Three-Dimensional Structure of Biofilm Formed on Glass Surfaces Revealed Using Scanning Ion Conductance Microscopy Combined with Confocal Laser Scanning Microscopy
Abstract
1. Introduction
2. Materials and Methods
2.1. Biofilm Formation
2.2. Fixation and Staining of Biofilms for Confocal Laser Scanning Microscopy (CLSM) and CLSM Observations
2.3. Scanning Ion Conductance Microscopy (SICM) Observations
3. Results and Discussion
3.1. Revealing Biofilm Morphology Using Scanning Ion Conductance Microscopy (SICM)
3.2. Revealing the Biofilm Structure Using Scanning Ion Conductance Microscopy (SICM) Combined with Confocal Laser Scanning Microscopy (CLSM)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martino, P.D. Extracellular polymeric substances, a key element in understanding biofilm phenotype. AIMS Microbiol. 2018, 4, 274–288. [Google Scholar] [CrossRef]
- Park, S.-H.; Kang, D.-H. Influence of surface properties of produce and food contact surfaces on the efficacy of chlorine dioxide gas for the inactivation of foodborne pathogens. Food Control 2017, 81, 88–95. [Google Scholar] [CrossRef]
- Pinto, L.; Cervellieri, S.; Netti, T.; Lippolis, V.; Baruzzi, F. Antibacterial Activity of Oregano (Origanum vulgare L.) Essential Oil Vapors against Microbial Contaminants of Food-Contact Surfaces. Antibiotics 2024, 13, 371. [Google Scholar] [CrossRef]
- Preedy, E.; Perni, S.; Nipiĉ, D.; Bohinc, K.; Prokopovich, P. Surface Roughness Mediated Adhesion Forces between Borosilicate Glass and Gram-Positive Bacteria. Langmuir 2014, 30, 9466–9476. [Google Scholar] [CrossRef]
- Page, K.; Wilson, M.; Mordan, N.J.; Chrzanowski, W.; Knowles, J.; Parkin, I.P. Study of the adhesion of Staphylococcus aureus to coated glass substrates. J. Mater. Sci. 2011, 46, 6355–6363. [Google Scholar] [CrossRef]
- Mitik-Dineva, N.; Wang, J.; Truong, V.K.; Stoddart, P.; Malherbe, F.; Crawford, R.J.; Ivanov, E.P. Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus Attachment Patterns on Glass Surfaces with Nanoscale Roughness. Curr. Microbiol. 2009, 58, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Mitik-Dineva, N.; Wang, J.; Truong, V.K.; Stoddart, P.R.; Malherbe, F.; Crawford, R.J.; Ivanova, E.P. Differences in colonisation of five marine bacteria on two types of glass surfaces. Biofouling 2009, 25, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Xavier, J.B.; White, D.C.; Almeida, J.S. Automated biofilm morphology quantification from confocal laser scanning microscopy imaging. Water Sci. Technol. 2003, 47, 31–37. [Google Scholar] [CrossRef]
- Yerly, J.; Hu, Y.; Jones, S.M.; Martinuzzi, R.J. A two-step procedure for automatic and accurate segmentation of volumetric CLSM biofilm images. J. Microbiol. Methods 2007, 70, 424–433. [Google Scholar] [CrossRef]
- Yawata, Y.; Nomura, N.; Uchiyama, H. Development of a Novel Biofilm Continuous Culture Method for Simultaneous Assessment of Architecture and Gaseous Metabolite Production. Appl. Environ. Microbiol. 2008, 74, 5429–5435. [Google Scholar] [CrossRef]
- Böl, M.; Möhle, R.B.; Haesner, M.; Neu, T.R.; Horn, H.; Krull, R. 3D finite element model of biofilm detachment using real biofilm structures from CLSM data. Biotechnol. Bioeng. 2008, 103, 177–186. [Google Scholar] [CrossRef]
- Wagner, M.; Ivleva, N.P.; Haisch, C.; Niessner, R.; Horn, H. Combined use of confocal laser scanning microscopy (CLSM) and Raman microscopy (RM): Investigations on EPS–Matrix. Water Res. 2009, 43, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Yawata, Y.; Toda, K.; Setoyama, E.; Fukuda, J.; Suzuki, H.; Uchiyama, H.; Nomura, N. Monitoring biofilm development in a microfluidic device using modified confocal reflection microscopy. J. Biosci. Bioeng. 2010, 110, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Bridier, A.; Dubois-Brissonnet, F.; Boubetra, A.; Thomas, V.; Briandet, R. The biofilm architecture of sixty opportunistic pathogens deciphered using a high throughput CLSM method. J. Microbiol. Methods 2010, 82, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Bridier, A.; Meylheuc, T.; Briandet, R. Realistic representation of Bacillus subtilis biofilms architecture using combined microscopy (CLSM, ESEM and FESEM). Micron 2013, 48, 65–69. [Google Scholar] [CrossRef]
- Saingam, P.; Xi, J.; Xu, Y.; Hu, H.-Y. Investigation of the characteristics of biofilms grown in gas-phase biofilters with and without ozone injection by CLSM technique. Appl. Microbiol. Biotechnol. 2016, 100, 2023–2031. [Google Scholar] [CrossRef]
- Al-Adawi, A.S.; Gaylarde, C.C.; Sunner, J.; Beech, I.B. Transfer of bacteria between stainless steel and chicken meat: A CLSM and DGGE study of biofilms. AIMS Microbiol. 2016, 2, 340–358. [Google Scholar] [CrossRef]
- Schlafer, S.; Meyer, R.L. Confocal microscopy imaging of the biofilm matrix. J. Microbiol. Methods 2017, 138, 50–59. [Google Scholar] [CrossRef]
- Wagner, M.; Horn, H. Optical coherence tomography in biofilm research: A comprehensive review. Biotechnol. Bioeng. 2017, 114, 1386–1402. [Google Scholar] [CrossRef]
- Reichhardt, C.; Parsek, M.R. Confocal Laser Scanning Microscopy for Analysis of Pseudomonas aeruginosa Biofilm Architecture and Matrix Localization. Front. Microbiol. 2019, 10, 677. [Google Scholar] [CrossRef]
- Takahashi, Y.; Shevchuk, A.I.; Novak, P.; Murakami, Y.; Shiku, H.; Korchev, Y.E.; Matsue, T. Simultaneous Noncontact Topography and Electrochemical Imaging by SECM/SICM Featuring Ion Current Feedback Regulation. J. Am. Chem. Soc. 2010, 132, 10118–10126. [Google Scholar] [CrossRef]
- Anariba, F.; Anh, J.H.; Jung, G.-E.; Cho, N.-J.; Cho, S.-J. Biophysical applications of scanning ion conductance microscopy (SICM). Mod. Phys. Lett. B 2012, 26, 1130003. [Google Scholar] [CrossRef]
- Iwata, F.; Yamazaki, K.; Ishizaki, K.; Ushiki, T. Local electroporation of a single cell using a scanning ion conductance microscope. Jpn. J. Appl. Phys. 2014, 53, 036701. [Google Scholar] [CrossRef]
- Nakajima, M.; Mizutani, Y.; Iwata, F.; Ushiki, T. Scanning ion conductance microscopy for visualizing the three-dimensional surface topography of cells and tissues. Semin. Cell Dev. Biol. 2018, 73, 125–131. [Google Scholar] [CrossRef]
- Takahashi, Y.; Zhou, Y.; Miyamoto, T.; Higashi, H.; Nakamichi, N.; Takeda, Y.; Kato, Y.; Korchev, Y.; Fukuma, T. High-speed SICM for the visualization of nanoscale dynamic structural changes in hippocampal neurons. Anal. Chem. 2020, 92, 2159–2167. [Google Scholar] [CrossRef]
- Iwata, F.; Shirasawa, T.; Mizutani, Y.; Ushiki, T. Scanning ion-conductance microscopy with a double-barreled nanopipette for topographic imaging of charged chromosomes. Microscopy 2021, 70, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Cremin, K.; Jones, B.A.; Teahan, J.; Meloni, G.N.; Perry, D.; Zerfass, C.; Asally, M.; Soyer, O.S.; Unwin, P.R. Scanning Ion Conductance Microscopy Reveals Differences in the Ionic Environments of Gram-Positive and Negative Bacteria. Anal. Chem. 2020, 92, 16024–16032. [Google Scholar] [CrossRef] [PubMed]
- Rabinowitz, J.; Hartel, A.J.W.; Dayton, H.; Fabbri, J.D.; Jo, J.; Dietrich, L.E.P.; Shepard, K.L. Charge Mapping of Pseudomonas aeruginosa Using a Hopping Mode Scanning Ion Conductance Microscopy Technique. Anal. Chem. 2023, 95, 5285–5292. [Google Scholar] [CrossRef] [PubMed]
- Hirai, N.; Iwata, F.; Kanematsu, H. In-situ observation of biofilms in physiological salt water by scanning ion conductance microscopy. In Monitoring Artificial Materials and Microbes in Marine Ecosystems: Interactions and Assessment Methods, Marine Ecology: Current and Future Developments; Takahashi, T., Ed.; Bentham Science: Singapore, Singapore, 2020; Volume 2, pp. 137–147. [Google Scholar] [CrossRef]
- Yip, E.S.; Geszvain, K.; DeLoney-Marino, C.R.; Visick, K.L. The symbiosis regulator RscS controls the syp gene locus, biofilm formation and symbiotic aggregation by Vibrio fischeri. Mol. Microbiol. 2006, 62, 1586–1600. [Google Scholar] [CrossRef] [PubMed]
- Geszvain, K.; Visick, K.L. The Hybrid Sensor Kinase RscS Integrates Positive and Negative Signals to Modulate Biofilm Formation in Vibrio fischeri. J. Bacteriol. 2008, 190, 4437–4446. [Google Scholar] [CrossRef]
- Hussa, E.A.; Darnell, C.L.; Visick, K.L. RscS functions upstream of SypG to control the syp locus and biofilm formation in Vibrio fischeri. J. Bacteriol. 2008, 190, 4576–4583. [Google Scholar] [CrossRef]
- Darnell, C.L.; Hussa, E.A.; Visick, K.L. The putative hybrid sensor kinase SypF coordinates biofilm formation in Vibrio fischeri by acting upstream of two response regulators, SypG and VpsR. J. Bacteriol. 2008, 190, 4941–4950. [Google Scholar] [CrossRef]
- Shibata, S.; Yip, E.S.; Quirke, K.P.; Ondrey, J.M.; Visick, K.L. Roles of the Structural Symbiosis Polysaccharide (syp) Genes in Host Colonization, Biofilm Formation, and Polysaccharide Biosynthesis in Vibrio fischeri. J. Bacteriol. 2012, 194, 6736–6747. [Google Scholar] [CrossRef]
- Esin, J.J.; Visick, K.L.; Kroken, A.R. Calcium signaling controls early stage biofilm formation and dispersal in Vibrio fischeri. J. Bacteriol. 2025, 207, e00077-25. [Google Scholar] [CrossRef]
- Beveridge, T. Use of the Gram stain in microbiology. Biotech. Histochem. 2001, 76, 111–118. [Google Scholar] [CrossRef]
- Kapuscinski, J. DAPI: A DNA-Specific Fluorescent Probe. Biotech. Histochem. 1995, 70, 220–233. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirai, N.; Miwa, Y.; Hattori, S.; Kanematsu, H.; Ogawa, A.; Iwata, F. Three-Dimensional Structure of Biofilm Formed on Glass Surfaces Revealed Using Scanning Ion Conductance Microscopy Combined with Confocal Laser Scanning Microscopy. Microorganisms 2025, 13, 1779. https://doi.org/10.3390/microorganisms13081779
Hirai N, Miwa Y, Hattori S, Kanematsu H, Ogawa A, Iwata F. Three-Dimensional Structure of Biofilm Formed on Glass Surfaces Revealed Using Scanning Ion Conductance Microscopy Combined with Confocal Laser Scanning Microscopy. Microorganisms. 2025; 13(8):1779. https://doi.org/10.3390/microorganisms13081779
Chicago/Turabian StyleHirai, Nobumitsu, Yuhei Miwa, Shunta Hattori, Hideyuki Kanematsu, Akiko Ogawa, and Futoshi Iwata. 2025. "Three-Dimensional Structure of Biofilm Formed on Glass Surfaces Revealed Using Scanning Ion Conductance Microscopy Combined with Confocal Laser Scanning Microscopy" Microorganisms 13, no. 8: 1779. https://doi.org/10.3390/microorganisms13081779
APA StyleHirai, N., Miwa, Y., Hattori, S., Kanematsu, H., Ogawa, A., & Iwata, F. (2025). Three-Dimensional Structure of Biofilm Formed on Glass Surfaces Revealed Using Scanning Ion Conductance Microscopy Combined with Confocal Laser Scanning Microscopy. Microorganisms, 13(8), 1779. https://doi.org/10.3390/microorganisms13081779