Prebiotic Xylo-Oligosaccharides Modulate the Gut Microbiome to Improve Innate Immunity and Gut Barrier Function and Enhance Performance in Piglets Experiencing Post-Weaning Diarrhoea
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Experimental Animals and Trial Design
2.3. Sample Collection
2.4. DNA Isolation and PCR Amplification of 16S rRNA Gene Sequences
2.5. Microbiota Diversity Analysis
2.6. Salmonella Enrichment
2.7. Quantification of Lactobacillus HSP60 and Salmonella invA Genes
2.8. RNA Isolation, RT-qPCR, and Gene Expression Analysis
2.9. Histology Analysis
2.10. Statistical Analyses
3. Results
3.1. Production Performance
3.2. GIT Microbiota Diversity
3.3. Performance and Microbiota Diversity Correlation
3.4. GIT Microbiota Composition
3.5. Salmonella Quantification and Correlation with Alpha Diversity
3.6. Histology and Gut Architecture
3.7. Immunomodulation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OECD; Food and Agriculture Organization of the United Nations. OECD-FAO Agricultural Outlook 2021–2030; OECD-FAO Agricultural Outlook; OECD: Paris, France, 2021. [Google Scholar] [CrossRef]
- Dividich, J.L.; Rooke, J.A.; Herpin, P. Nutritional and Immunological Importance of Colostrum for the New-Born Pig. J. Agric. Sci. 2005, 143, 469–485. [Google Scholar] [CrossRef]
- Gormley, A.; Garavito-Duarte, Y.; Kim, S.W. The Role of Milk Oligosaccharides in Enhancing Intestinal Microbiota, Intestinal Integrity, and Immune Function in Pigs: A Comparative Review. Biology 2024, 13, 663. [Google Scholar] [CrossRef]
- Moeser, A.J.; Ryan, K.A.; Nighot, P.K.; Blikslager, A.T. Gastrointestinal Dysfunction Induced by Early Weaning Is Attenuated by Delayed Weaning and Mast Cell Blockade in Pigs. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 293, G413–G421. [Google Scholar] [CrossRef] [PubMed]
- Lallès, J.-P.; Boudry, G.; Favier, C.; Floc’h, N.L.; Luron, I.; Montagne, L.; Oswald, I.P.; Pié, S.; Piel, C.; Sève, B. Gut Function and Dysfunction in Young Pigs: Physiology. Anim. Res. 2004, 53, 301–316. [Google Scholar] [CrossRef]
- Gresse, R.; Chaucheyras-Durand, F.; Fleury, M.A.; Van de Wiele, T.; Forano, E.; Blanquet-Diot, S. Gut Microbiota Dysbiosis in Postweaning Piglets: Understanding the Keys to Health. Trends Microbiol. 2017, 25, 851–873. [Google Scholar] [CrossRef] [PubMed]
- Pié, S.; Lallès, J.P.; Sève, B.; Blazy, F.; Laffitte, J.; Oswald, I.P. Weaning Is Associated with an Upregulation of Expression of Inflammatory Cytokines in the Intestine of Piglets. J. Nutr. 2004, 134, 641–647. [Google Scholar] [CrossRef]
- Lallès, J.-P.; Bosi, P.; Smidt, H.; Stokes, C.R. Nutritional Management of Gut Health in Pigs around Weaning. Proc. Nutr. Soc. 2007, 66, 260–268. [Google Scholar] [CrossRef]
- Cromwell, G.L. Why and How Antibiotics Are Used in Swine Production. Anim. Biotechnol. 2002, 13, 7–27. [Google Scholar] [CrossRef]
- Han, Y.; Zhan, T.; Tang, C.; Zhao, Q.; Dansou, D.M.; Yu, Y.; Barbosa, F.F.; Zhang, J. Effect of Replacing In-Feed Antibiotic Growth Promoters with a Combination of Egg Immunoglobulins and Phytomolecules on the Performance, Serum Immunity, and Intestinal Health of Weaned Pigs Challenged with Escherichia Coli K88. Animals 2021, 11, 1292. [Google Scholar] [CrossRef]
- EC. Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on Additives for Use in Animal Nutrition; EC: Brussels, Belgium, 2003. [Google Scholar]
- Gibson, G.R.; Roberfroid, M.B. Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
- de Figueiredo, F.C.; de Barros Ranke, F.F.; de Oliva-Neto, P. Evaluation of Xylooligosaccharides and Fructooligosaccharides on Digestive Enzymes Hydrolysis and as a Nutrient for Different Probiotics and Salmonella Typhimurium. LWT 2020, 118, 108761. [Google Scholar] [CrossRef]
- Mäkeläinen, H.; Forssten, S.; Saarinen, M.; Stowell, J.; Rautonen, N.; Ouwehand, A. Xylo-Oligosaccharides Enhance the Growth of Bifidobacteria and Bifidobacterium Lactis in a Simulated Colon Model. Benef. Microbes 2010, 1, 81–91. [Google Scholar] [CrossRef]
- Sun, F.; Li, H.; Sun, Z.; Liu, L.; Zhang, X.; Zhao, J. Effect of Arabinoxylan and Xylo-Oligosaccharide on Growth Performance and Intestinal Barrier Function in Weaned Piglets. Animals 2023, 13, 964. [Google Scholar] [CrossRef]
- Su, J.; Zhang, W.; Ma, C.; Xie, P.; Blachier, F.; Kong, X. Dietary Supplementation with Xylo-Oligosaccharides Modifies the Intestinal Epithelial Morphology, Barrier Function and the Fecal Microbiota Composition and Activity in Weaned Piglets. Front. Vet. Sci. 2021, 8, 680208. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, Y.; Zhong, R.; Liu, L.; Lin, C.; Xiao, L.; Chen, L.; Zhang, H.; Beckers, Y.; Everaert, N. Effects of Xylo-Oligosaccharides on Growth and Gut Microbiota as Potential Replacements for Antibiotic in Weaning Piglets. Front. Microbiol. 2021, 12, 641172. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.T.; Duarte, M.E.; Holanda, D.M.; Kim, S.W. Friend or Foe? Impacts of Dietary Xylans, Xylooligosaccharides, and Xylanases on Intestinal Health and Growth Performance of Monogastric Animals. Animals 2021, 11, 609. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xie, Y.; Zhong, R.; Han, H.; Liu, L.; Chen, L.; Zhang, H.; Beckers, Y.; Everaert, N. Effects of Graded Levels of Xylo-Oligosaccharides on Growth Performance, Serum Parameters, Intestinal Morphology, and Intestinal Barrier Function in Weaned Piglets. J. Anim. Sci. 2021, 99, skab183. [Google Scholar] [CrossRef]
- Liu, J.B.; Cao, S.C.; Liu, J.; Xie, Y.N.; Zhang, H.F. Effect of Probiotics and Xylo-Oligosaccharide Supplementation on Nutrient Digestibility, Intestinal Health and Noxious Gas Emission in Weanling Pigs. Anim. Biosci. 2018, 31, 1660–1669. [Google Scholar] [CrossRef]
- Pang, J.; Zhou, X.; Ye, H.; Wu, Y.; Wang, Z.; Lu, D.; Wang, J.; Han, D. The High Level of Xylooligosaccharides Improves Growth Performance in Weaned Piglets by Increasing Antioxidant Activity, Enhancing Immune Function, and Modulating Gut Microbiota. Front. Nutr. 2021, 8, 764556. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, K.; Yu, C.; Wang, L.; Liang, T.; Zhu, H.; Xu, X.; Liu, Y. Xylooligosaccharide Attenuates Lipopolysaccharide-Induced Intestinal Injury in Piglets via Suppressing Inflammation and Modulating Cecal Microbial Communities. Anim. Nutr. 2021, 7, 609–620. [Google Scholar] [CrossRef]
- Liu, G.; Sun, W.; Zhang, R.; Shen, F.; Jia, G.; Zhao, H.; Chen, X.; Wang, J. Dietary Xylo-Oligosaccharides Alleviates LPS-Induced Intestinal Injury via Endoplasmic Reticulum-Mitochondrial System Pathway in Piglets. J. Anim. Sci. 2024, 102, skae238. [Google Scholar] [CrossRef]
- Pang, J.; Wang, S.; Wang, Z.; Wu, Y.; Zhang, X.; Pi, Y.; Han, D.; Zhang, S.; Wang, J. Xylo-Oligosaccharide Alleviates Salmonella Induced Inflammation by Stimulating Bifidobacterium Animalis and Inhibiting Salmonella Colonization. FASEB J. 2021, 35, e21977. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Stanley, J.S.; Mellits, K.H.; Connerton, I.F. Prebiotic Galacto-Oligosaccharide and Xylo-Oligosaccharide Feeds in Pig Production: Microbiota Manipulation, Pathogen Suppression, Gut Architecture and Immunomodulatory Effects. Appl. Microbiol. 2025, 5, 42. [Google Scholar] [CrossRef]
- Berndtson, W.E. A Simple, Rapid and Reliable Method for Selecting or Assessing the Number of Replicates for Animal Experiments. J. Anim. Sci. 1991, 69, 67–76. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; Bastos, M.D.L.; Bories, G.; Chesson, A.; Cocconcelli, P.S.; Flachowsky, G.; et al. Guidance on the Assessment of the Efficacy of Feed Additives. EFSA J. 2018, 16, e05274. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global Patterns of 16S rRNA Diversity at a Depth of Millions of Sequences per Sample. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. S1), 4516–4522. [Google Scholar] [CrossRef]
- Kozich, J.J.; Westcott, S.L.; Baxter, N.T.; Highlander, S.K.; Schloss, P.D. Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform. Appl. Environ. Microbiol. 2013, 79, 5112–5120. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing Mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Pruesse, E.; Quast, C.; Knittel, K.; Fuchs, B.M.; Ludwig, W.; Peplies, J.; Glöckner, F.O. SILVA: A Comprehensive Online Resource for Quality Checked and Aligned Ribosomal RNA Sequence Data Compatible with ARB. Nucleic Acids Res. 2007, 35, 7188–7196. [Google Scholar] [CrossRef]
- Westcott, S.L.; Schloss, P.D. OptiClust, an Improved Method for Assigning Amplicon-Based Sequence Data to Operational Taxonomic Units. mSphere 2017, 2, e00073-17. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.R.; Wang, Q.; Fish, J.A.; Chai, B.; McGarrell, D.M.; Sun, Y.; Brown, C.T.; Porras-Alfaro, A.; Kuske, C.R.; Tiedje, J.M. Ribosomal Database Project: Data and Tools for High Throughput rRNA Analysis. Nucleic Acids Res. 2014, 42, D633–D642. [Google Scholar] [CrossRef]
- Posit team. RStudio: Integrated Development Environment for R; Posit Software, PBC: Boston, MA, USA, 2023; Available online: http://www.posit.co/ (accessed on 4 November 2024).
- R Core Team. R: A Language and Environment for Statistical Computing. In R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2022. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Good, I.J.; Toulmin, G.H. The Number of New Species, and the Increase in Population Coverage, When a Sample Is Increased. Biometrika 1956, 43, 45–63. [Google Scholar] [CrossRef]
- Chao, A. Nonparametric Estimation of the Number of Classes in a Population. Scand. J. Stat. 1984, 11, 265–270. [Google Scholar]
- Magurran, A.E. Measuring Biological Diversity. Available online: https://www.wiley.com/en-gb/Measuring+Biological+Diversity-p-9781118687925 (accessed on 22 August 2023).
- Yue, J.C.; Clayton, M.K. A Similarity Measure Based on Species Proportions. Commun. Stat.—Theory Methods 2005, 34, 2123–2131. [Google Scholar] [CrossRef]
- Bray, J.R.; Curtis, J.T. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349. [Google Scholar] [CrossRef]
- Jaccard, P. Étude Comparative de La Distribution Florale Dans Une Portion Des Alpes et Du Jura. Bull. Soc. Vaud. Sci. Nat. 1901, 37, 547–579. [Google Scholar] [CrossRef]
- Excoffier, L.; Smouse, P.E.; Quattro, J.M. Analysis of Molecular Variance Inferred from Metric Distances among DNA Haplotypes: Application to Human Mitochondrial DNA Restriction Data. Genetics 1992, 131, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.J. A New Method for Non-Parametric Multivariate Analysis of Variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Lin, H.; Peddada, S.D. Analysis of Compositions of Microbiomes with Bias Correction. Nat. Commun. 2020, 11, 3514. [Google Scholar] [CrossRef]
- Fernandes, A.D.; Macklaim, J.M.; Linn, T.G.; Reid, G.; Gloor, G.B. ANOVA-Like Differential Expression (ALDEx) Analysis for Mixed Population RNA-Seq. PLoS ONE 2013, 8, e67019. [Google Scholar] [CrossRef]
- Yin, J.; Li, F.; Kong, X.; Wen, C.; Guo, Q.; Zhang, L.; Wang, W.; Duan, Y.; Li, T.; Tan, Z.; et al. Dietary Xylo-Oligosaccharide Improves Intestinal Functions in Weaned Piglets. Food Funct. 2019, 10, 2701–2709. [Google Scholar] [CrossRef]
- Crespo-Piazuelo, D.; Estellé, J.; Revilla, M.; Criado-Mesas, L.; Ramayo-Caldas, Y.; Óvilo, C.; Fernández, A.I.; Ballester, M.; Folch, J.M. Characterization of Bacterial Microbiota Compositions along the Intestinal Tract in Pigs and Their Interactions and Functions. Sci. Rep. 2018, 8, 12727. [Google Scholar] [CrossRef]
- Han, G.G.; Lee, J.-Y.; Jin, G.-D.; Park, J.; Choi, Y.H.; Chae, B.J.; Kim, E.B.; Choi, Y.-J. Evaluating the Association between Body Weight and the Intestinal Microbiota of Weaned Piglets via 16S rRNA Sequencing. Appl. Microbiol. Biotechnol. 2017, 101, 5903–5911. [Google Scholar] [CrossRef]
- Ding, X.; Lan, W.; Liu, G.; Ni, H.; Gu, J.-D. Exploring Possible Associations of the Intestine Bacterial Microbiome with the Pre-Weaned Weight Gaining Performance of Piglets in Intensive Pig Production. Sci. Rep. 2019, 9, 15534. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, C.; Xie, P.; Zhu, Q.; Wang, X.; Yin, Y.; Kong, X. Gut Microbiota of Newborn Piglets with Intrauterine Growth Restriction Have Lower Diversity and Different Taxonomic Abundances. J. Appl. Microbiol. 2019, 127, 354–369. [Google Scholar] [CrossRef]
- Stecher, B.; Chaffron, S.; Käppeli, R.; Hapfelmeier, S.; Freedrich, S.; Weber, T.C.; Kirundi, J.; Suar, M.; McCoy, K.D.; von Mering, C.; et al. Like Will to Like: Abundances of Closely Related Species Can Predict Susceptibility to Intestinal Colonization by Pathogenic and Commensal Bacteria. PLoS Pathog. 2010, 6, e1000711. [Google Scholar] [CrossRef]
- Karabasanavar, N.; Sivaraman, G.K.; S.P., S.; Nair, A.S.; Vijayan, A.; Rajan, V.; P.S., G. Non-Diarrhoeic Pigs as Source of Highly Virulent and Multidrug-Resistant Non-Typhoidal Salmonella. Braz. J. Microbiol. 2022, 53, 1039–1049. [Google Scholar] [CrossRef]
- Ding, H.; Zhao, X.; Azad, M.A.K.; Ma, C.; Gao, Q.; He, J.; Kong, X. Dietary Supplementation with Bacillus Subtilis and Xylo-Oligosaccharides Improves Growth Performance and Intestinal Morphology and Alters Intestinal Microbiota and Metabolites in Weaned Piglets. Food Funct. 2021, 12, 5837–5849. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tsai, T.; Deng, F.; Wei, X.; Chai, J.; Knapp, J.; Apple, J.; Maxwell, C.V.; Lee, J.A.; Li, Y.; et al. Longitudinal Investigation of the Swine Gut Microbiome from Birth to Market Reveals Stage and Growth Performance Associated Bacteria. Microbiome 2019, 7, 109. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, B.M.; Stanton, C.; Fitzgerald, G.F.; Ross, R.P. Survival of Probiotic Lactobacilli in Acidic Environments Is Enhanced in the Presence of Metabolizable Sugars. Appl. Environ. Microbiol. 2005, 71, 3060–3067. [Google Scholar] [CrossRef] [PubMed]
- Di Ciaula, A.; Garruti, G.; Lunardi Baccetto, R.; Molina-Molina, E.; Bonfrate, L.; Wang, D.Q.-H.; Portincasa, P. Bile Acid Physiology. Ann. Hepatol. 2017, 16, S4–S14. [Google Scholar] [CrossRef]
- Mahowald, M.A.; Rey, F.E.; Seedorf, H.; Turnbaugh, P.J.; Fulton, R.S.; Wollam, A.; Shah, N.; Wang, C.; Magrini, V.; Wilson, R.K.; et al. Characterizing a Model Human Gut Microbiota Composed of Members of Its Two Dominant Bacterial Phyla. Proc. Natl. Acad. Sci. USA 2009, 106, 5859–5864. [Google Scholar] [CrossRef]
- Looft, T.; Allen, H.K.; Cantarel, B.L.; Levine, U.Y.; Bayles, D.O.; Alt, D.P.; Henrissat, B.; Stanton, T.B. Bacteria, Phages and Pigs: The Effects of in-Feed Antibiotics on the Microbiome at Different Gut Locations. ISME J. 2014, 8, 1566–1576. [Google Scholar] [CrossRef]
- Rubino, F.; Carberry, C.; Waters, S.M.; Kenny, D.; McCabe, M.S.; Creevey, C.J. Divergent Functional Isoforms Drive Niche Specialisation for Nutrient Acquisition and Use in Rumen Microbiome. ISME J. 2017, 11, 932–944. [Google Scholar] [CrossRef]
- Tang, S.; Chen, Y.; Deng, F.; Yan, X.; Zhong, R.; Meng, Q.; Liu, L.; Zhao, Y.; Zhang, S.; Chen, L.; et al. Xylooligosaccharide-Mediated Gut Microbiota Enhances Gut Barrier and Modulates Gut Immunity Associated with Alterations of Biological Processes in a Pig Model. Carbohydr. Polym. 2022, 294, 119776. [Google Scholar] [CrossRef]
- Pan, J.; Yin, J.; Zhang, K.; Xie, P.; Ding, H.; Huang, X.; Blachier, F.; Kong, X. Dietary Xylo-Oligosaccharide Supplementation Alters Gut Microbial Composition and Activity in Pigs According to Age and Dose. AMB Express 2019, 9, 134. [Google Scholar] [CrossRef]
- Dowarah, R.; Verma, A.K.; Agarwal, N. The Use of Lactobacillus as an Alternative of Antibiotic Growth Promoters in Pigs: A Review. Anim. Nutr. 2017, 3, 1–6. [Google Scholar] [CrossRef]
- Yang, Y.; Shen, L.; Gao, H.; Ran, J.; Li, X.; Jiang, H.; Li, X.; Cao, Z.; Huang, Y.; Zhao, S.; et al. Comparison of Cecal Microbiota Composition in Hybrid Pigs from Two Separate Three-Way Crosses. Anim. Biosci. 2021, 34, 1202–1209. [Google Scholar] [CrossRef] [PubMed]
- Kubasova, T.; Davidova-Gerzova, L.; Babak, V.; Cejkova, D.; Montagne, L.; Le-Floc’h, N.; Rychlik, I. Effects of Host Genetics and Environmental Conditions on Fecal Microbiota Composition of Pigs. PLoS ONE 2018, 13, 0201901. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Niu, Q.; Zhu, Y.; Shi, C.; Wang, J.; Zhu, W. Effects of Early Commercial Milk Supplement on the Mucosal Morphology, Bacterial Community and Bacterial Metabolites in Jejunum of the Pre- And Post-Weaning Piglets. Anim. Biosci. 2020, 33, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Cox, M.S.; Zhang, F.; Suen, G.; Zhang, N.; Tu, Y.; Diao, Q. Feeding Modes Shape the Acquisition and Structure of the Initial Gut Microbiota in Newborn Lambs. Environ. Microbiol. 2019, 21, 2333–2346. [Google Scholar] [CrossRef]
- Jalanka, J.; Cheng, J.; Hiippala, K.; Ritari, J.; Salojärvi, J.; Ruuska, T.; Kalliomäki, M.; Satokari, R. Colonic Mucosal Microbiota and Association of Bacterial Taxa with the Expression of Host Antimicrobial Peptides in Pediatric Ulcerative Colitis. Int. J. Mol. Sci. 2020, 21, 6044. [Google Scholar] [CrossRef]
- Han, H.; Liu, Z.; Yin, J.; Gao, J.; He, L.; Wang, C.; Hou, R.; He, X.; Wang, G.; Li, T.; et al. D-Galactose Induces Chronic Oxidative Stress and Alters Gut Microbiota in Weaned Piglets. Front. Physiol. 2021, 12, 634283. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Kim, T.-Y.; Kim, Y.; Lee, S.-H.; Kim, S.; Kang, S.W.; Yang, J.-Y.; Baek, I.-J.; Sung, Y.H.; Park, Y.-Y.; et al. Microbiota-Derived Lactate Accelerates Intestinal Stem-Cell-Mediated Epithelial Development. Cell Host Microbe 2018, 24, 833–846. [Google Scholar] [CrossRef]
- Gao, H.; Sun, F.; Lin, G.; Guo, Y.; Zhao, J. Molecular Actions of Different Functional Oligosaccharides on Intestinal Integrity, Immune Function and Microbial Community in Weanling Pigs. Food Funct. 2022, 13, 12303–12315. [Google Scholar] [CrossRef]
- Luo, D.; Li, J.; Xing, T.; Zhang, L.; Gao, F. Combined Effects of Xylo-oligosaccharides and Coated Sodium Butyrate on Growth Performance, Immune Function, and Intestinal Physical Barrier Function of Broilers. Anim. Sci. J. 2021, 92, e13545. [Google Scholar] [CrossRef]
- Bilski, J.; Mazur-Bialy, A.; Wojcik, D.; Zahradnik-Bilska, J.; Brzozowski, B.; Magierowski, M.; Mach, T.; Magierowska, K.; Brzozowski, T. The Role of Intestinal Alkaline Phosphatase in Inflammatory Disorders of Gastrointestinal Tract. Mediat. Inflamm. 2017, 2017, 9074601. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Borthakur, A.; Pant, N.; Dudeja, P.K.; Tobacman, J.K. Bcl10 Mediates LPS-Induced Activation of NF-κB and IL-8 in Human Intestinal Epithelial Cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 293, G429–G437. [Google Scholar] [CrossRef]
- Lin, R.; Sun, Y.; Mu, P.; Zheng, T.; Mu, H.; Deng, F.; Deng, Y.; Wen, J. Lactobacillus Rhamnosus GG Supplementation Modulates the Gut Microbiota to Promote Butyrate Production, Protecting against Deoxynivalenol Exposure in Nude Mice. Biochem. Pharmacol. 2020, 175, 113868. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, P.; Catarino, T.; Gregório, I.; Martel, F. Inhibition of Butyrate Uptake by the Primary Bile Salt Chenodeoxycholic Acid in Intestinal Epithelial Cells. J. Cell Biochem. 2012, 113, 2937–2947. [Google Scholar] [CrossRef] [PubMed]
- Moens, F.; Verce, M.; De Vuyst, L. Lactate- and Acetate-Based Cross-Feeding Interactions between Selected Strains of Lactobacilli, Bifidobacteria and Colon Bacteria in the Presence of Inulin-Type Fructans. Int. J. Food. Microbiol. 2017, 241, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Hu, D.; Huo, H.; Zhang, W.; Adiliaghdam, F.; Morrison, S.; Ramirez, J.M.; Gul, S.S.; Hamarneh, S.R.; Hodin, R.A. Intestinal Alkaline Phosphatase Regulates Tight Junction Protein Levels. J. Am. Coll. Surg. 2016, 222, 1009. [Google Scholar] [CrossRef]
- Lackeyram, D.; Yang, C.; Archbold, T.; Swanson, K.C.; Fan, M.Z. Early Weaning Reduces Small Intestinal Alkaline Phosphatase Expression in Pigs. J. Nutr. 2010, 140, 461–468. [Google Scholar] [CrossRef]
GIT Site | Day 22 | Day 54 | ||||
---|---|---|---|---|---|---|
CON | XOS-50 | XOS-500 | CON | XOS-50 | XOS-500 | |
Chao Richness | ||||||
Duodenum | 120.4 (60.56) | 120.07 (78.29) | 96.43 (53.01) | 150.24 (98.24) | 145.44 (75.94) | 148.5 (75.64) |
Jejunum | 78.95 (36.69) | 63.92 (18.05) | 89.46 (33.8) | 133.03 (53.88) | 95.13 (29.13) | 98.83 (47.31) |
Ileum | 56.32 (29.86) | 61.21 (25.95) | 92.49 (57.19) | 101.73 (68.47) | 98.38 (57.99) | 81.45 (35.06) |
Caecum | 281.58 (66.47) | 287.55 (79.46) | 271.58 (84.37) | 264.18 (68.02) | 219.46 (81.38) | 259.73 (75.68) |
Colon | 388.29 (85.51) | 408.23 (97.15) | 396.54 (81.6) | 405.49 (88.77) | 394.5 (71.75) | 402.11 (59.57) |
Rectum | 454.51 (89.14) | 462.56 (80.43) | 450.28 (75.07) | 469.2 (66.13) | 423.5 (92.73) | 447.84 (80.98) |
Inverse Simpson diversity | ||||||
Duodenum | 2.61 (1.51) | 3.03 (2.3) | 2.37 (0.76) | 3.51 (2.06) | 4.21 (2.23) | 5.8 (4.31) |
Jejunum | 2.16 (0.48) | 2.62 (0.92) | 2.26 (0.65) | 4.86 (4.24) | 3.23 (0.75) | 3.51 (2.08) |
Ileum | 2.99 (1.19) | 3.3 (1.08) | 3.38 (0.91) | 3.57 (1.51) | 3.33 (1.04) | 3.11 (1.05) |
Caecum | 13.15 (5.3) | 13.67 (4.43) | 13.15 (6.52) | 13.36 (5.54) | 11.31 (5.36) | 13.81 (4) |
Colon | 15.14 (6.35) | 14.95 (5.7) | 12.28 (2.42) | 14.03 (5.62) | 15.35 (7.1) | 16.21 (5.02) |
Rectum | 17.74 (9.14) | 17.57 (7.57) | 13.21 (4.23) | 20.31 (9.76) | 18.1 (8.16) | 19.91 (7.4) |
GIT Site | Day 22 | Day 54 | ||||
---|---|---|---|---|---|---|
CON—XOS-50 | CON—XOS-500 | XOS-50—XOS-500 | CON—XOS-50 | CON-XOS-500 | XOS-50—XOS-500 | |
Yue and Clayton Dissimilarity | ||||||
Duodenum | 0.938 | 0.079 | 0.247 | 0.833 | 0.811 | 0.479 |
Jejunum | 0.687 | 0.005 | 0.100 | 0.974 | 0.640 | 0.357 |
Ileum | 0.870 | 0.091 | 0.213 | 0.376 | 0.265 | 0.932 |
Caecum | 1.000 | 0.268 | 0.184 | 0.896 | 0.809 | 0.299 |
Colon | 0.493 | 0.255 | 0.409 | 0.309 | 0.555 | 0.960 |
Rectum | 0.054 | 0.141 | 0.059 | 0.508 | 0.729 | 0.786 |
Bray–Curtis Dissimilarity | ||||||
Duodenum | 0.854 | 0.086 | 0.314 | 0.836 | 0.950 | 0.564 |
Jejunum | 0.689 | 0.004 | 0.134 | 0.941 | 0.518 | 0.344 |
Ileum | 0.738 | 0.123 | 0.342 | 0.338 | 0.250 | 0.919 |
Caecum | 0.973 | 0.348 | 0.428 | 0.853 | 0.936 | 0.380 |
Colon | 0.602 | 0.318 | 0.350 | 0.529 | 0.887 | 0.994 |
Rectum | 0.173 | 0.187 | 0.051 | 0.487 | 0.656 | 0.990 |
Jaccard Similarity | ||||||
Duodenum | 0.345 | 0.509 | 0.526 | 0.857 | 0.929 | 0.919 |
Jejunum | 0.374 | 0.324 | 0.125 | 0.309 | 0.106 | 0.659 |
Ileum | 0.088 | 0.228 | 0.219 | 0.543 | 0.290 | 0.611 |
Caecum | 0.336 | 0.270 | 0.341 | 0.988 | 0.190 | 0.147 |
Colon | 0.260 | 0.086 | 0.769 | 0.486 | 0.546 | 0.733 |
Rectum | 0.358 | 0.158 | 0.808 | 0.443 | 0.328 | 0.707 |
Day | Taxon | ALDEx2 | ANCOM-BC2 | GIT Site | ||
---|---|---|---|---|---|---|
Effect | p-Value | Effect | p-Value | |||
22 | 2 Lactobacillus (OTU 4) | 0.568 | 0.027 | 2.348 | 0.015 | Duodenum |
2 Lactobacillus (OTU 38) | 0.536 | 0.043 | 2.458 | 0.021 | ||
2 Lactobacillus (OTU 56) | 0.639 | 0.018 | 2.292 | 0.011 | ||
2 Lactobacillus (OTU 4) | 0.855 | 0.013 | 2.679 | 0.011 | Jejunum | |
2 Lactobacillus (OTU 38) | 0.589 | 0.041 | 2.749 | 0.014 | ||
2 Acidaminococcus (OTU 18) | −0.484 | 0.031 | −1.055 | 0.038 | Caecum | |
2 Prevotellaceae UC (OTU 21) | 0.564 | 0.008 | 2.360 | 0.015 | ||
2 Prevotella (OTU 45) | 0.559 | 0.004 | 1.216 | 0.003 | ||
2 Clostridium_XI (OTU 59) | 0.550 | 0.007 | 1.468 | 0.004 | ||
2 Bacteroidales UC (OTU 86) | 0.516 | 0.015 | 0.894 | 0.025 | ||
2 Lachnospiraceae UC (OTU 176) | 0.757 | 0.019 | 1.754 | 0.001 | ||
2 Succinivibrio (OTU 185) | 0.526 | 0.042 | 1.428 | 0.010 | ||
1 Prevotella (OTU 199) | 0.650 | 0.040 | 1.541 | 0.009 | ||
2 Roseburia (OTU 15) | 0.463 | 0.035 | 0.929 | 0.041 | Colon | |
2 Prevotellaceae UC (OTU 21) | 0.532 | 0.012 | 2.828 | 0.006 | ||
2 Clostridium_XI (OTU 59) | 0.607 | <0.001 | 2.216 | <0.001 | ||
2 Bacteroidales UC (OTU 86) | 0.438 | 0.035 | 0.948 | 0.026 | ||
2 Lachnospiraceae UC (OTU 176) | 0.880 | 0.006 | 1.649 | 0.001 | ||
2 Succinivibrio (OTU 235) | 0.249 | 0.039 | 1.180 | 0.005 | ||
1 Clostridium_XI (OTU 59) | 0.133 | 0.003 | 1.449 | 0.002 | ||
1 Ruminococcaceae UC (OTU 122) | −0.441 | 0.014 | −1.109 | 0.018 | ||
1 Ruminococcaceae UC (OTU 140) | −0.346 | 0.010 | −0.944 | 0.038 | ||
1 Succinivibrio (OTU 235) | 0.375 | 0.040 | 1.273 | 0.003 | ||
2 Prevotellaceae UC (OTU 21) | 0.486 | 0.048 | 1.833 | 0.044 | Rectum | |
2 Clostridium_XI (OTU 59) | 0.488 | <0.001 | 1.952 | <0.001 | ||
2 Treponema (OTU 138) | −0.590 | 0.040 | −2.137 | 0.006 | ||
2 Lachnospiraceae UC (OTU 144) | 0.310 | 0.030 | 0.988 | 0.026 | ||
2 Lachnospiraceae UC (OTU 183) | 0.485 | 0.043 | 1.394 | 0.037 | ||
1 Clostridium_XI (OTU 59) | 0.189 | 0.001 | 1.591 | <0.001 | ||
1 Ruminococcaceae UC (OTU 122) | −0.656 | 0.005 | −1.006 | 0.025 | ||
1 Ruminococcaceae UC (OTU 272) | 0.598 | 0.041 | 1.213 | 0.018 | ||
54 | 2 Lactobacillus (OTU 56) | 0.162 | 0.034 | 2.037 | 0.015 | Duodenum |
1 Lactobacillus (OTU 56) | 0.339 | 0.020 | 2.189 | 0.006 | ||
2 Peptococcus (OTU 105) | −0.515 | 0.014 | −1.391 | 0.010 | Caecum | |
1 Veillonellaceae UC (OTU 77) | −0.553 | 0.015 | −2.006 | 0.007 | ||
1 Prevotellaceae UC (OTU 66) | 0.352 | 0.029 | 0.818 | 0.017 | Colon | |
1 Veillonellaceae UC (OTU 77) | −0.407 | 0.022 | −1.665 | 0.015 | ||
1 Lachnospiraceae UC (OTU 125) | 0.098 | 0.050 | 1.043 | 0.046 | ||
1 Ruminococcaceae UC (OTU 142) | 0.641 | 0.049 | 1.271 | 0.016 | ||
2 Firmicutes UC (OTU 168) | 0.352 | 0.023 | 1.322 | 0.004 | Rectum | |
1 Veillonellaceae UC (OTU 77) | −0.646 | 0.002 | −2.270 | <0.001 | ||
1 Firmicutes UC (OTU 168) | 0.134 | 0.049 | 1.110 | 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanley, J.S.; Mansbridge, S.C.; Bedford, M.R.; Connerton, I.F.; Mellits, K.H. Prebiotic Xylo-Oligosaccharides Modulate the Gut Microbiome to Improve Innate Immunity and Gut Barrier Function and Enhance Performance in Piglets Experiencing Post-Weaning Diarrhoea. Microorganisms 2025, 13, 1760. https://doi.org/10.3390/microorganisms13081760
Stanley JS, Mansbridge SC, Bedford MR, Connerton IF, Mellits KH. Prebiotic Xylo-Oligosaccharides Modulate the Gut Microbiome to Improve Innate Immunity and Gut Barrier Function and Enhance Performance in Piglets Experiencing Post-Weaning Diarrhoea. Microorganisms. 2025; 13(8):1760. https://doi.org/10.3390/microorganisms13081760
Chicago/Turabian StyleStanley, James S., Stephen C. Mansbridge, Michael R. Bedford, Ian F. Connerton, and Kenneth H. Mellits. 2025. "Prebiotic Xylo-Oligosaccharides Modulate the Gut Microbiome to Improve Innate Immunity and Gut Barrier Function and Enhance Performance in Piglets Experiencing Post-Weaning Diarrhoea" Microorganisms 13, no. 8: 1760. https://doi.org/10.3390/microorganisms13081760
APA StyleStanley, J. S., Mansbridge, S. C., Bedford, M. R., Connerton, I. F., & Mellits, K. H. (2025). Prebiotic Xylo-Oligosaccharides Modulate the Gut Microbiome to Improve Innate Immunity and Gut Barrier Function and Enhance Performance in Piglets Experiencing Post-Weaning Diarrhoea. Microorganisms, 13(8), 1760. https://doi.org/10.3390/microorganisms13081760