Biology and Application of Chaetomium globosum as a Biocontrol Agent: Current Status and Future Prospects
Abstract
1. Introduction
2. Chaetomium globosum as an Effective Biocontrol Agent
3. Biocontrol Mechanism of Chaetomium globosum
3.1. Antibiosis
3.2. Mycoparasitism and Hyperparasitism
3.3. Competition for Nutrients and Space
3.4. Chaetomium globosum Genomics and Transcriptomics
3.5. Induction of Plant Defense Response
4. Chaetomium globosum as a Plant Growth Promoter
5. Effect of C. globosum Application on Soil Health and Plant Microbiome
6. Taxonomy of Chaetomium globosum
7. Distribution of Chaetomium globosum
8. Chaetomium globosum Cultivation and Formulation
9. Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, G.; Zhang, Y.; Qin, J.; Qu, X.; Liu, J.; Li, X.; Pan, H. Antifungal metabolites produced by Chaetomium globosum no.04, an endophytic fungus isolated from Ginkgo biloba. Indian J. Microbiol. 2013, 53, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, R. Chaetomium globosum, a potential biocontrol agent and its mechanism of action. Indian Phytopathol. 2015, 68, 8–24. [Google Scholar]
- Dwibedi, V.; Rath, S.K.; Jain, S.; Martínez-Argueta, N.; Prakash, R.; Saxena, S.; Rios-Solis, L. Key insights into secondary metabolites from various Chaetomium species. Appl. Microbiol. Biotechnol. 2023, 107, 1077–1093. [Google Scholar] [CrossRef]
- Rao, Q.R.; Rao, J.B.; Zhao, M. Chemical diversity and biological activities of specialized metabolites from the genus Chaetomium: 2013–2022. Phytochemistry 2023, 210, 113653. [Google Scholar] [CrossRef]
- Ashwini, C. A review on Chaetomium globosum as versatile weapons for various plant pathogens. J. Pharmacogn. Phytochem. 2019, 8, 946–949. [Google Scholar]
- Stenberg, J.A.; Sundh, I.; Becher, P.G.; Björkman, C.; Dubey, M.; Egan, P.A.; Friberg, H.; Gil, J.F.; Jensen, D.F.; Jonsson, M.; et al. When is it biological control? A framework of definitions, mechanisms, and classifications. J. Pest Sci. 2021, 94, 665–676. [Google Scholar] [CrossRef]
- Aggarwal, R.; Tewari, A.K.; Srivastava, K.D.; Singh, D.V. Role of antibiosis in the biological control of spot blotch Cochliobolus sativus of wheat by Chaetomium globosum. Mycopathologia 2004, 157, 369–377. [Google Scholar] [CrossRef]
- Wiewióra, B.; Żurek, G. The Infection of Barley at Different Growth Stages by Bipolaris sorokiniana and Its Effect on Plant Yield and Sowing Value. Agronomy 2024, 14, 1322. [Google Scholar] [CrossRef]
- Rajkumar, E.; Aggarwal, R.; Singh, B. Fungal antagonists for the biological control of Ascochyta blight of chickpea. Acta Phytopathol. Entomol. Hung 2005, 40, 35–42. [Google Scholar] [CrossRef]
- Hung, P.M.; Wattanachai, P.; Kasem, S.; Poeaim, S. Efficacy of Chaetomium species as biological control agents against Phytophthora nicotianae root rot in citrus. Mycobiology 2015, 43, 288–296. [Google Scholar] [CrossRef]
- Fayyadh, M.A.; Yousif, E.Q. Biological control of tomato leaf spot disease caused by Alternaria alternata using Chaetomium globosum and some other saprophytic fungi. IOP Conf. Ser. Earth Environ. Sci. 2019, 388, 012017. [Google Scholar] [CrossRef]
- Shanthiyaa, V.; Saravanakumar, D.; Rajendran, L.; Karthikeyan, G.; Prabakar, K.; Raguchander, T. Use of Chaetomium globosum for biocontrol of potato late blight disease. Crop Prot. 2013, 52, 33–38. [Google Scholar] [CrossRef]
- Lewaa, L.; Zakaria, H. Chaetomium globosum, a potential biocontrol agent for root rot of date palm seedlings. Egypt J. Phytopathol. 2023, 512, 114–128. [Google Scholar] [CrossRef]
- Feng, C.; Xu, F.; Li, L.; Zhang, J.; Wang, J.; Li, Y.; Liu, L.; Han, Z.; Shi, R.; Wan, X.; et al. Biological control of Fusarium crown rot of wheat with Chaetomium globosum 12XP1-2-3 and its effects on rhizosphere microorganisms. Front. Microbiol. 2023, 14, 1133025. [Google Scholar] [CrossRef]
- Kommedahl, T.; Chang, I. Biological control of seedling blight of corn by coating kernels with antagonistic micro-organisms. Phytopathology 1968, 58, 1395–1401. [Google Scholar]
- Kommedahl, T.; Mew, I.C. Biocontrol of corn root infection in the field by seed treatment with antagonists. Phytopathology 1975, 65, 296–300. [Google Scholar] [CrossRef]
- Andrews, J.H.; Berbee, F.M.; Nordheim, E.V. Microbial antagonism to the imperfect stage of the apple scab pathogen, Venturia inaequalis. Phytopathology 1983, 73, 228–234. [Google Scholar] [CrossRef]
- Cullen, D.; Andrews, J.H. Evidence for the role of antibiosis in the antagonism of Chaetomium globosum to the apple scab pathogen, Venturia inaequalis. Can. J. Bot. 1984, 62, 1819–1823. [Google Scholar] [CrossRef]
- Davis, R.F.; Backman, P.A.; Rodriguez-Kabana, R.; Kokalis-Burelle, N. Biological control of apple fruit diseases by Chaetomium globosum formulations containing cellulose. Biol. Control 1992, 2, 118–123. [Google Scholar] [CrossRef]
- Vannacci, G.; Harman, G.E. Biocontrol of seed-borne Alternaria raphani and A. brassicicola. Can. J. Microbiol. 1987, 33, 850–856. [Google Scholar] [CrossRef]
- Dhingra, O.; Mizubuti, E.; Santana, F. Chaetomium globosum for reducing primary inoculum of Diaporthe phaseolorum f. sp. meridionalis in soil-surface soybean stubble in field conditions. Biol. Control 2003, 26, 302–310. [Google Scholar] [CrossRef]
- Soytong, K.; Kahonokmedhakul, S.; Song, J.; Tongon, R. Chaetomium Application in Agriculture. In Technology in Agriculture; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Noiaium, S.; Soytong, K. Integrated biological control of mango var. Choke Anan. ISHS Acta Hortic. 1999, 509, 769–778. [Google Scholar] [CrossRef]
- Soytong, K. Evaluation of Chaetomium-biological fungicide to control Phytophthora stem and root rot of durian. Res. J. 2010, 3, 117–124. [Google Scholar]
- Van Thiep, N.; Soytong, K. Chaetomium spp. as biocontrol potential to control tea and coffee pathogens in Vietnam. J. Agric. Technol. 2015, 11, 1381–1392. [Google Scholar]
- Walther, D.; Gindrat, D. Biological control of damping-off of sugar-beet and cotton with Chaetomium globosum or a fluorescent Pseudomonas sp. J. Microbiol. 1988, 34, 631–637. [Google Scholar] [CrossRef]
- Di Pietro, A.; Gut-Rella, M.; Pachlatko, J.P.; Schwinn, F.J. Role of antibiotics produced by Chaetomium globosum in biocontrol of Pythium ultimum, a causal agent of damping-off. Phytopathology 1992, 82, 131–135. [Google Scholar] [CrossRef]
- Khali, S.A.M.; El-Moug, N.S.; El-Gamal, N.G.; Abdel-Kader, M.M. Field approaches of chemical inducers and bioagents for controlling root diseases incidence of pea [Pisum sativum L.] under field conditions. Plant Pathol. J. 2020, 193, 166–175. [Google Scholar] [CrossRef]
- Madbouly, A.K.; Abdel-Aziz, M.S.; Abdel-Wahhab, M.A. Biosynthesis of nanosilver using Chaetomium globosum and its application to control Fusarium wilt of tomato in the greenhouse. IET Nanobiotechnol. 2017, 11, 702–708. [Google Scholar] [CrossRef]
- Phong, N.H.; Wattanachai, P.; Kasem, S.; Luu, N.T. Antimicrobial substances from Chaetomium spp. against Pestalotia spp. causing grey blight disease of tea. Int. J. Agric. Technol. 2014, 10, 863–874. [Google Scholar]
- Vilavong, S.; Soytong, K. Biological control of coffee leaf anthracnose by Chaetomium spp. Int. J. Agric. Technol. 2017, 13, 1785–1794. [Google Scholar]
- Tathan, S. Biological control of rice leaf spot disease caused by Curvularia lunata using Chaetomium globosum. J. Agric. Technol. 2012, 8, 2101–2108. [Google Scholar]
- Mouden, N.; Soytong, K.; Poeaim, S. Biological control of strawberry leather rot caused by Phytophthora cactorum using Chaetomium globosum. J. Agric. Technol. 2016, 12, 1785–1794. [Google Scholar]
- Kasem, S.; Quimio, T.H. Antagonism of Chaetomium globosum to the rice blast pathogen, Pyricularia oryzae. Agric. Nat. Resour. 1989, 23, 198–203. [Google Scholar]
- Hubbard, J.P.; Harman, G.E.; Eckenrode, C.J. Interaction of a biological control agent, Chaetomium globosum with seed coat microflora. Can. J. Microbiol. 1985, 28, 431–437. [Google Scholar] [CrossRef]
- Tveit, M.; Wood, R.K. The control of Fusarium blight in oat seedlings with antagonistic species of Chaetomium. Ann. Appl. Biol. 1955, 43, 538–552. [Google Scholar] [CrossRef]
- Sultana, J.N.; Pervez, Z.; Rahman, H.; Islam, M.S. In-vitro evaluation of different strains of Trichoderma harzianum and Chaetomium globosum as biological control agents for seedling mortality of chilli. Bangladesh Res. Publ. J. 2012, 63, 305–310. [Google Scholar]
- La, N.H.; Van Thiep, N.; Soytong, K. Research to produce biological products of Chaetomium to control fungal diseases on tea, coffee and rubber. Int. J. Agric. Technol. 2016, 12, 993–1004. [Google Scholar]
- Zhang, Y.; Zhu, H.; Ye, Y.; Tang, C. Antifungal activity of chaetoviridin A from Chaetomium globosum CEF-082 metabolites against Verticillium dahliae in cotton. Mol. Plant-Microbe Interact. 2021, 34, 758–769. [Google Scholar] [CrossRef]
- Ali, M. Role of Purpureocillium lilacinum cultural filtrate in controlling onion white rot. J. Plant Prot. Pathol. 2020, 113, 175–184. [Google Scholar] [CrossRef]
- Kean, S.; Soytong, K.; To-Anun, C. Application of biological fungicides to control citrus root rot under field condition in Cambodia. J. Agric. Technol. 2010, 6, 219–230. [Google Scholar]
- Bairwa, A.; Dipta, B.; Mhatre, P.H.; Venkatasalam, E.P.; Sharma, S.; Tiwari, R.; Sharma, A.K. Chaetomium globosum KPC3: An antagonistic fungus against the potato cyst nematode, Globodera rostochiensis. Curr. Microbiol. 2023, 80, 125. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.N.; Sikora, R.A.; Zheng, J.W. Potential use of cucumber Cucumis sativus L. endophytic fungi as seed treatment agents against root-knot nematode Meloidogyne incognita. J. Zhejiang Univ. Sci. B 2011, 12, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Starr, J.L.; Krumm, J.L.; Sword, G.A. The fungal endophyte Chaetomium globosum negatively affects both above- and belowground herbivores in cotton. FEMS Microbiol. Ecol. 2016, 92, fiw158. [Google Scholar] [CrossRef]
- Zhou, W.; Verma, V.C.; Wheeler, T.A.; Woodward, J.E.; Starr, J.L.; Sword, G.A. Tapping into the cotton fungal phytobiome for novel nematode biological control tools. Phytobiomes J. 2020, 4, 19–26. [Google Scholar] [CrossRef]
- Jothini Varsha, S.I.; Rajendran, L.; Saravanakumari, K.; Karthikeyan, G.; Vinothkumar, B.; Anandham, R. Exploitation of Chaetomium globosum and AMF against Macrophomina phaseolina causing root and crown rot in strawberry and its underlying mechanisms by molecular docking. Physiol. Mol. Plant Pathol. 2025, 138, 102697. [Google Scholar] [CrossRef]
- Köhl, J.; Kolnaar, R.; Ravensberg, W.J. Mode of action of microbial biological control agents against plant diseases, relevance beyond efficacy. Front. Plant Sci. 2019, 10, 845. [Google Scholar] [CrossRef]
- Druzhinina, I.S.; Seidl-Seiboth, V.; Herrera-Estrella, A.; Horwitz, B.A.; Kenerley, C.M.; Monte, E.; Mukherjee, P.K.; Zeilinger, S.; Grigoriev, I.V.; Kubicek, C.P. Trichoderma: The genomics of opportunistic success. Nat. Rev. Microbiol. 2011, 16, 749–759. [Google Scholar] [CrossRef]
- Funck Jensen, D.; Dubey, M.; Jensen, B.; Karlsson, M. Clonostachys rosea for the control of plant diseases. In Microbial Bioprotectants for Plant Disease Management; Köhl, J., Ravensberg, W., Eds.; BDS Publishing: Basel, Switzerland, 2021; pp. 429–471. [Google Scholar]
- Piombo, E.; Vetukuri, R.R.; Konakalla, N.C.; Kalyandurg, P.B.; Sundararajan, P.; Jensen, D.F.; Karlsson, M.; Dubey, M. RNA silencing is a key regulatory mechanism in the biocontrol fungus Clonostachys rosea-wheat interactions. BMC Biol. 2024, 22, 219. [Google Scholar] [CrossRef]
- Piombo, E.; Vetukuri, R.R.; Tzelepis, G.; Jensen, D.F.; Karlsson, M.; Dubey, M. Small RNAs, a new paradigm in fungal-fungal interactions used for biocontrol. Fungal Biol. Rev. 2024, 48, 100356. [Google Scholar] [CrossRef]
- Piombo, E.; Kelbessa, B.G.; Sundararajan, P.; Whisson, S.; Vetukuri, R.R.; Dubey, M. RNA silencing proteins and small RNAs in oomycete plant pathogens and biocontrol agents. Front. Microbiol. 2023, 14, 812. [Google Scholar] [CrossRef]
- Piombo, E.; Vetukuri, R.R.; Broberg, A.; Kalyandurg, P.B.; Kushwaha, S.; Funck Jensen, D.; Karlsson, M.; Dubey, M. Role of Dicer-dependent RNA interference in regulating mycoparasitic interactions. Microbiol. Spectr. 2021, 9, e01099-21. [Google Scholar] [CrossRef]
- Piombo, E.; Vetukuri, R.R.; Sundararajan, P.; Kushwaha, S.; Funck Jensen, D.; Karlsson, M.; Dubey, M. Comparative small RNA and degradome sequencing provides insights into antagonistic interactions in the biocontrol fungus Clonostachys rosea. Appl. Environ. Microbiol. 2022, 88, e00643-22. [Google Scholar] [CrossRef] [PubMed]
- Soytong, K. Production of mycofungicidal pellets from Chaetomium globosum. Thai Agric. Res. J. 1991, 93, 193–196. [Google Scholar]
- Biswas, S.K.; Srivastava, K.D.; Aggarwal, R.; Dureja, P.; Singh, D.V. Antagonism of Chaetomium globosum to Drechslera sorokiniana, the spot blotch pathogen of wheat. Indian Phytopathol. 2000, 53, 436–440. [Google Scholar]
- Elshahawy, I.E.; Khattab, A.E.-N.A. Endophyte Chaetomium globosum improves the growth of maize plants and induces their resistance to late wilt disease. J. Plant Dis. Prot. 2022, 129, 1125–1144. [Google Scholar] [CrossRef]
- Istifadah, N.; McGee, P.A. Endophytic Chaetomium globosum reduces development of tan spot in wheat caused by Pyrenophora tritici-repentis. Australas. Plant Pathol. 2006, 35, 411–418. [Google Scholar] [CrossRef]
- Heller, W.E.; Theiler-Hedtrich, R. Antagonism of Chaetomium globosum, Gliocladium virens, and Trichoderma viride to four soil-borne Phytophthora species. J. Phytopathol. 1994, 141, 390–394. [Google Scholar] [CrossRef]
- Kumari, S.; Verma, R.; Chauhan, A.; Raja, V.; Kumari, S.; Kulshrestha, S. Biogenic approach for synthesis of nanoparticles via plants for biomedical applications: A review. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Fierro-Cruz, J.E.; Jiménez, P.; Coy-Barrera, E. Fungal endophytes isolated from Protium heptaphyllum and Trattinnickia rhoifolia as antagonists of Fusarium oxysporum. Rev. Argent. Microbiol. 2017, 49, 255–263. [Google Scholar] [CrossRef]
- Sangeetha, C.; Kiran Kumar, N.; Krishnamoorthy, A.S.; Harish, S. Biomolecules from Chaetomium globosum possessing antimicrobial compounds potentially inhibits Fusarium wilt of tomato. Appl. Biochem. Biotechnol. 2024, 1964, 2196–2218. [Google Scholar] [CrossRef]
- Liang, X.; Lin, Y.; Yu, W.; Yang, M.; Meng, X.; Yang, W.; Guo, Y.; Zhang, R.; Sun, G. Chaetoglobosin A contributes to the antagonistic action of Chaetomium globosum strain 61239 toward the apple valsa canker pathogen Cytospora mali. Phytopathology 2023, 3, PHYTO01230036R. [Google Scholar]
- Rajendran, L.; Durgadevi, D.; Kavitha, R.; Divya, S.; Ganeshan, K.; Vetrivelkalai, P.M.; Karthikeyan, G.; Raguchander, T. Characterization of chaetoglobosin producing Chaetomium globosum for the management of Fusarium–Meloidogyne wilt complex in tomato. J. Appl. Microbiol. 2023, 134, lxac074. [Google Scholar] [CrossRef]
- Schümann, J.; Hertweck, C. Molecular basis of cytochalasan biosynthesis in fungi, gene cluster analysis and evidence for the involvement of a PKS-NRPS hybrid synthase by RNA silencing. J. Am. Chem. Soc. 2007, 129, 9564–9565. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Cao, L.L.; Zhang, Y.Y.; Zhao, R.; Zhao, S.S.; Khan, B.; Ye, Y.H. New metabolites from endophytic fungus Chaetomium globosum CDW7. Molecules 2018, 23, 2873. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Zhao, S.; Lin, C.; Song, J.; Yang, Q. Requirement of LaeA for sporulation, pigmentation and secondary metabolism in Chaetomium globosum. Fungal Biol. 2021, 125, 305–315. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, S.; Zhang, K.; Lin, C.; Ru, X.; Yang, Q. CgVeA, a light signaling responsive regulator, is involved in regulation of chaetoglobosin A biosynthesis and conidia development in Chaetomium globosum. Synth. Syst. Biotechnol. 2022, 16, 1084–1094. [Google Scholar] [CrossRef]
- Yan, Y.; Xiang, B.; Xie, Q.; Lin, Y.; Shen, G.; Hao, X.; Zhu, X. A putative C2H2 transcription factor Cgtf6, controlled by Cgtf1, negatively regulates chaetoglobosin A biosynthesis in Chaetomium globosum. Front. Fungal Biol. 2021, 15, 756104. [Google Scholar] [CrossRef]
- Wang, X.; Lombard, L.; Groenewald, J.; Li, J.; Videira, S.; Samson, R.; Liu, X.; Crous, P. Phylogenetic reassessment of the Chaetomium globosum species complex. Persoonia 2015, 36, 83–133. [Google Scholar] [CrossRef]
- Youn, U.J.; Sripisut, T.; Park, E.J.; Kondratyuk, T.P.; Fatima, N.; Simmons, C.J.; Wall, M.M.; Sun, D.; Pezzuto, J.M.; Chang, L.C. Determination of the absolute configuration of chaetoviridins and other bioactive azaphilones from the endophytic fungus Chaetomium globosum. Bioorg. Med. Chem. Lett. 2015, 25, 4719–4723. [Google Scholar] [CrossRef]
- Omar, A.M.; Mohamed, G.A.; Ibrahim, S.R. Chaetomugilins and chaetoviridins—Promising natural metabolites, structures, separation, characterization, biosynthesis, bioactivities, molecular docking, and molecular dynamics. J. Fungi 2022, 8, 127. [Google Scholar] [CrossRef]
- Awad, N.E.; Kassem, H.A.; Hamed, M.A.; El-Naggar, M.A.; El-Feky, A.M. Bioassays guided isolation of compounds from Chaetomium globosum. J. Mycol. Med. 2014, 24, e35–e42. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Choi, G.J.; Jang, K.S.; Lim, H.K.; Kim, H.T.; Cho, K.Y.; Kim, J.C. Antifungal activity against plant pathogenic fungi of chaetoviridins isolated from Chaetomium globosum. FEMS Microbiol. Lett. 2005, 252, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Winter, J.M.; Sato, M.; Sugimoto, S.; Chiou, G.; Garg, N.K.; Tang, Y.; Watanabe, K. Identification and characterization of the chaetoviridin and chaetomugilin gene cluster in Chaetomium globosum reveal dual functions of an iterative highly-reducing polyketide synthase. J. Am. Chem. Soc. 2012, 134, 17900–17903. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Kundu, A.; Dutta, A.; Supradip, S.; Das, A. Profiling of volatile secondary metabolites of Chaetomium globosum for potential antifungal activity against soil borne fungi. J. Pharmacogn. Phytochem. 2020, 9, 922–927. [Google Scholar]
- Kumar, R.; Kundu, A.; Dutta, A.; Saha, S.; Das, A.; Bhowmik, A. Chemo-profiling of bioactive metabolites from Chaetomium globosum for biocontrol of Sclerotinia rot and plant growth promotion. Fungal Biol. 2021, 125, 167–176. [Google Scholar] [CrossRef]
- Qureshi, S.A.; Ruqqia, A.; Sultana, V.; Ara, J.; Ehteshamul-Haque, S. Nematocidal potential of culture filtrates of soil fungi associated with rhizosphere and rhizoplane of cultivated and wild plants. Pak. J. Bot. 2012, 44, 1041–1046. [Google Scholar]
- Hu, Y.; Zhang, W.; Zhang, P.; Ruan, W.; Zhu, X. Nematicidal activity of chaetoglobosin A produced by Chaetomium globosum NK102 against Meloidogyne incognita. J. Agric. Food Chem. 2013, 61, 41–46. [Google Scholar] [CrossRef]
- Khan, B.; Yan, W.; Wei, S.; Wang, Z.; Zhao, S.; Cao, L.; Rajput, N.A.; Ye, Y. Nematicidal metabolites from endophytic fungus Chaetomium globosum YSC5. FEMS Microbiol. Lett. 2019, 366, 36614. [Google Scholar] [CrossRef]
- Wang, Z.; Xue, R.; Cui, J.; Wang, J.; Fan, W.; Zhang, H.; Zhan, X. Antibacterial activity of a polysaccharide produced from Chaetomium globosum CGMCC 6882. Int. J. Biol. Macromol. 2019, 125, 376–382. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, J.; Li, W.; Li, R.; Wang, X.; Qiao, H.; Sun, Q.; Zhang, H. Antibacterial mechanism of the polysaccharide produced by Chaetomium globosum CGMCC 6882 against Staphylococcus aureus. Int. J. Biol. Macromol. 2020, 159, 231–235. [Google Scholar] [CrossRef]
- Moya, P.; Pedemonte, D.; Amengual, S.; Franco, M.E.; Sisterna, M.N. Antagonism and modes of action of Chaetomium globosum species group, potential biocontrol agent of barley foliar diseases. Bol. Soc. Argent. Bot. 2016, 51, 569–578. [Google Scholar] [CrossRef]
- Darshan, K.; Aggarwal, R.; Bashyal, B.M.; Singh, J.; Shanmugam, V.; Gurjar, M.S.; Solanke, A.U. Transcriptome profiling provides insights into potential antagonistic mechanisms involved in Chaetomium globosum against Bipolaris sorokiniana. Front. Microbiol. 2020, 11, 578115. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, D.K.; Johri, B.N. Interaction of Bacillus spp. and plants—With special reference to induced systemic resistance. Microbiol. Res. 2009, 164, 493–513. [Google Scholar] [CrossRef]
- Cuomo, C.A.; Untereiner, W.A.; Ma, L.J.; Grabherr, M.; Birren, B.W. Draft genome sequence of the cellulolytic fungus Chaetomium globosum. Genome Announc. 2015, 3, e00021-15. [Google Scholar] [CrossRef]
- Keller, N.P. Translating biosynthetic gene clusters into fungal armor and weaponry. Nat. Chem. Biol. 2015, 11, 671–677. [Google Scholar] [CrossRef]
- Dubey, M.K.; Jensen, D.F.; Karlsson, M. An ATP-binding cassette pleiotropic drug-transporter protein is required for xenobiotic tolerance and antagonism in the fungal biocontrol agent Clonostachys rosea. Mol. Plant-Microbe Interact. 2014, 27, 725–732. [Google Scholar] [CrossRef]
- Broberg, M.; Dubey, M.; Iqbal, M.; Gudmundsson, M.; Ihrmark, K.; Schroers, H.-J.; Funck Jensen, D.; Durling, M.B.; Karlsson, M. Comparative genomics highlights the importance of drug efflux transporters during evolution of mycoparasitism in Clonostachys subgenus Bionectria [Fungi, Ascomycota, Hypocreales]. Evol. Appl. 2020, 13, 476–497. [Google Scholar] [CrossRef]
- Zamioudis, C.; Pieterse, C.M. Modulation of host immunity by beneficial microbes. Mol. Plant-Microbe Interact. 2012, 25, 139–150. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, S.; Dhanjal, D.S.; Kumar, A.; Jan, S.; Ramamurthy, P.C.; Singh, J. Role of rhizobacteria from plant growth promoter to bioremediator. In Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water; Elsevier: Amsterdam, The Netherlands, 2022; pp. 309–328. [Google Scholar]
- Yuan, M.; Huang, Y.; Ge, W.; Jia, Z.; Song, S.; Zhang, L.; Huang, Y. Involvement of jasmonic acid, ethylene and salicylic acid signaling pathways behind the systemic resistance induced by Trichoderma longibrachiatum H9 in cucumber. BMC Genom. 2019, 18, 201. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, N.; Zhao, L.; Zhu, H.; Tang, C. Transcriptome analysis reveals the defense mechanism of cotton against Verticillium dahliae in the presence of the biocontrol fungus Chaetomium globosum CEF-082. BMC Plant Biol. 2020, 20, 89. [Google Scholar] [CrossRef]
- Singh, J.; Aggarwal, R.; Bashyal, B.M.; Darshan, K.; Parmar, P.; Saharan, M.S.; Husain, Z.; Solanke, A.U. Transcriptome reprogramming of tomato orchestrates the hormone-signaling network of systemic resistance induced by Chaetomium globosum. Front. Plant Sci. 2021, 12, 721193. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Fu, X.; Zhang, G.; Zhang, R.; Kang, Z.; Gao, K.; Mendgen, K. Mechanisms in growth promotion of cucumber by the endophytic fungus Chaetomium globosum strain ND35. J. Fungi 2022, 11, 180. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.K.; Aggarwal, R.; Srivastava, K.D.; Gupta, S.; Dureja, P. Characterization of antifungal metabolites of Chaetomium globosum Kunze and their antagonism against fungal plant pathogens. J. Biol. Control 2012, 26, 70–74. [Google Scholar]
- Bu, B.W.; Qiu, D.W.; Zeng, H.M.; Guo, L.H.; Yuan, J.J.; Yang, X.F. A fungal protein elicitor PevD1 induces Verticillium wilt resistance in cotton. Plant Cell Rep. 2014, 33, 461–470. [Google Scholar] [CrossRef]
- Cecilia, B.; Alessio, F.; Federico, S.; Antonella, G.; Massimiliano, T. Modulation of phytohormone signaling: A primary function of flavonoids in plant–environment interactions. Front. Plant Sci. 2018, 9, 1042. [Google Scholar]
- Meng, J.; Gao, H.; Zhai, W.B.; Shi, J.Y.; Zhang, M.Z.; Zhang, W.W.; Jian, G.L.; Zhang, M.P.; Qi, F.J. Subtle regulation of cotton resistance to Verticillium wilt mediated by MAPKK family members. Plant Sci. 2018, 272, 235–242. [Google Scholar] [CrossRef]
- Zhai, X.; Luo, D.; Li, X.; Han, T.; Jia, M.; Kong, Z.; Ji, J.; Rahman, K.; Qin, L.; Zheng, C. Endophyte Chaetomium globosum D38 promotes bioactive constituents accumulation and root production in Salvia miltiorrhiza. Front. Microbiol. 2018, 8, 302133. [Google Scholar] [CrossRef]
- Vaghasia, P.M.; Davariya, R.L.; Daki, R.N. Effect of Bio-Phos Chaetomium globosum on castor Ricinus communis L. yield at different levels of phosphorus under irrigated conditions. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1974–1978. [Google Scholar] [CrossRef]
- Fu-hai, S.; Wang, S.; Zhang, X.F.; Gao, K.X.; Yin, C.L.; Chen, X.S.; Mao, Z.Q. Effects of Chaetomium globosum ND35 fungal fertilizer on continuous cropping soil microorganism and Malus hupehensis seedling biomass. Acta Hort. Sin. 2015, 42, 205. [Google Scholar]
- Parthasarathy, S.; Harish, S.; Rajendran, L.; Raguchander, T. Evaluating an isotonic aqueous formulation of Chaetomium globosum Kunze for the management of potato black scurf disease caused by Rhizoctonia solani Kuhn in India. J. Plant Pathol. 2022, 104, 191–202. [Google Scholar]
- Spinelli, V.; Brasili, E.; Sciubba, F.; Ceci, A.; Giampaoli, O.; Miccheli, A.; Pasqua, G.; Persiani, A.M. Biostimulant effects of Chaetomium globosum and Minimedusa polyspora culture filtrates on Cichorium intybus plant: Growth performance and metabolomic traits. Front. Plant Sci. 2022, 13, 879076. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.E.; Singh, B.P.; Dalal, R.C. Soil health indicators under climate change: A review of current knowledge. In Soil Health and Climate Change; Singh, B.P., Cowie, A., Chan, K.Y., Eds.; Springer: Berlin, Germany, 2011; pp. 25–45. [Google Scholar]
- Hassani, M.A.; Durán, P.; Hacquard, S. Microbial interactions within the plant holobiont. Microbiome 2018, 6, 58. [Google Scholar] [CrossRef] [PubMed]
- Saravanakumar, K.; Li, Y.; Yu, C.; Wang, Q.Q.; Wang, M.; Sun, J.; Gao, J.; Chen, J. Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium stalk rot. Sci. Rep. 2017, 7, 1771. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Y.; Li, H.; Wei, F.; Zhao, L.; Zhou, J.; Qi, G.; Ma, Z.; Zhu, H.; Feng, H.; et al. Applications of Chaetomium globosum CEF-082 improve soil health and mitigate the continuous cropping obstacles for Gossypium hirsutum. Ind. Crops Prod. 2023, 197, 116586. [Google Scholar]
- Kunze, G.; Schmidt, J.K. Chaetomium globosum Kunze. In Mykologische Hefte (Leipzig); Kunze & Schmidt: Leipzig, Germany, 1817; Available online: https://www.indexfungorum.org/Names/namesrecord.asp?RecordId=172545 (accessed on 24 June 2025).
- Asgari, B.; Zare, R. The genus Chaetomium in Iran: A phylogenetic study including six new species. Mycologia 2011, 103, 863–882. [Google Scholar] [CrossRef]
- Wang, X.W.; Houbraken, J.; Groenewald, J.Z.; Meijer, M.; Andersen, B.; Nielsen, K.F.; Samson, R.A. Diversity and taxonomy of Chaetomium and Chaetomium-like fungi from indoor environments. Stud. Mycol. 2016, 84, 145–224. [Google Scholar] [CrossRef]
- Abdel-Azeem, A.M. Taxonomy and biodiversity of the genus Chaetomium in different habitats. In Recent Developments on Genus Chaetomium; Abdel-Azeem, A.M., Ed.; Fungal Biology; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Darshan, K.; Aggarwal, R.; Bashyal, B.M.; Singh, J.; Saharan, M.S.; Gurjar, M.S.; Solanke, A.U. Characterization and development of transcriptome-derived novel EST-SSR markers to assess genetic diversity in Chaetomium globosum. 3 Biotech 2023, 13, 379. [Google Scholar] [CrossRef]
- Egidi, E.; Delgado-Baquerizo, M.; Plett, J.M.; Wang, J.; Eldridge, D.J.; Bardgett, R.D.; Maestre, F.T.; Singh, B.K. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 2019, 10, 1. [Google Scholar] [CrossRef]
- Dissanayake, R.K.; Ratnaweera, P.B.; Williams, D.E.; Wijayarathne, C.D.; Wijesundera, R.L.C.; Andersen, R.J.; de Silva, E.D. Antimicrobial activities of endophytic fungi of the Sri Lankan aquatic plant Nymphaea nouchali and chaetoglobosin A and C produced by the endophytic fungus Chaetomium globosum. Mycology 2016, 7, 1–8. [Google Scholar] [CrossRef]
- Sahu, S.; Prakash, A. Chaetomium globosum, a potential fungus for plant and human health. KAVAKA 2018, 50, 53–63. [Google Scholar]
- Peng, L.; Ning, T.; Lu, W.; Chen, P.; Li, H.; Yi, Y.; Wang, Z.; Hu, Y. Consolidated bioprocess of corn stover to polysaccharide using Chaetomium globosum CGMCC 6882. GOST 2019, 21, 11–14. [Google Scholar] [CrossRef]
- Sarmales-Murga, C.; Akaoka, F.; Sato, M.; Takanishi, J.; Mino, T.; Miyoshi, N.; Watanabe, K. A new class of dimeric product isolated from the fungus Chaetomium globosum, evaluation of chemical structure and biological activity. J. Antibiot. 2020, 735, 320–323. [Google Scholar] [CrossRef]
- Kiran, R.; Akhtar, J.; Kumar, P.; Shekhar, M. Anthracnose of chilli: Status, diagnosis, and management. In Capsicum; IntechOpen: London, UK, 2020. [Google Scholar]
- Wang, W.; Yang, J.; Liao, Y.Y.; Cheng, G.; Chen, J.; Cheng, X.D.; Qin, J.J.; Shao, Z. Cytotoxic nitrogenated azaphilones from the deep-sea-derived fungus Chaetomium globosum MP4-S01-7. J. Nat. Prod. 2020, 83, 1157–1166. [Google Scholar] [CrossRef] [PubMed]
- Junaid, J.M.; Dar, N.A.; Bhat, T.A.; Bhat, A.H.; Bhat, M.A. Commercial biocontrol agents and their mechanism of action in the management of plant pathogens. Int. J. Mod. Plant Anim. Sci. 2013, 1, 39–57. [Google Scholar]
- Seethapathy, P.; Sankarasubramanian, H.; Lingan, R.; Thiruvengadam, R. Chaetomium sp., an insight into its antagonistic mechanism, mass multiplication, and production cost analysis. In Agricultural Microbiology Based Entrepreneurship; Amaresan, N., Dharumadurai, D., Babalola, O.O., Eds.; Springer: Singapore, 2023; Volume 39. [Google Scholar]
- Dhingra, O.; Sinclair, J.B. Basic Plant Pathology Methods; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Harman, G.E.; Howell, C.R.; Viterbo, A.; Chet, I.; Lorito, M. Trichoderma species—Opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2010, 2, 43–56. [Google Scholar] [CrossRef]
- Lahlali, R.; Ezrari, S.; Radouane, N.; Kenfaoui, J.; Esmaeel, Q.; El Hamss, H.; Belabess, Z.; Barka, E.A. Biological control of plant pathogens: A global perspective. Microorganisms 2022, 10, 596. [Google Scholar] [CrossRef]
- Cook, R.J.; Baker, K.F. The Nature and Practice of Biological Control of Plant Pathogens; American Phytopathological Society: St. Paul, MN, USA, 1983. [Google Scholar]
- Fravel, D.R.; Connick, W.J., Jr.; Lewis, J.A. Formulation of microorganisms to control plant diseases. In Biochemical Engineering Fundamentals; Bailey, J.E., Ollis, D.F., Eds.; McGraw-Hill: New York, NY, USA, 2005. [Google Scholar]
- Pothiraj, G.; Hussain, Z.; Singh, A.K.; Solanke, A.U.; Aggarwal, R.; Ramesh, R.; Shanmugam, V. Characterisation of Fusarium spp. inciting vascular wilt of tomato and its management using a Chaetomium-based biocontrol consortium. Front. Plant Sci. 2021, 12, 748013. [Google Scholar] [CrossRef]
- Zhao, S.S.; Zhang, Y.Y.; Yan, W.; Cao, L.L.; Xiao, Y.; Ye, Y.H. Chaetomium globosum CDW7, a potential biological control strain and its antifungal metabolites. FEMS Microbiol. Lett. 2017, 364, fiw264. [Google Scholar] [CrossRef]
- Iqbal, M.; Broberg, M.; Haarith, D.; Broberg, A.; Bushley, K.E.; Durling, M.B.; Viketoft, M.; Funck Jensen, D.; Dubey, M.; Karlsson, M. Natural variation of root lesion nematode antagonism in the biocontrol fungus Clonostachys rosea and identification of biocontrol factors through genome-wide association mapping. Evol. Appl. 2020, 13, 2264–2283. [Google Scholar] [CrossRef]
- Chaudhary, S.; Ricardo, R.M.N.; Dubey, M.; Jensen, D.F.; Grenville-Briggs, L.; Karlsson, M. Genotypic variation in winter wheat for Fusarium foot rot and its biocontrol using Clonostachys rosea. G3 2024, 7, 1412. [Google Scholar] [CrossRef]
- Chaudhary, S.; Zakieh, M.; Dubey, M.; Jensen, D.F.; Grenville-Briggs, L.; Chawade, A.; Karlsson, M. Plant genotype-specific modulation of Clonostachys rosea-mediated biocontrol of Septoria tritici blotch disease on wheat. BMC Plant Biol. 2024, 25, 576. [Google Scholar] [CrossRef]
Disease | Plant | Pathogen | References |
---|---|---|---|
Anthracnose | Black pepper | Phytophthora palmivora, | Soytong et al., 2021 [22] |
Anthracnose | Mango | Colletotrichum gloeosporioides | Noiaium, 1999 [23] |
Ascochyta blight | Chickpea | Ascochyta rabiei | Rajkumar et al., 2005 [9] |
Apple scab | Apple | Venturia inaequalis | Andrews et al., 1983 Cullen and Andrews, 1984 [17,18] |
Sooty blotch | Apple | Phyllachora pomigena | Davis et al., 1992 [19] |
Spot blotch | Barley | Bipolaris sorokiniana | Aggarwal et al., 2004 [7] |
Spot blotch | Wheat | Bipolaris sorokiniana | Aggarwal et al., 2004 [7] |
Basal rot | Corn | Sclerotium rolfsii | Soytong, 2010 [24] |
Citrus leaf miner | Tangerine | Phytophthora parasitica | Soytong et al., 2021 [22] |
Coffee Wilt | Coffee | Fusarium roseum | Van and Soytong, 2015 [25] |
Damping off | Sugarbeet | Pythiumultimum | Walther and Gindrat, 1988 [26] |
Damping off | Cotton | Pythium ultimum | Di Pietro et al., 1992 [27] |
Damping off | Peas | Pythium | Khali et al., 2020 [28] |
Damping off | Radishes | Rhizoctonia solani | Aggarwal et al., 2004 [7] |
Wilt | Tomato | Fusarium oxysporum | Madbouly et al., 2017 [29] |
Grape white rot | Grape | Coniothyriumdiplodiella | Zhang et al., 2013 [1] |
Grey blight | Coffee | Pestalotia spp. | Phong et al., 2014 [30] |
Late blight | Potato | Phytophthora Infestans | Shanthiyaa et al., 2013 [12] |
Leaf anthracnose | Coffee | Colletotrichum gloeosporioides | Vilavong and Soytong, 2017 [31] |
Leaf spot | Rice | Curvularialunata | Tathan, 2012 [32] |
Leather rot | Strawberry | Phytophthora cactorum | Mouden et al., 2016 [33] |
Peach rot | Peach | Rhizopus stolonifer | Zhang et al., 2013 [1] |
Rice blast | Rice | Pyricularia oryzae | Kasem and Quimio, 1989 [34] |
Root rot | Pomelo | Phytophthora palmivora | Hung et al., 2015 [10] |
Seed rot | Radish | Alternaria raphani | Vannucci and Harman, 1987 [20] |
Seed-corn maggot | Squash | Fusarium solani | Hubbard et al., 1982 [35] |
Seedling blight | Oat | Fusarium spp. | Tveit and Wood, 1955 [36] |
Seedling mortality | Chili | Sclerotium rolfsii Colletotrichum capsici | Sultana et al., 2012 [37] |
Stem canker | Soybean | Diaporthephaseolorum var. meridionalis | Dhingra and Santana, 2003 [21] |
Spot blotch | Wheat | Drechslerasorokiniana | Aggarwal et al., 2004 [7] |
Tea wilt | Tea | Fusarium roseum | La et al., 2016 [38] |
Wilt | Cotton | Verticillium dahliae | Zhang et al., 2021 [39] |
White rot | Onion | Sclerotium cepivorum, | Ali, 2020 [40] |
Root rot | Citrus | Phytophthora nicotianae Pythium ultimum | Hung et al., 2015 Kean et al., 2010 [10,41] |
Leaf spot | Tomato | Alternaria alternata | Fayyadh and Yousif, 2019 [11] |
Root rot | Date palm | Rhizoctonia solani, Fusarium oxysporum, Fusarium chlamydosporum | Lewaa and Zakaria, 2023 [13] |
Root rot | Corn | Fusarium roseum | Kommedahl and Chang, 1968. Kommedahl and Mew, 1975 [15,16] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, S.; Pandey, S.; Kulshreshtha, S.; Dubey, M. Biology and Application of Chaetomium globosum as a Biocontrol Agent: Current Status and Future Prospects. Microorganisms 2025, 13, 1646. https://doi.org/10.3390/microorganisms13071646
Sharma S, Pandey S, Kulshreshtha S, Dubey M. Biology and Application of Chaetomium globosum as a Biocontrol Agent: Current Status and Future Prospects. Microorganisms. 2025; 13(7):1646. https://doi.org/10.3390/microorganisms13071646
Chicago/Turabian StyleSharma, Shailja, Saurabh Pandey, Sourabh Kulshreshtha, and Mukesh Dubey. 2025. "Biology and Application of Chaetomium globosum as a Biocontrol Agent: Current Status and Future Prospects" Microorganisms 13, no. 7: 1646. https://doi.org/10.3390/microorganisms13071646
APA StyleSharma, S., Pandey, S., Kulshreshtha, S., & Dubey, M. (2025). Biology and Application of Chaetomium globosum as a Biocontrol Agent: Current Status and Future Prospects. Microorganisms, 13(7), 1646. https://doi.org/10.3390/microorganisms13071646