1.07 | 5.17 | ND | ND |
Acetic | 0.82 | 5.6 | ND | ND |
Citric | ND | 0.17 | ND | ND |
Succinic | 3.8 | 1.79 | ND | ND |
Total | 13.19 | 20.80 | 16.52 | ND |
AlPO4 | ||||
Gluconic | 0.91 | 6.43 | ND | ND |
Malic | 1.55 | 0.71 | ND | ND |
Lactic | 1.7 | 3.43 | ND | ND |
Acetic | 50.96 | 8.93 | ND | ND |
Citric | 0.74 | 0.07 | ND | ND |
Succinic | 1.88 | 0.01 | ND | ND |
Total | 57.74 | 19.58 | ND | ND |
Source of Variation | DF | Mean Square 1/ | |
---|---|---|---|
Yield | Phosphorus Use Efficiency (PUE) | ||
Repetitions/E | 12 | 141,508.7 | 1790.45 |
Treatments (T) | 6 | 680,907.6 ** | 57,238.6 * |
Environment (E) | 3 | 6,390,671.4 ** | 92,850.06 ** |
T × E | 18 | 327,153.4 ns | 5829.55 * |
Error | 72 | 209,639.5 | 1126.27 |
CV(%) | 13.47 | 21.66 | |
Means | |||
Londrina (20/21) | 3058.95 | 127.89 | |
Guarapuava (20/21) | 3074.05 | 153.56 | |
Londrina (21/22) | 3375.62 | 102.71 | |
Guarapuava (21/22) | 4079.41 | 235.48 |
Treatments | Yield 1/ | Phosphorus Use Efficiency (PUE) | ||||
---|---|---|---|---|---|---|
Mean | Δ% | Londrina (20/21) | Guarapuava (20/21) | Londrina (21/22) | Guarapuava (21/22) | |
Ag87 (CCT 8090) | 3196.15 bc | 3.18 | 156.77 abc | 183.71 ab | 97.98 bc | 357.89 a |
Ag94 (CCT 8108) | 3540.44 ab | 14.30 | 176.37 ab | 182.21 ab | 169.01 a | 292.21 b |
Ag87 + Ag94 (CCT 8090 + CCT 8108) | 3572.65 a | 15.34 | 134.11 bc | 200.87 a | 117.57 b | 331.80 ab |
Commercial standard (B119 + B2084) | 3303.20 abc | 6.64 | 187.39 a | 213.11 a | 97.98 bc | 224.22 c |
25 Kg P2O5 | 3097.47 c | 129.83 c | 163.50 b | 128.60 ab | 220.27 c | |
42 Kg P2O5 | 3417.91 abc | 76.05 d | 80.47 c | 67.60 cd | 130.99 d | |
84 Kg P2O5 | 3651.21 a | 34.72 d | 40.60 c | 40.23 d | 90.98 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massucato, L.R.; Silva, M.B.; Mosela, M.; Watanabe, L.S.; Afonso, L.; Marcos, A.W.; Nogueira, A.F.; de Sousa, N.V.; Fendrich, R.C.; Faria, M.V.; et al. Enzymatic Activity and Organic Acid Profile of Phosphate-Solubilizing Bacterial Inoculants and Their Agronomic Effectiveness in Soybean. Microorganisms 2025, 13, 2016. https://doi.org/10.3390/microorganisms13092016
Massucato LR, Silva MB, Mosela M, Watanabe LS, Afonso L, Marcos AW, Nogueira AF, de Sousa NV, Fendrich RC, Faria MV, et al. Enzymatic Activity and Organic Acid Profile of Phosphate-Solubilizing Bacterial Inoculants and Their Agronomic Effectiveness in Soybean. Microorganisms. 2025; 13(9):2016. https://doi.org/10.3390/microorganisms13092016
Chicago/Turabian StyleMassucato, Luana Rainieri, Mayara Barbosa Silva, Mirela Mosela, Lycio Shinji Watanabe, Leandro Afonso, Antoni Wallace Marcos, Alison Fernando Nogueira, Nicholas Vieira de Sousa, Ricardo Cancio Fendrich, Marcos Ventura Faria, and et al. 2025. "Enzymatic Activity and Organic Acid Profile of Phosphate-Solubilizing Bacterial Inoculants and Their Agronomic Effectiveness in Soybean" Microorganisms 13, no. 9: 2016. https://doi.org/10.3390/microorganisms13092016
APA StyleMassucato, L. R., Silva, M. B., Mosela, M., Watanabe, L. S., Afonso, L., Marcos, A. W., Nogueira, A. F., de Sousa, N. V., Fendrich, R. C., Faria, M. V., & Gonçalves, L. S. A. (2025). Enzymatic Activity and Organic Acid Profile of Phosphate-Solubilizing Bacterial Inoculants and Their Agronomic Effectiveness in Soybean. Microorganisms, 13(9), 2016. https://doi.org/10.3390/microorganisms13092016