Efficacy of Lactobacillus rhamnosus and Its Metabolites to Mitigate the Risk of Foodborne Pathogens in Hydroponic Nutrient Solution
Abstract
1. Introduction
2. Materials and Methods
2.1. Selection of Bacterial Strains and Inoculum Preparation
2.2. Preparation, Inoculation, and Treatment of Hydroponic Nutrient Solutions
2.2.1. Treatment of Pathogens with L. rhamnosus
2.2.2. Treatment of Pathogens with Cell-Free Extracts of L. rhamnosus
2.2.3. Treatment with Conventional Sanitizers
2.3. Measurement of Antimicrobial Efficacy of Different Treatments
2.4. Seedling Gerination and Masurement
2.5. Measurement of Physicochemical Properties
2.6. Experimental Design and Data Analysis
3. Results
3.1. Effect of Treatments on Test Organisms
3.1.1. Kinetics of Tested Bacteria in Hydroponic Nutrient Solution
3.1.2. Effect of Cell-Free Extract of L. rhamnosus on Test Organisms
3.1.3. Effect of Conventional Sanitizers on Test Organisms
3.2. Effect of Antimicrobial Treatments on Plant Growth
3.3. Physicochemical Properties of Hydroponic Nutrient Solution
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carstens, C.K.; Salazar, J.K.; Darkoh, C. Multistate Outbreaks of Foodborne Illness in the United States Associated with Fresh Produce From 2010 to 2017. Front. Microbiol. 2019, 10, 2667. [Google Scholar] [CrossRef] [PubMed]
- Srivani, P.; Manjula, S.H. A controlled environment agriculture with hydroponics: Variants, parameters, methodologies and challenges for smart farming. In Proceedings of the 2019 Fifteenth International Conference on Information Processing (ICINPRO), Bengaluru, India, 20–22 December 2019; pp. 1–8. [Google Scholar]
- Benke, K.; Tomkins, B. Future food-production systems: Vertical farming and controlled-environment agriculture. Sustain. Sci. Pract. Policy 2017, 13, 13–26. [Google Scholar] [CrossRef]
- Lee, S.; Lee, J. Beneficial bacteria and fungi in hydroponic systems: Types and characteristics of hydroponic food production methods. Sci. Hortic. 2015, 195, 206–215. [Google Scholar] [CrossRef]
- Sardare, M.D.; Admane, S.V. A review on plant without soil-hydroponics. Int. J. Res. Eng. Technol. 2013, 2, 299–304. [Google Scholar]
- McClure, M.; Whitney, B.; Gardenhire, I.; Crosby, A.; Wellman, A.; Patel, K.; McCormic, Z.D.; Gieraltowski, L.; Gollarza, L.; Low, M.S.F.; et al. An Outbreak Investigation of Salmonella Typhimurium Illnesses in the United States Linked to Packaged Leafy Greens Produced at a Controlled Environment Agriculture Indoor Hydroponic Operation—2021. J. Food Prot. 2023, 86, 100079. [Google Scholar] [CrossRef]
- Illic, S.; Moodispaw, M.R.; Madden, L.V.; Lewis Ivey, M.L. Lettuce Contamination and Survival of Salmonella Typhimurium and Listeria monocytogenes in Hydroponic Nutrient Film Technique Systems. Foods 2022, 11, 3508. [Google Scholar] [CrossRef] [PubMed]
- Son, J.E.; Kim, H.J.; Ahn, T.I. Hydroponic systems. In Plant Factory; Elsevier: Amsterdam, The Netherlands, 2020; pp. 273–283. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Deering, A.J.; Kim, H.-J. The occurrence of shiga toxin-producing E. coli in aquaponic and hydroponic systems. Horticulturae 2020, 6, 1. [Google Scholar] [CrossRef]
- Scattolini, S.; D’Angelantonio, D.; Di Lollo, V.; Mancini, V.; Serio, A.; Centorotola, G.; Di Marzio, V.; Olivieri, S.; Pomilio, F.; Aprea, G. Root internalization of Salmonella Typhimurium in basil plants. Eur. J. Public Health 2020, 30, ckaa165.871. [Google Scholar] [CrossRef]
- FDA. Factors Potentially Contributing to the Contamination of Packaged Leafy Greens Implicated in the Outbreak of Salmonella Typhimurium During the Summer of 2021; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2022. Available online: https://www.fda.gov/food/outbreaks-foodborne-illness/factors-potentially-contributing-contamination-packaged-leafy-greens-implicated-outbreak-salmonella (accessed on 7 January 2023).
- Lykogianni, M.; Bempelou, E.; Karavidas, I.; Anagnostopoulos, C.; Aliferis, K.A.; Savvas, D. Impact of Sodium Hypochlorite Applied as Nutrient Solution Disinfectant on Growth, Nutritional Status, Yield, and Consumer Safety of Tomato (Solanum lycopersicum L.) Fruit Produced in a Soilless Cultivation. Horticulturae 2023, 9, 352. [Google Scholar] [CrossRef]
- Albolafio, S.; Marín, A.; Allende, A.; García, F.; Simón-Andreu, P.J.; Soler, M.A.; Gil, M.I. Strategies for mitigating chlorinated disinfection byproducts in wastewater treatment plants. Chemosphere 2022, 288, 132583. [Google Scholar] [CrossRef]
- Tsunedomi, A.; Miyawaki, K.; Masamura, A.; Nakahashi, M.; Mawatari, K.; Shimohata, T.; Uebanso, T.; Kinouchi, Y.; Akutagawa, M.; Emoto, T.; et al. UVA-LED device to disinfect hydroponic nutrient solution. J. Med. Investig. 2018, 65, 171–176. [Google Scholar] [CrossRef]
- Laury-Shaw, A.; Gragg, S.E.; Echeverry, A.; Brashears, M.M. Survival of Escherichia coli O157:H7 after application of lactic acid bacteria: Survival of Escherichia coli O157:H7 after application of lactic acid bacteria. J. Sci. Food Agric. 2019, 99, 1548–1553. [Google Scholar] [CrossRef]
- Patel, S.; Majumder, A.; Goyal, A. Potentials of Exopolysaccharides from Lactic Acid Bacteria. Indian J. Microbiol. 2012, 52, 3–12. [Google Scholar] [CrossRef]
- Zapaśnik, A.; Sokołowska, B.; Bryła, M. Role of Lactic Acid Bacteria in Food Preservation and Safety. Foods 2022, 11, 1283. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, H.A.; Wilke, T.; Erdmann, R. Efficacy of bacteriocin-containing cell-free culture supernatants from lactic acid bacteria to control Listeria monocytogenes in food. Int. J. Food Microbiol. 2011, 146, 192–199. [Google Scholar] [CrossRef]
- Aprea, G.; Del Matto, I.; Tucci, P.; Marino, L.; Scattolini, S.; Rossi, F. In Vivo Functional Properties of Dairy Bacteria. Microorganisms 2023, 11, 1787. [Google Scholar] [CrossRef] [PubMed]
- Martín, I.; Rodríguez, A.; Delgado, J.; Córdoba, J.J. Strategies for Biocontrol of Listeria monocytogenes Using Lactic Acid Bacteria and Their Metabolites in Ready-to-Eat Meat- and Dairy-Ripened Products. Foods 2022, 11, 542. [Google Scholar] [CrossRef]
- Dejene, F.; Regasa Dadi, B.; Tadesse, D. In Vitro Antagonistic Effect of Lactic Acid Bacteria Isolated from Fermented Beverage and Finfish on Pathogenic and Foodborne Pathogenic Microorganism in Ethiopia. Int. J. Microbiol. 2021, 2021, e5370556. [Google Scholar] [CrossRef]
- Lanciotti, R.; Patrignani, F.; Bagnolini, F.; Guerzoni, M.E.; Gardini, F. Evaluation of diacetyl antimicrobial activity against Escherichia coli, Listeria monocytogenes and Staphylococcus aureus. Food Microbiol. 2003, 20, 537–543. [Google Scholar] [CrossRef]
- Arellano-Ayala, K.; Ascencio-Valle, F.J.; Gutiérrez-González, P.; Estrada-Girón, Y.; Torres-Vitela, M.R.; Macías-Rodríguez, M.E. Hydrophobic and adhesive patterns of lactic acid bacteria and their antagonism against foodborne pathogens on tomato surface (Solanum lycopersicum L.). J. Appl. Microbiol. 2020, 129, 876–891. [Google Scholar] [CrossRef]
- Trias, R.; Bañeras, L.; Badosa, E.; Montesinos, E. Bioprotection of Golden Delicious apples and Iceberg lettuce against foodborne bacterial pathogens by lactic acid bacteria. Int. J. Food Microbiol. 2008, 123, 50–60. [Google Scholar] [CrossRef]
- Iglesias, M.B.; Abadias, M.; Anguera, M.; Sabata, J.; Viñas, I. Antagonistic effect of probiotic bacteria against foodborne pathogens on fresh-cut pear. LWT—Food Sci. Technol. 2017, 81, 243–249. [Google Scholar] [CrossRef]
- Avery, L.M.; Williams, A.P.; Killham, K.; Jones, D.L. Survival of Escherichia coli O157:H7 in waters from lakes, rivers, puddles and animal-drinking troughs. Sci. Total Environ. 2008, 389, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Kohestani, M.; Moradi, M.; Tajik, H.; Badali, A. Effects of cell-free supernatant of Lactobacillus acidophilus LA5 and Lactobacillus casei 431 against planktonic form and biofilm of Staphylococcus aureus. Vet. Res. Forum Online First 2018, 9, 301–306. [Google Scholar] [CrossRef]
- Xylia, P.; Chrysargyris, A.; Botsaris, G.; Skandamis, P.; Tzortzakis, N. Salmonella Enteritidis survival in different temperatures and nutrient solution pH levels in hydroponically grown lettuce. Food Microbiol. 2022, 102, 103898. [Google Scholar] [CrossRef]
- Li, Y.; Zwe, Y.H.; Tham, C.A.T.; Zou, Y.; Li, W.; Li, D. Fate and mitigation of Salmonella contaminated in lettuce (Lactuca sativa) seeds grown in a hydroponic system. J. Appl. Microbiol. 2022, 132, 1449–1456. [Google Scholar] [CrossRef] [PubMed]
- Coleman, S.M.; Bisha, B.; Newman, S.E.; Bunning, M.; Goodridge, L.D. Transmission and Persistence of Salmonella enterica in Nutrient Solution of Hydroponic Greenhouse Grown Tomatoes. HortScience 2017, 52, 713–718. [Google Scholar] [CrossRef]
- Sharma, M.; Ingram, D.T.; Patel, J.; Millner, P.D.; Wang, X.; Hull, A.E.; Donnenberg, M.S. A Novel Approach to Investigate the Uptake and Internalization of Escherichia coli O157:H7 in Spinach Cultivated in Soil and Hydroponic Medium†. J. Food Prot. 2009, 72, 1513–1520. [Google Scholar] [CrossRef]
- Bernstein, N.; Sela, S.; Neder-Lavon, S. Assessment of Contamination Potential of Lettuce by Salmonella enterica Serovar Newport Added to the Plant Growing Medium. J. Food Prot. 2007, 70, 1717–1722. [Google Scholar] [CrossRef]
- Shaw, A.; Helterbran, K.; Evans, M.R.; Currey, C. Growth of Escherichia coli O157:H7, Non-O157 Shiga Toxin–Producing Escherichia coli, and Salmonella in Water and Hydroponic Fertilizer Solutions. J. Food Prot. 2016, 79, 2179–2183. [Google Scholar] [CrossRef]
- Puligundla, P.; Lim, S. Biocontrol Approaches against Escherichia coli O157:H7 in Foods. Foods 2022, 11, 756. [Google Scholar] [CrossRef]
- Hoagland, L.; Ximenes, E.; Ku, S.; Ladisch, M. Foodborne pathogens in horticultural production systems: Ecology and mitigation. Sci. Hortic. 2018, 236, 192–206. [Google Scholar] [CrossRef]
- Machado-Moreira, B.; Richards, K.; Abram, F.; Brennan, F.; Gaffney, M.; Burgess, C.M. Survival of Escherichia coli and Listeria innocua on Lettuce after Irrigation with Contaminated Water in a Temperate Climate. Foods 2021, 10, 2072. [Google Scholar] [CrossRef]
- Milillo, S.R.; Friedly, E.C.; Saldivar, J.C.; Muthaiyan, A.; O’bryan, C.; Crandall, P.G.; Johnson, M.G.; Ricke, S.C. A Review of the Ecology, Genomics, and Stress Response of Listeria innocua and Listeria monocytogenes. Crit. Rev. Food Sci. Nutr. 2012, 52, 712–725. [Google Scholar] [CrossRef]
- Castellano, P.; Pérez Ibarreche, M.; Blanco Massani, M.; Fontana, C.; Vignolo, G. Strategies for Pathogen Biocontrol Using Lactic Acid Bacteria and Their Metabolites: A Focus on Meat Ecosystems and Industrial Environments. Microorganisms 2017, 5, 38. [Google Scholar] [CrossRef]
- Serna-Cock, L.; Rojas-Dorado, M.; Ordoñez-Artunduaga, D.; García-Salazar, A.; García-González, E.; Aguilar, C.N. Crude extracts of metabolites from co-cultures of lactic acid bacteria are highly antagonists of Listeria monocytogenes. Heliyon 2019, 5, e02448. [Google Scholar] [CrossRef]
- Russo, P.; De Chiara, M.L.V.; Vernile, A.; Amodio, M.L.; Arena, M.P.; Capozzi, V.; Massa, S.; Spano, G. Fresh-Cut Pineapple as a New Carrier of Probiotic Lactic Acid Bacteria. BioMed Res. Int. 2014, 2014, 309183. [Google Scholar] [CrossRef]
- Dimitrijević, R.; Stojanović, M.; Živković, I.; Petersen, A.; Jankov, R.M.; Dimitrijević, L.; Gavrović-Jankulović, M. The identification of a low molecular mass bacteriocin, rhamnosin A, produced by Lactobacillus rhamnosus strain 68: Ident of rhamn A from Lactobacillus rhamnosus. J. Appl. Microbiol. 2009, 107, 2108–2115. [Google Scholar] [CrossRef]
- De Keersmaecker, S.C.J.; Verhoeven, T.L.A.; Desair, J.; Marchal, K.; Vanderleyden, J.; Nagy, I. Strong antimicrobial activity of Lactobacillus rhamnosus GG against Salmonella typhimurium is due to accumulation of lactic acid. FEMS Microbiol. Lett. 2006, 259, 89–96. [Google Scholar] [CrossRef]
- Xu, C.; Fu, Y.; Liu, F.; Liu, Z.; Ma, J.; Jiang, R.; Song, C.; Jiang, Z.; Hou, J. Purification and antimicrobial mechanism of a novel bacteriocin produced by Lactobacillus rhamnosus 1.0320. LWT 2021, 137, 110338. [Google Scholar] [CrossRef]
- Vougiouklaki, D.; Tsironi, T.; Papaparaskevas, J.; Halvatsiotis, P.; Houhoula, D. Characterization of Lacticaseibacillus rhamnosus, Levilactobacillus brevis and Lactiplantibacillus plantarum Metabolites and Evaluation of Their Antimicrobial Activity against Food Pathogens. Appl. Sci. 2022, 12, 660. [Google Scholar] [CrossRef]
- Kalmokoff, M.L.; Banerjee, S.K.; Cyr, T.; Hefford, M.A.; Gleeson, T. Identification of a New Plasmid-Encodedsec-Dependent Bacteriocin Identification of Listeria innocua 743. Appl. Environ. Microbiol. 2001, 67, 4041–4047. [Google Scholar] [CrossRef]
- Webb, L.; Ma, L.; Lu, X. Impact of lactic acid bacteria on the control of Listeria monocytogenes in ready-to-eat foods. Food Qual. Saf. 2022, 6, fyac045. [Google Scholar] [CrossRef]
- Kasra-Kermanshahi, R.; Mobarak-Qamsari, E. Inhibition Effect of Lactic Acid Bacteria against Food Born Pathogen, Listeria monocytogenes. Appl. Food Biotechnol. 2015, 2, 11–19. [Google Scholar] [CrossRef]
- Cayanan, D.F.; Dixon, M.; Zheng, Y.; Llewellyn, J. Response of Container-grown Nursery Plants to Chlorine Used to Disinfest Irrigation Water. HortScience 2009, 44, 164–167. [Google Scholar] [CrossRef]
Time (hr) | Temperature (°C) | pH | Electrical Conductivity (µS/m) | Total Dissolved Solids (ppm) | Lactic Acid (%) |
---|---|---|---|---|---|
0 | 23.2 ± 1.4 a | 5.55 ± 0.12 a | 1328.9 ± 14.8 a | 847.5 ± 317.8 a | 0.16 ± 0.06 a |
6 | 23.2 ± 0.4 a | 5.53 ± 0.08 a | 1334.9 ± 21.3 a | 849.5 ± 318.8 a | 0.15 ± 0.02 a |
12 | 22.7 ± 0.4 a | 5.57 ± 0.12 a | 1330.0 ± 50.9 a | 956.7 ± 20.9 a | 0.12 ± 0.00 a |
24 | 22.9 ± 0.5 a | 5.51 ± 0.24 a | 1331.3 ± 23.2 a | 952.2 ± 18.7 a | 0.12 ± 0.02 a |
48 | 23.3 ± 0.9 a | 5.57 ± 0.11 a | 1322.6 ± 35.9 a | 941.8 ± 37.9 a | 0.12 ± 0.02 a |
72 | 22.8 ± 0.8 a | 5.58 ± 0.11 a | 1358.7 ± 42.5 a | 949.7 ± 30.5 a | 0.12 ± 0.03 a |
96 | 22.9 ± 0.3 a | 5.58 ± 0.10 a | 1341.1 ± 24.1 a | 954.8 ± 21.2 a | 0.13 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oginni, E.; Choudhury, R.; Yemmireddy, V. Efficacy of Lactobacillus rhamnosus and Its Metabolites to Mitigate the Risk of Foodborne Pathogens in Hydroponic Nutrient Solution. Microorganisms 2025, 13, 1858. https://doi.org/10.3390/microorganisms13081858
Oginni E, Choudhury R, Yemmireddy V. Efficacy of Lactobacillus rhamnosus and Its Metabolites to Mitigate the Risk of Foodborne Pathogens in Hydroponic Nutrient Solution. Microorganisms. 2025; 13(8):1858. https://doi.org/10.3390/microorganisms13081858
Chicago/Turabian StyleOginni, Esther, Robin Choudhury, and Veerachandra Yemmireddy. 2025. "Efficacy of Lactobacillus rhamnosus and Its Metabolites to Mitigate the Risk of Foodborne Pathogens in Hydroponic Nutrient Solution" Microorganisms 13, no. 8: 1858. https://doi.org/10.3390/microorganisms13081858
APA StyleOginni, E., Choudhury, R., & Yemmireddy, V. (2025). Efficacy of Lactobacillus rhamnosus and Its Metabolites to Mitigate the Risk of Foodborne Pathogens in Hydroponic Nutrient Solution. Microorganisms, 13(8), 1858. https://doi.org/10.3390/microorganisms13081858