Uropathogenic Escherichia coli in a Diabetic Dog with Recurrent UTIs: Genomic Insights and the Impact of Glucose and Antibiotics on Biofilm Formation
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical Case Selection
2.2. Microbiological Analysis of Clinical Samples
2.2.1. Urine Collection, Processing, and Bacterial Identification
2.2.2. Disk Diffusion Method
2.2.3. Whole Genome Sequencing (WGS) Characterization and Bioinformatics Analysis of Six Isolates
2.3. In Vitro Assessment of Glucose and Antibiotic Effects on Selected Bacterial Isolates
2.3.1. Bacterial Selection
2.3.2. Antibiotics Selection
2.3.3. MIC Assays
2.3.4. Biofilm Assays
- -
- Exposure for 24 h: Bacterial suspensions in TSB with or without 1000 mg/dL glucose were incubated with antibiotics at their MIC for 24 h at 37 °C.
- -
- Exposure for 48 h: The same experimental design was extended to 48 h of antibiotic exposure, followed by biomass quantification.
- -
- Pre-existing biofilm + AB: Biofilms were first formed by incubating bacterial suspensions with or without 1000 mg/dL glucose for 24 h at 37 °C. After this period of biofilm establishment, antibiotics at their MIC were added, and incubation continued for an additional 24 h (total incubation time: 48 h). Biofilm biomass was then quantified at the 48 h.
2.3.5. MBIC Assays
3. Results
3.1. Clinical Case Description
3.2. E. coli Isolates
3.2.1. Phenotypic and Biochemical Characterization
3.2.2. Kirby–Bauer Method
3.2.3. WGS Characterization of the Selected E. coli Isolates
Genomic Profiles
Phylogenetic Relationship of the Selected E. coli Isolates
3.3. Impact of Glucose and Antibiotics in the Selected Strains
3.3.1. MIC Determination
3.3.2. Biofilm Biomass
3.3.3. MBIC Determination
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bélanger, L.; Garenaux, A.; Harel, J.; Boulianne, M.; Nadeau, E.; Dozois, C.M. Escherichia coli from Animal Reservoirs as a Potential Source of Human Extraintestinal Pathogenic E. coli. FEMS Immunol. Med. Microbiol. 2011, 62, 1–10. [Google Scholar] [CrossRef]
- Zogg, A.L.; Zurfluh, K.; Schmitt, S.; Nüesch-Inderbinen, M.; Stephan, R. Antimicrobial Resistance, Multilocus Sequence Types and Virulence Profiles of ESBL Producing and Non-ESBL Producing Uropathogenic Escherichia coli Isolated from Cats and Dogs in Switzerland. Vet. Microbiol. 2018, 216, 79–84. [Google Scholar] [CrossRef]
- Terlizzi, M.E.; Gribaudo, G.; Maffei, M.E. UroPathogenic Escherichia coli (UPEC) Infections: Virulence Factors, Bladder Responses, Antibiotic, and Non-Antibiotic Antimicrobial Strategies. Front. Microbiol. 2017, 8, 1566. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Thungrat, K.; Boothe, D.M. Multilocus Sequence Typing and Virulence Profiles in Uropathogenic Escherichia coli Isolated from Cats in the United States. PLoS ONE 2015, 10, e0143335. [Google Scholar] [CrossRef] [PubMed]
- Valat, C.; Drapeau, A.; Beurlet, S.; Bachy, V.; Boulouis, H.-J.; Pin, R.; Cazeau, G.; Madec, J.-Y.; Haenni, M. Pathogenic Escherichia coli in Dogs Reveals the Predominance of ST372 and the Human-Associated ST73 Extra-Intestinal Lineages. Front. Microbiol. 2020, 11, 580. [Google Scholar] [CrossRef]
- Mitra, S.D.; Irshad, P.; Anusree, M.; Rekha, I.; Shailaja, S.; Suresh, J.; Aishwarya, G.; Shrestha, S.; Shome, B.R. Whole Genome Global Insight of Antibiotic Resistance Gene Repertoire and Virulome of High-Risk Multidrug-Resistant Uropathogenic Escherichia coli. Microb. Pathog. 2021, 161, 105256. [Google Scholar] [CrossRef]
- Bourne, J.A.; Chong, W.L.; Gordon, D.M. Genetic Structure, Antimicrobial Resistance and Frequency of Human Associated Escherichia coli Sequence Types among Faecal Isolates from Healthy Dogs and Cats Living in Canberra, Australia. PLoS ONE 2019, 14, e0212867. [Google Scholar] [CrossRef]
- Naziri, Z.; Kilegolan, J.A.; Moezzi, M.S.; Derakhshandeh, A. Biofilm Formation by Uropathogenic Escherichia coli: A Complicating Factor for Treatment and Recurrence of Urinary Tract Infections. J. Hosp. Infect. 2021, 117, 9–16. [Google Scholar] [CrossRef]
- Zhang, T.; Ray, S.; Melican, K.; Richter-Dahlfors, A. The Maturation of Native Uropathogenic Escherichia coli Biofilms Seen through a Non-Interventional Lens. Biofilm 2024, 8, 100212. [Google Scholar] [CrossRef]
- Thompson, M.F.; Litster, A.L.; Platell, J.L.; Trott, D.J. Canine Bacterial Urinary Tract Infections: New Developments in Old Pathogens. Vet. J. 2011, 190, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Lila, A.S.A.; Rajab, A.A.H.; Abdallah, M.H.; Rizvi, S.M.D.; Moin, A.; Khafagy, E.-S.; Tabrez, S.; Hegazy, W.A.H. Biofilm Lifestyle in Recurrent Urinary Tract Infections. Life 2023, 13, 148. [Google Scholar] [CrossRef]
- Dorsch, R.; Teichmann-Knorrn, S.; Sjetne Lund, H. Urinary Tract Infection and Subclinical Bacteriuria in Cats: A Clinical Update. J. Feline Med. Surg. 2019, 21, 1023–1038. [Google Scholar] [CrossRef]
- Fonseca, J.D.; Mavrides, D.E.; Graham, P.A.; McHugh, T.D. Results of Urinary Bacterial Cultures and Antibiotic Susceptibility Testing of Dogs and Cats in the UK. J. Small Anim. Pract. 2021, 62, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Weese, J.S.; Blondeau, J.; Boothe, D.; Guardabassi, L.G.; Gumley, N.; Papich, M.; Jessen, L.R.; Lappin, M.; Rankin, S.; Westropp, J.L.; et al. International Society for Companion Animal Infectious Diseases (ISCAID) Guidelines for the Diagnosis and Management of Bacterial Urinary Tract Infections in Dogs and Cats. Vet. J. 2019, 247, 8–25. [Google Scholar] [CrossRef] [PubMed]
- Byron, J.K. Urinary Tract Infection. Vet. Clin. N. Am. Small Anim. Pract. 2019, 49, 211–221. [Google Scholar] [CrossRef]
- IDEXX Laboratories Diagnosis and Management of Bacterial Tract Infections in Dogs and Cats. Available online: https://www.idexx.com/files/urinalysis-dx-update-april-17.pdf (accessed on 27 February 2024).
- Alcantara, G.L.C.; Pinello, K.C.; Severo, M.; Niza-Ribeiro, J. Antimicrobial Resistance in Companion Animals—Veterinarians’ Attitudes and Prescription Drivers in Portugal. Comp. Immunol. Microbiol. Infect. Dis. 2021, 76, 101640. [Google Scholar] [CrossRef]
- Marco-Fuertes, A.; Marin, C.; Lorenzo-Rebenaque, L.; Vega, S.; Montoro-Dasi, L. Antimicrobial Resistance in Companion Animals: A New Challenge for the One Health Approach in the European Union. Vet. Sci. 2022, 9, 208. [Google Scholar] [CrossRef] [PubMed]
- Guardabassi, L.; Prescott, J.F. Antimicrobial Stewardship in Small Animal Veterinary Practice. Vet. Clin. N. Am. Small Anim. Pract. 2015, 45, 361–376. [Google Scholar] [CrossRef]
- Huang, Y.H.; Kuan, N.L.; Yeh, K.S. Characteristics of Extended-Spectrum β-Lactamase–Producing Escherichia coli from Dogs and Cats Admitted to a Veterinary Teaching Hospital in Taipei, Taiwan From 2014 to 2017. Front. Vet. Sci. 2020, 7, 395. [Google Scholar] [CrossRef]
- Schmerold, I.; van Geijlswijk, I.; Gehring, R. European Regulations on the Use of Antibiotics in Veterinary Medicine. Eur. J. Pharm. Sci. 2023, 189, 106473. [Google Scholar] [CrossRef]
- Odoi, A.; Samuels, R.; Carter, C.N.; Smith, J. Antibiotic Prescription Practices and Opinions Regarding Antimicrobial Resistance among Veterinarians in Kentucky, USA. PLoS ONE 2021, 16, e0249653. [Google Scholar] [CrossRef]
- Joosten, P.; Ceccarelli, D.; Odent, E.; Sarrazin, S.; Graveland, H.; Van Gompel, L.; Battisti, A.; Caprioli, A.; Franco, A.; Wagenaar, J.A.; et al. Antimicrobial Usage and Resistance in Companion Animals: A Cross-Sectional Study in Three European Countries. Antibiotics 2020, 9, 87. [Google Scholar] [CrossRef]
- Scott Weese, J.; Page, S.W.; Prescott, J.F. Antimicrobial Stewardship in Animals. In Antimicrobial Therapy in Veterinary Medicine; Wiley: Hoboken, NJ, USA, 2013; pp. 117–132. [Google Scholar]
- EU Commission Implementing Regulation (EU) 2022/1255, Designating Antimicrobials or Groups of Antimicrobials Reserved for Treatment of Certain Infections in Humans, in Accordance with Regulation (EU) 2019/6 of the European Parliament and of the Council. Available online: https://eur-lex.europa.eu/legal-content/PT/TXT/?uri=CELEX:32022R1255 (accessed on 8 April 2024).
- WHO. Critically Important Antimicrobials for Human Medicine—Ranking of Medically Important Antimicrobials for Risk Management of Antimicrobial Resistance Due to Non-Human Use; WHO: Geneva, Switzerland, 2018.
- EMA. Categorisation of Antibiotics for Use in Animals for Prudent and Responsible Use; European Medicines Agency: Amsterdam, The Netherlands, 2019; pp. 1–73.
- Marques, C.; Belas, A.; Pomba, C. Antimicrobial Resistance Trends in Dogs and Cats with Urinary Tract Infection. In Proceedings of the Advances in Animal Health, Medicine and Production, Lisbon, Portugal, 21 November 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 246–264. [Google Scholar]
- Fuchs, B.M.; Wallner, G.; Beisker, W.; Schwippl, I.; Ludwig, W.; Amann, R. Flow Cytometric Analysis of the in Situ Accessibility of Escherichia coli 16S RRNA for Fluorescently Labeled Oligonucleotide Probes. Appl. Environ. Microbiol. 1998, 64, 4973–4982. [Google Scholar] [CrossRef]
- Joachimsthal, E.L.; Ivanov, V.; Tay, S.T.L.; Tay, J.H. Quantification of Whole-Cell in Situ Hybridization with Oligonucleotide Probes by Flow Cytometry of Escherichia coli Cells. World J. Microbiol. Biotechnol. 2003, 19, 527–533. [Google Scholar] [CrossRef]
- Matuschek, E.; Brown, D.F.J.; Kahlmeter, G. Development of the EUCAST Disk Diffusion Antimicrobial Susceptibility Testing Method and Its Implementation in Routine Microbiology Laboratories. Clin. Microbiol. Infect. 2014, 20, O255–O266. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 15.0. Available online: https://www.eucast.org (accessed on 18 July 2025).
- CLSI VET01S; Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals. CLSI: Wayne, PA, USA, 2015.
- Clausen, P.T.L.C.; Aarestrup, F.M.; Lund, O. Rapid and Precise Alignment of Raw Reads against Redundant Databases with KMA. BMC Bioinform. 2018, 19, 307. [Google Scholar] [CrossRef] [PubMed]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for Predictions of Phenotypes from Genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef] [PubMed]
- Sarowska, J.; Futoma-Koloch, B.; Jama-Kmiecik, A.; Frej-Madrzak, M.; Ksiazczyk, M.; Bugla-Ploskonska, G.; Choroszy-Krol, I. Virulence Factors, Prevalence and Potential Transmission of Extraintestinal Pathogenic Escherichia coli Isolated from Different Sources: Recent Reports. Gut Pathog. 2019, 11, 10. [Google Scholar] [CrossRef]
- Sora, V.M.; Meroni, G.; Martino, P.A.; Soggiu, A.; Bonizzi, L.; Zecconi, A. Extraintestinal Pathogenic Escherichia coli: Virulence Factors and Antibiotic Resistance. Pathogens 2021, 10, 1355. [Google Scholar] [CrossRef] [PubMed]
- Spurbeck, R.R.; Dinh, P.C.; Walk, S.T.; Stapleton, A.E.; Hooton, T.M.; Nolan, L.K.; Kim, K.S.; Johnson, J.R.; Mobley, H.L.T. Escherichia coli Isolates That Carry Vat, FyuA, ChuA, and YfcV Efficiently Colonize the Urinary Tract. Infect. Immun. 2012, 80, 4115–4122. [Google Scholar] [CrossRef]
- Zhou, Z.; Alikhan, N.-F.; Mohamed, K.; Fan, Y.; Achtman, M. The EnteroBase User’s Guide, with Case Studies on Salmonella Transmissions, Yersinia pestis Phylogeny, and Escherichia Core Genomic Diversity. Genome Res. 2020, 30, 138–152. [Google Scholar] [CrossRef]
- Zhou, Z.; Alikhan, N.-F.; Sergeant, M.J.; Luhmann, N.; Vaz, C.; Francisco, A.P.; Carriço, J.A.; Achtman, M. GrapeTree: Visualization of Core Genomic Relationships among 100,000 Bacterial Pathogens. Genome Res. 2018, 28, 1395–1404. [Google Scholar] [CrossRef] [PubMed]
- EUCAST MIC Determination of Non-Fastidious and Fastidious Organisms. Available online: https://www.eucast.org/ast_of_bacteria/mic_determination (accessed on 7 January 2025).
- Stepanović, S.; Vuković, D.; Hola, V.; Di Bonaventura, G.; Djukić, S.; Ćirković, I.; Ruzicka, F. Quantification of Biofilm in Microtiter Plates: Overview of Testing Conditions and Practical Recommendations for Assessment of Biofilm Production by Staphylococci. Apmis 2007, 115, 891–899. [Google Scholar] [CrossRef]
- Kumla, D.; Dethoup, T.; Pereira, J.A.; Freitas-silva, J.; Costa, P.M.; Silva, A.M.S.; Pinto, M.M.M.; Kijjoa, A. Erubescensoic Acid, a New Polyketide and a Xanthonopyrone SPF-3059-26 from the Culture of the Marine Sponge-Associated Fungus Penicillium Erubescens KUFA 0220 and Antibacterial Activity Evaluation of Some of Its Constituents Decha. Molecules 2019, 24, 208. [Google Scholar] [CrossRef] [PubMed]
- Bessa, L.J.; Eaton, P.; Dematei, A.; Plácido, A.; Vale, N.; Gomes, P.; Delerue-Matos, C.; SA Leite, J.R.; Gameiro, P. Synergistic and Antibiofilm Properties of Ocellatin Peptides against Multidrug-Resistant Pseudomonas aeruginosa. Future Microbiol. 2018, 13, 151–163. [Google Scholar] [CrossRef]
- CLSI M100; Performance Standards for Antimicrobial Susceptibility Testing. CLSI: Wayne, PA, USA, 2018.
- Schön, T.; Werngren, J.; Machado, D.; Borroni, E.; Wijkander, M.; Lina, G.; Mouton, J.; Matuschek, E.; Kahlmeter, G.; Giske, C.; et al. Antimicrobial Susceptibility Testing of Mycobacterium Tuberculosis Complex Isolates—The EUCAST Broth Microdilution Reference Method for MIC Determination. Clin. Microbiol. Infect. 2020, 26, 1488–1492. [Google Scholar] [CrossRef]
- Macia, M.D.; Rojo-Molinero, E.; Oliver, A. Antimicrobial Susceptibility Testing in Biofilm-Growing Bacteria. Clin. Microbiol. Infect. 2014, 20, 981–990. [Google Scholar] [CrossRef]
- Sabença, C.; Igrejas, G.; Poeta, P.; Robin, F.; Bonnet, R.; Beyrouthy, R. Multidrug Resistance Dissemination in Escherichia coli Isolated from Wild Animals: Bacterial Clones and Plasmid Complicity. Microbiol. Res. 2021, 12, 123–137. [Google Scholar] [CrossRef]
- Schürch, A.C.; Arredondo-Alonso, S.; Willems, R.J.L.; Goering, R.V. Whole Genome Sequencing Options for Bacterial Strain Typing and Epidemiologic Analysis Based on Single Nucleotide Polymorphism versus Gene-by-Gene–Based Approaches. Clin. Microbiol. Infect. 2018, 24, 350–354. [Google Scholar] [CrossRef]
- Mancuso, G.; Midiri, A.; Gerace, E.; Marra, M.; Zummo, S.; Biondo, C. Urinary Tract Infections: The Current Scenario and Future Prospects. Pathogens 2023, 12, 623. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, G.; Trinchera, M.; Midiri, A.; Zummo, S.; Vitale, G.; Biondo, C. Novel Antimicrobial Approaches to Combat Bacterial Biofilms Associated with Urinary Tract Infections. Antibiotics 2024, 13, 154. [Google Scholar] [CrossRef]
- Flores-Oropeza, M.A.; Ochoa, S.A.; Cruz-Córdova, A.; Chavez-Tepecano, R.; Martínez-Peñafiel, E.; Rembao-Bojórquez, D.; Zavala-Vega, S.; Hernández-Castro, R.; Flores-Encarnacion, M.; Arellano-Galindo, J.; et al. Comparative Genomic Analysis of Uropathogenic Escherichia coli Strains from Women with Recurrent Urinary Tract Infection. Front. Microbiol. 2024, 14, 1340427. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.; Duarte, S.; Nunes, R.; Rocha, H.; Pena, A.; Meisel, L. Human and Veterinary Antibiotics Used in Portugal—A Ranking for Ecosurveillance. Toxics 2014, 2, 188–225. [Google Scholar] [CrossRef]
- Beckman, R.L.; Cella, E.; Azarian, T.; Rendueles, O.; Fleeman, R.M. Diverse Polysaccharide Production and Biofilm Formation Abilities of Clinical Klebsiella pneumoniae. npj Biofilms Microbiomes 2024, 10, 151. [Google Scholar] [CrossRef] [PubMed]
- Hay, I.D.; Gatland, K.; Campisano, A.; Jordens, J.Z.; Rehm, B.H.A. Impact of Alginate Overproduction on Attachment and Biofilm Architecture of a Supermucoid Pseudomonas aeruginosa Strain. Appl. Environ. Microbiol. 2009, 75, 6022–6025. [Google Scholar] [CrossRef]
- Stapper, A.P.; Narasimhan, G.; Ohman, D.E.; Barakat, J.; Hentzer, M.; Molin, S.; Kharazmi, A.; Høiby, N.; Mathee, K. Alginate Production Affects Pseudomonas aeruginosa Biofilm Development and Architecture, but Is Not Essential for Biofilm Formation. J. Med. Microbiol. 2004, 53, 679–690. [Google Scholar] [CrossRef]
- Ballash, G.A.; Mollenkopf, D.F.; Diaz-Campos, D.; van Balen, J.C.; Cianciolo, R.E.; Wittum, T.E. Pathogenomics and Clinical Recurrence Influence Biofilm Capacity of Escherichia coli Isolated from Canine Urinary Tract Infections. PLoS ONE 2022, 17, e0270461. [Google Scholar] [CrossRef]
- Bessa, L.J.; Mendes, Â.; Gomes, R.; Curvelo, S.; Cravo, S.; Sousa, E.; Vasconcelos, V.; Martins da Costa, P. Microbial Interaction between a CTXM-15-producing Escherichia coli and a Susceptible Pseudomonas aeruginosa Isolated from Bronchoalveolar Lavage: Influence of Cefotaxime in the Dual-species Biofilm Formation. Environ. Microbiol. Rep. 2015, 7, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Muenzner, P.; Kengmo Tchoupa, A.; Klauser, B.; Brunner, T.; Putze, J.; Dobrindt, U.; Hauck, C.R. Uropathogenic E. coli Exploit CEA to Promote Colonization of the Urogenital Tract Mucosa. PLoS Pathog. 2016, 12, e1005608. [Google Scholar] [CrossRef]
- Pitout, J.D.D.; Peirano, G.; Chen, L.; DeVinney, R.; Matsumura, Y. Escherichia coli ST1193: Following in the Footsteps of E. coli ST131. Antimicrob. Agents Chemother. 2022, 66, e0051122. [Google Scholar] [CrossRef]
- Valenza, G.; Werner, M.; Eisenberger, D.; Nickel, S.; Lehner-Reindl, V.; Höller, C.; Bogdan, C. First Report of the New Emerging Global Clone ST1193 among Clinical Isolates of Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli from Germany. J. Glob. Antimicrob. Resist. 2019, 17, 305–308. [Google Scholar] [CrossRef] [PubMed]
- Kidsley, A.K.; White, R.T.; Beatson, S.A.; Saputra, S.; Schembri, M.A.; Gordon, D.; Johnson, J.R.; O’Dea, M.; Mollinger, J.L.; Abraham, S.; et al. Companion Animals Are Spillover Hosts of the Multidrug-Resistant Human Extraintestinal Escherichia coli Pandemic Clones ST131 and ST1193. Front. Microbiol. 2020, 11, 1968. [Google Scholar] [CrossRef]
- Johnson, J.R.; Johnston, B.D.; Porter, S.B.; Clabots, C.; Bender, T.L.; Thuras, P.; Trott, D.J.; Cobbold, R.; Mollinger, J.; Ferrieri, P.; et al. Rapid Emergence, Subsidence, and Molecular Detection of Escherichia coli Sequence Type 1193-FimH64, a New Disseminated Multidrug-Resistant Commensal and Extraintestinal Pathogen. J. Clin. Microbiol. 2019, 57, e01664-18. [Google Scholar] [CrossRef] [PubMed]
- Wyrsch, E.R.; Bushell, R.N.; Marenda, M.S.; Browning, G.F.; Djordjevic, S.P. Global Phylogeny and F Virulence Plasmid Carriage in Pandemic Escherichia coli ST1193. Microbiol. Spectr. 2022, 10, e0255422. [Google Scholar] [CrossRef] [PubMed]
- Mirzahosseini, H.K.; Najmeddin, F.; Najafi, A.; Ahmadi, A.; Sharifnia, H.; Khaledi, A.; Mojtahedzadeh, M. Correlation of Biofilm Formation, Virulence Factors, and Phylogenetic Groups among Escherichia coli Strains Causing Urinary Tract Infection: A Global Systematic Review and Meta-Analysis. J. Res. Med. Sci. 2023, 28, 66. [Google Scholar] [CrossRef]
- Mahshouri, P.; Alikhani, M.Y.; Momtaz, H.E.; Doosti-Irani, A.; Shokoohizadeh, L. Analysis of Phylogroups, Biofilm Formation, Virulence Factors, Antibiotic Resistance and Molecular Typing of Uropathogenic Escherichia coli Strains Isolated from Patients with Recurrent and Non-Recurrent Urinary Tract Infections. BMC Infect. Dis. 2025, 25, 267. [Google Scholar] [CrossRef]
- Lara, F.B.M.; Nery, D.R.; de Oliveira, P.M.; Araujo, M.L.; Carvalho, F.R.Q.; Messias-Silva, L.C.F.; Ferreira, L.B.; Faria-Junior, C.; Pereira, A.L. Virulence Markers and Phylogenetic Analysis of Escherichia coli Strains with Hybrid EAEC/UPEC Genotypes Recovered from Sporadic Cases of Extraintestinal Infections. Front. Microbiol. 2017, 8, 146. [Google Scholar] [CrossRef]
- Shah, C.; Baral, R.; Bartaula, B.; Shrestha, L.B. Virulence Factors of Uropathogenic Escherichia coli (UPEC) and Correlation with Antimicrobial Resistance. BMC Microbiol. 2019, 19, 204. [Google Scholar] [CrossRef]
- Fatima, S.; Akbar, A.; Irfan, M.; Shafee, M.; Ali, A.; Ishaq, Z.; Raza, S.K.; Samad, A.; Alshahrani, M.Y.; Hassan, S.S. Virulence Factors and Antimicrobial Resistance of Uropathogenic Escherichia coli EQ101 UPEC Isolated from UTI Patient in Quetta, Balochistan, Pakistan. Biomed. Res. Int. 2023, 2023, 7278070. [Google Scholar] [CrossRef]
- Whelan, S.; O’Grady, M.C.; Corcoran, G.D.; Finn, K.; Lucey, B. Effect of Sub-Inhibitory Concentrations of Nitrofurantoin, Ciprofloxacin, and Trimethoprim on In Vitro Biofilm Formation in Uropathogenic Escherichia coli (UPEC). Med. Sci. 2022, 11, 1. [Google Scholar] [CrossRef]
- Gilbertie, J.M.; Levent, G.; Norman, K.N.; Vinasco, J.; Scott, H.M.; Jacob, M.E. Comprehensive Phenotypic and Genotypic Characterization and Comparison of Virulence, Biofilm, and Antimicrobial Resistance in Urinary Escherichia coli Isolated from Canines. Vet. Microbiol. 2020, 249, 108822. [Google Scholar] [CrossRef]
- Kao, C.-Y.; Zhang, Y.-Z.; Yang, D.-C.; Chen, P.K.; Teng, C.-H.; Lin, W.-H.; Wang, M.-C. Characterization of Host and Escherichia coli Strains Causing Recurrent Urinary Tract Infections Based on Molecular Typing. BMC Microbiol. 2023, 23, 90. [Google Scholar] [CrossRef]
- Anderson, G.; Dodson, K.; Hooton, T.; Hultgren, S. Intracellular Bacterial Communities of Uropathogenic in Urinary Tract Pathogenesis. Trends Microbiol. 2004, 12, 424–430. [Google Scholar] [CrossRef]
- Kwak, Y.; Kim, H.G.; Seok, J.; Kim, S.; Kim, E.-M.; Kim, A. The Critical Role of Intracellular Bacterial Communities in Uncomplicated Recurrent Urinary Cystitis: A Comprehensive Review of Detection Methods and Diagnostic Potential. Int. Neurourol. J. 2024, 28, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.J.; Carpenter, L.; Taylor, S.L.; Wesselingh, S.L.; Choo, J.M.; Shoubridge, A.P.; Papanicolas, L.E.; Rogers, G.B.; Flynn, E.; Gordon, D.; et al. Intestinal Microbiology and Urinary Tract Infection Associated Risk in Long-Term Aged Care Residents. Commun. Med. 2024, 4, 164. [Google Scholar] [CrossRef]
- Salazar, A.M.; Neugent, M.L.; De Nisco, N.J.; Mysorekar, I.U. Gut-Bladder Axis Enters the Stage: Implication for Recurrent Urinary Tract Infections. Cell Host Microbe 2022, 30, 1066–1069. [Google Scholar] [CrossRef]
- Yamamoto, S.; Tsukamoto, T.; Terai, A.; Kurazono, H.; Takeda, Y.; Yoshida, O. Genetic Evidence Supporting the Fecal-Perineal-Urethral Hypothesis in Cystitis Caused by Escherichia coli. J. Urol. 1997, 157, 1127–1129. [Google Scholar] [CrossRef] [PubMed]
- Harms, A.; Maisonneuve, E.; Gerdes, K. Mechanisms of Bacterial Persistence during Stress and Antibiotic Exposure. Science 2016, 354, aaf4268. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K. Persister Cells and the Riddle of Biofilm Survival. Biochemistry 2005, 70, 267–274. [Google Scholar] [CrossRef] [PubMed]
- García, V.; Lestón, L.; Parga, A.; García-Meniño, I.; Fernández, J.; Otero, A.; Olsen, J.E.; Herrero-Fresno, A.; Mora, A. Genomics, Biofilm Formation and Infection of Bladder Epithelial Cells in Potentially Uropathogenic Escherichia coli (UPEC) from Animal Sources and Human Urinary Tract Infections (UTIs) Further Support Food-Borne Transmission. One Health 2023, 16, 100558. [Google Scholar] [CrossRef]
- Darwitz, B.P.; Genito, C.J.; Thurlow, L.R. Triple Threat: How Diabetes Results in Worsened Bacterial Infections. Infect. Immun. 2024, 92, e0050923. [Google Scholar] [CrossRef]
- Agarwal, A.; Jain, A. Glucose & Sodium Chloride Induced Biofilm Production & Ica Operon in Clinical Isolates of Staphylococci. Indian. J. Med. Res. 2013, 138, 262–266. [Google Scholar]
- She, P.; Wang, Y.; Liu, Y.; Tan, F.; Chen, L.; Luo, Z.; Wu, Y. Effects of Exogenous Glucose on Pseudomonas aeruginosa Biofilm Formation and Antibiotic Resistance. Microbiologyopen 2019, 8, e933. [Google Scholar] [CrossRef]
- Thoresen, S.I.; Bredal, W.P. Serum Fructosamine Measurement: A New Diagnostic Approach to Renal Glucosuria in Dogs. Res. Vet. Sci. 1999, 67, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Marks, V. Glucose: Metabolism and Maintenance of Blood Glucose Level. In Encyclopedia of Human Nutrition; Elsevier: Amsterdam, The Netherlands, 2013; pp. 387–392. [Google Scholar]
- AAHA. Diagnosis and Assessment. Available online: https://www.aaha.org/resources/2018-aaha-diabetes-management-guideline-for-dogs-and-cats/diagnosis-and-assessment/ (accessed on 18 July 2025).
- Aldridge, C.F.; Behrend, E.N.; Smith, J.R.; Welles, E.G.; Lee, H.P. Accuracy of Urine Dipstick Tests and Urine Glucose-to-Creatinine Ratios for Assessment of Glucosuria in Dogs and Cats. J. Am. Vet. Med. Assoc. 2020, 257, 391–396. [Google Scholar] [CrossRef]
- Moon, K.H.; Weber, B.S.; Feldman, M.F. Subinhibitory Concentrations of Trimethoprim and Sulfamethoxazole Prevent Biofilm Formation by Acinetobacter baumannii through Inhibition of Csu Pilus Expression. Antimicrob. Agents Chemother. 2017, 61, e00778-17. [Google Scholar] [CrossRef] [PubMed]
- Božić, D.D.; Pavlović, B.; Milovanović, J.; Jotić, A.; Čolović, J.; Ćirković, I. Antibiofilm Effects of Amoxicillin–Clavulanic Acid and Levofloxacin in Patients with Chronic Rhinosinusitis with Nasal Polyposis. Eur. Arch. Oto-Rhino-Laryngol. 2018, 275, 2051–2059. [Google Scholar] [CrossRef]
- Jiang, M.; Su, Y.; Ye, J.; Li, H.; Kuang, S.; Wu, J.; Li, S.; Peng, X.; Peng, B. Ampicillin-Controlled Glucose Metabolism Manipulates the Transition from Tolerance to Resistance in Bacteria. Sci. Adv. 2023, 9, eade8582. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Fu, T.; Liu, H.; Li, Z.; Du, B.; Cui, X.; Zhang, R.; Feng, Y.; Zhao, H.; Xue, G.; et al. Glucose Induces Resistance to Polymyxins in High-Alcohol-Producing Klebsiella pneumoniae via Increasing Capsular Polysaccharide and Maintaining Intracellular ATP. Microbiol. Spectr. 2023, 11, e0003123. [Google Scholar] [CrossRef] [PubMed]
- Zuroff, T.R.; Bernstein, H.; Lloyd-Randolfi, J.; Jimenez-Taracido, L.; Stewart, P.S.; Carlson, R.P. Robustness Analysis of Culturing Perturbations on Escherichia coli Colony Biofilm Beta-Lactam and Aminoglycoside Antibiotic Tolerance. BMC Microbiol. 2010, 10, 185. [Google Scholar] [CrossRef]
- Ishizuka, H.; Hanamura, A.; Inada, T.; Aiba, H. Mechanism of the Down-Regulation of CAMP Receptor Protein by Glucose in Escherichia coli: Role of Autoregulation of the Crp Gene. EMBO J. 1994, 13, 3077–3082. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Zhu, M. High Osmolarity Modulates Bacterial Cell Size through Reducing Initiation Volume in Escherichia coli. mSphere 2018, 3, e00430-18. [Google Scholar] [CrossRef]
- Bafna-Rührer, J.; Bhutada, Y.D.; Orth, J.V.; Øzmerih, S.; Yang, L.; Zielinski, D.; Sudarsan, S. Repeated Glucose Oscillations in High Cell–Density Cultures Influence Stress–Related Functions of Escherichia coli. PNAS Nexus 2024, 3, pgae376. [Google Scholar] [CrossRef]
- John, P.P.; Baker, B.C.; Paudel, S.; Nassour, L.; Cagle, H.; Kulkarni, R. Exposure to Moderate Glycosuria Induces Virulence of Group B Streptococcus. J. Infect. Dis. 2021, 223, 843–847. [Google Scholar] [CrossRef]
- Culham, D.E.; Lu, A.; Jishage, M.; Krogfelt, K.A.; Ishihama, A.; Wood, J.M. The Osmotic Stress Response and Virulence in Pyelonephritis Isolates of Escherichia coli: Contributions of RpoS, ProP, ProU and Other Systems The GenBank Accession Numbers for the DNA Sequences of the RpoS Loci in E. coli Strains HU734 and CFT073 Are AF275947 and AF270497, Respectively. Microbiology 2001, 147, 1657–1670. [Google Scholar] [CrossRef]
- Islam, M.J.; Bagale, K.; John, P.P.; Kurtz, Z.; Kulkarni, R. Glycosuria Alters Uropathogenic Escherichia coli Global Gene Expression and Virulence. mSphere 2022, 7, e0000422. [Google Scholar] [CrossRef]
- Francez-Charlot, A.; Castanié-Cornet, M.-P.; Gutierrez, C.; Cam, K. Osmotic Regulation of the Escherichia coli Bdm (Biofilm-Dependent Modulation) Gene by the RcsCDB His-Asp Phosphorelay. J. Bacteriol. 2005, 187, 3873–3877. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Sun, D.; Zhu, J.; Liu, J.; Liu, W. The Regulation of Bacterial Biofilm Formation by CAMP-CRP: A Mini-Review. Front. Microbiol. 2020, 11, 802. [Google Scholar] [CrossRef] [PubMed]
- Szomolay, B.; Klapper, I.; Dockery, J.; Stewart, P.S. Adaptive Responses to Antimicrobial Agents in Biofilms. Environ. Microbiol. 2005, 7, 1186–1191. [Google Scholar] [CrossRef]
- Brouwers, R.; Vass, H.; Dawson, A.; Squires, T.; Tavaddod, S.; Allen, R.J. Stability of β-Lactam Antibiotics in Bacterial Growth Media. PLoS ONE 2020, 15, e0236198. [Google Scholar] [CrossRef] [PubMed]
- Cabral, D.; Wurster, J.; Belenky, P. Antibiotic Persistence as a Metabolic Adaptation: Stress, Metabolism, the Host, and New Directions. Pharmaceuticals 2018, 11, 14. [Google Scholar] [CrossRef]
- Van Acker, H.; Coenye, T. The Role of Efflux and Physiological Adaptation in Biofilm Tolerance and Resistance. J. Biol. Chem. 2016, 291, 12565–12572. [Google Scholar] [CrossRef] [PubMed]
- Uruén, C.; Chopo-Escuin, G.; Tommassen, J.; Mainar-Jaime, R.C.; Arenas, J. Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance. Antibiotics 2020, 10, 3. [Google Scholar] [CrossRef]
- Kang, X.; Yang, X.; He, Y.; Guo, C.; Li, Y.; Ji, H.; Qin, Y.; Wu, L. Strategies and Materials for the Prevention and Treatment of Biofilms. Mater. Today Bio 2023, 23, 100827. [Google Scholar] [CrossRef] [PubMed]
- Olsen, I. Biofilm-Specific Antibiotic Tolerance and Resistance. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 877–886. [Google Scholar] [CrossRef] [PubMed]
- Mottola, C.; Matias, C.S.; Mendes, J.J.; Melo-Cristino, J.; Tavares, L.; Cavaco-Silva, P.; Oliveira, M. Susceptibility Patterns of Staphylococcus aureus Biofilms in Diabetic Foot Infections. BMC Microbiol. 2016, 16, 119. [Google Scholar] [CrossRef]
- de la Fuente-Nunez, C.; Cesaro, A.; Hancock, R.E.W. Antibiotic Failure: Beyond Antimicrobial Resistance. Drug Resist. Updates 2023, 71, 101012. [Google Scholar] [CrossRef]
Time | Pathology | Clinical Signs | Glucose Concentration | Antibiotherapy | Isolates | ||
---|---|---|---|---|---|---|---|
Antibiotic | Dosage | Duration | |||||
March 2022 | UTI | PU/PD, anorexia | >1000 mg/dL | AMP * AMC | 22 mg/kg 20 mg/kg | 2 days 10 days | 2987 |
March 2023 | UTI | PU/PD, anorexia | >1000 mg/dL | AMP * AMC CEF | 22 mg/kg 20 mg/kg 20 mg/kg | 2 days 14 days 28 days | 3394/1 and 3394/2 3418 3432 |
May 2023 | UTI | PU/PD, anorexia | >1000 mg/dL | CEF * NIT | 20 mg/kg 10 mg/kg | 10 days 14 days | 3483 3517 |
July 2023 | UTI | PU/PD, anorexia | >1000 mg/dL | CEF * SXT | 20 mg/kg 15 mg/kg | 15 days 8 days | 3631 S9 |
September 2023 | UTI | PU/PD, anorexia | >1000 mg/dL | NIT * | 10 mg/kg | 14 days | 3687 |
October 2023 | UTI | PU/PD, anorexia | >1000 mg/dL | NIT * | 10 mg/kg | 14 days | 3729 |
Isolate | Glucose Concentration (mg/dL) | AMC | CEF | NIT | SXT |
---|---|---|---|---|---|
2987 | 0 | 8/4 | 8 | 1 | 0.06/1.19 |
62.5 | 8/4 | 8 | 1 | 0.06/1.19 | |
125 | 8/4 | 8 | 1 | 0.06/1.19 | |
250 | 8/4 | 8 | 1 | 0.06/1.19 | |
500 | 8/4 | 8 | 1 | 0.06/1.19 | |
1000 | 8/4 | 8 | 1 | 0.06/1.19 | |
3394/1 | 0 | 8/4 | 16 | 8 | 0.13/2.38 |
62.5 | 8/4 | 16 | 8 | 0.13/2.38 | |
125 | 8/4 | 16 | 8 | 0.13/2.38 | |
250 | 8/4 | 16 | 8 | 0.13/2.38 | |
500 | 8/4 | 16 | 8 | 0.13/2.38 | |
1000 | 8/4 | 16 | 8 | 0.13/2.38 | |
3394/2 | 0 | 8/4 | 8 | 8 | 0.06/1.19 |
62.5 | 8/4 | 8 | 8 | 0.06/1.19 | |
125 | 8/4 | 8 | 8 | 0.06/1.19 | |
250 | 8/4 | 8 | 8 | 0.06/1.19 | |
500 | 8/4 | 8 | 8 | 0.06/1.19 | |
1000 | 8/4 | 8 | 8 | 0.06/1.19 | |
3729 | 0 | 4/2 | 16 | 4 | 0.13/2.38 |
62.5 | 4/2 | 16 | 4 | 0.13/2.38 | |
125 | 4/2 | 16 | 4 | 0.13/2.38 | |
250 | 4/2 | 16 | 4 | 0.13/2.38 | |
500 | 4/2 | 16 | 4 | 0.13/2.38 | |
1000 | 4/2 | 16 | 4 | 0.13/2.38 | |
E. coli ATCC 25922 | 0 | 8/4 | 16 | 4 | 0.13/2.38 |
62.5 | 8/4 | 16 | 4 | 0.13/2.38 | |
125 | 8/4 | 16 | 4 | 0.13/2.38 | |
250 | 8/4 | 16 | 4 | 0.13/2.38 | |
500 | 8/4 | 16 | 4 | 0.13/2.38 | |
1000 | 8/4 | 16 | 4 | 0.13/2.38 |
Isolate | Glucose Concentration (mg/dL) | Mean OD ± SD | p-Value |
---|---|---|---|
2987 | 0 | 2.113 ± 0.066 | |
62.5 | 2.276 ± 0.268 | 0.359 | |
125 | 2.383 ± 0.165 | 0.126 | |
250 | 2.496 ± 0.055 | 0.039 * | |
500 | 2.500 ± 0.113 | 0.027 * | |
1000 | 2.557 ± 0.232 | 0.027 * | |
3394/1 | 0 | 1.929 ± 0.128 | |
62.5 | 1.979 ± 0.056 | 0.646 | |
125 | 1.995 ± 0.086 | 0.444 | |
250 | 2.008 ± 0.147 | 0.491 | |
500 | 2.125 ± 0.142 | 0.126 | |
1000 | 2.423 ± 0.140 | 0.006 ** | |
3394/2 | 0 | 1.631 ± 0.119 | |
62.5 | 1.782 ± 0.127 | 0.515 | |
125 | 2.086 ± 0.141 | 0.072 | |
250 | 2.099 ± 0.171 | 0.047 * | |
500 | 2.191 ± 0.150 | 0.010 * | |
1000 | 2.310 ± 0.169 | 0.004 ** | |
3729 | 0 | 1.188 ± 0.239 | |
62.5 | 1.356 ± 0.074 | 0.320 | |
125 | 1.247 ± 0.103 | 0.878 | |
250 | 1.191 ± 0.111 | 0.939 | |
500 | 1.808 ± 0.087 | 0.029 * | |
1000 | 1.923 ± 0.135 | 0.013 * | |
E. coli ATCC 25922 | 0 | 2.012 ± 0.304 | |
62.5 | 2.306 ± 0.277 | 0.359 | |
125 | 2.146 ± 0.206 | 0.646 | |
250 | 2.009 ± 0.221 | 0.818 | |
500 | 2.625 ± 0.097 | 0.012 * | |
1000 | 2.544 ± 0.084 | 0.039 * |
Isolate | AMC | CEF | NIT | SXT |
---|---|---|---|---|
2987 | 8/4 | 8 | 1 | 0.06/1.19 |
3394/1 | 8/4 | 16 | 8 | 0.13/2.38 |
3394/2 | 8/4 | 8 | 8 | 0.06/1.19 |
3729 | 4/2 | 16 | 4 | 0.13/2.38 |
E. coli ATCC 25922 | 8/4 | 16 | 4 | 0.13/2.38 |
AMC | CEF | NIT | SXT | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC | MBIC | MBIC (+Glucose) | MIC | MBIC | MBIC (+Glucose) | MIC | MBIC | MBIC (+Glucose) | MIC | MBIC | MBIC (+Glucose) | |
2987 | 8/4 | >2048/1024 (>256×MIC) | >2048/1024 (>256×MIC) | 8 | >8192 (>1024×MIC) | >8192 (>1024×MIC) | 1 | >64 (>64×MIC) | >64 (>64×MIC) | 0.06/1.19 | >64/1216 (>1024×MIC) | >64/1216 (>1024×MIC) |
3394/1 | 8/4 | >2048/1024 (>256×MIC) | >2048/1024 (>256×MIC) | 16 | >8192 (>512×MIC) | >8192 (>512×MIC) | 8 | >64 (>8×MIC) | >64 (>8×MIC) | 0.13/2.38 | >64/1216 (>512×MIC) | >64/1216 (>512×MIC) |
3394/2 | 8/4 | >2048/1024 (>256×MIC) | >2048/1024 (>256×MIC) | 8 | 4096 (512×MIC) | >8192 (>1024×MIC) | 8 | >64 (>8×MIC) | >64 (>8×MIC) | 0.06/1.19 | >64/1216 (>1024×MIC) | >64/1216 (>1024×MIC) |
3729 | 4/2 | 32/16 (16×MIC) | >2048/1024 (>512×MIC) | 16 | 4096 (256×MIC) | >8192 (>512×MIC) | 4 | >64 (>16×MIC) | >64 (>16×MIC) | 0.13/2.38 | >64/1216 (>512×MIC) | >64/1216 (>512×MIC) |
E. coli ATCC 25922 | 8/4 | 32/16 (8×MIC) | >2048/1024 (>256×MIC) | 16 | 4096 (256×MIC) | >8192 (>512×MIC) | 4 | >64 (>16×MIC) | >64 (>16×MIC) | 0.13/2.38 | >64/1216 (>512×MIC) | >64/1216 (>512×MIC) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, I.C.; Ribeiro-Almeida, M.; Campos, J.; Silveira, L.; Leite-Martins, L.; Ribeiro, J.; Martins da Costa, P.; Prata, J.C.; Pista, Â.; Martins da Costa, P. Uropathogenic Escherichia coli in a Diabetic Dog with Recurrent UTIs: Genomic Insights and the Impact of Glucose and Antibiotics on Biofilm Formation. Microorganisms 2025, 13, 1946. https://doi.org/10.3390/microorganisms13081946
Rodrigues IC, Ribeiro-Almeida M, Campos J, Silveira L, Leite-Martins L, Ribeiro J, Martins da Costa P, Prata JC, Pista Â, Martins da Costa P. Uropathogenic Escherichia coli in a Diabetic Dog with Recurrent UTIs: Genomic Insights and the Impact of Glucose and Antibiotics on Biofilm Formation. Microorganisms. 2025; 13(8):1946. https://doi.org/10.3390/microorganisms13081946
Chicago/Turabian StyleRodrigues, Inês C., Marisa Ribeiro-Almeida, Joana Campos, Leonor Silveira, Liliana Leite-Martins, Jorge Ribeiro, Paula Martins da Costa, Joana C. Prata, Ângela Pista, and Paulo Martins da Costa. 2025. "Uropathogenic Escherichia coli in a Diabetic Dog with Recurrent UTIs: Genomic Insights and the Impact of Glucose and Antibiotics on Biofilm Formation" Microorganisms 13, no. 8: 1946. https://doi.org/10.3390/microorganisms13081946
APA StyleRodrigues, I. C., Ribeiro-Almeida, M., Campos, J., Silveira, L., Leite-Martins, L., Ribeiro, J., Martins da Costa, P., Prata, J. C., Pista, Â., & Martins da Costa, P. (2025). Uropathogenic Escherichia coli in a Diabetic Dog with Recurrent UTIs: Genomic Insights and the Impact of Glucose and Antibiotics on Biofilm Formation. Microorganisms, 13(8), 1946. https://doi.org/10.3390/microorganisms13081946