Microbial Corrosion Behavior of L245 Pipeline Steel in the Presence of Iron-Oxidizing Bacteria and Shewanella algae
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Experiment Reagent
2.1.2. Testing Material
2.2. Methods
2.2.1. Corrosion Experiments
2.2.2. Corrosion Rate Calculation
2.2.3. Corrosion Sample Morphology Observation
2.2.4. Electrochemical Measurements
2.3. Experimental Equipment
3. Results
3.1. Maximum Uniform Corrosion Rate and Pitting Depth
3.2. Cell Count Measurements
3.3. Surface Morphology Observation
3.4. EIS Measurements
3.4.1. Open Circuit Potential
3.4.2. Polarization Measurements
3.4.3. Polarization Curve Diagram
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Little, B.J.; Hinks, J.; Blackwood, D.J. Microbially influenced corrosion: Towards an interdisciplinary perspective on mechanisms. Int. Biodeterior. Biodegrad. 2020, 154, 105062. [Google Scholar] [CrossRef]
- Li, C.; Wu, J.; Zhang, D.; Wang, P.; Zhu, L.; Gao, Y.; Wang, W. Effects of Pseudomonas aeruginosa on EH40 steel corrosion in the simulated tidal zone. Water Res. 2023, 232, 119708. [Google Scholar] [CrossRef] [PubMed]
- Skovhus, T.L.; Eckert, R.B.; Rodrigues, E. Management and control of microbiologically influenced corrosion (MIC) in the oil and gas industry—Overview and a North Sea case study. J. Biotechnol. 2017, 256, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Ru, J.; Tuba, U.; Dake, X.; Yassir, L.; Tingyue, G. Microbiologically influenced corrosion and current mitigation strategies: A state of the art review. Int. Biodeterior. Biodegrad. 2018, 137, 42–58. [Google Scholar]
- Gaines, R.H. Bacterial Activity as a Corrosive Influence in the Soil. Am. Chem. Soc. 2002, 2, 128–130. [Google Scholar] [CrossRef]
- Liu, H.; Gu, T.; Zhang, G.; Wang, W.; Dong, S.; Cheng, Y.; Liu, H. Corrosion inhibition of carbon steel in CO2-containing oilfield produced water in the presence of iron-oxidizing bacteria and inhibitors. Corros. Sci. 2016, 105, 149–160. [Google Scholar] [CrossRef]
- Shi, L.; Dong, H.; Reguera, G.; Beyenal, H.; Lu, A.; Liu, J.; Yu, H.Q.; Fredrickson, J.K. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat. Rev. Microbiol. 2016, 14, 651–662. [Google Scholar] [CrossRef]
- Dennis, E.; Julia, G. Corrosion of iron by sulfate-reducing bacteria: New views of an old problem. Appl. Environ. Microbiol. 2014, 80, 1226–1236. [Google Scholar]
- Kalnaowakul, P.; Xu, D.; Rodchanarowan, A. Accelerated Corrosion of 316L Stainless Steel Caused by Shewanella algae Biofilms. ACS Appl. Bio Mater. 2020, 3, 2185–2192. [Google Scholar] [CrossRef]
- Xiao, X.; Li, C.X.; Peng, J.R.; Fan, Y.Y.; Li, W.W. Dynamic roles of inner membrane electron-transfer hub of Shewanella oneidensis MR-1 in response to extracellular reduction kinetics. Chem. Eng. J. 2023, 451, 138717. [Google Scholar] [CrossRef]
- Konstantinidis, K.T.; Serres, M.H.; Romine, M.F.; Rodrigues, J.L.; Auchtung, J.; McCue, L.A.; Lipton, M.S.; Obraztsova, A.; Giometti, C.S.; Nealson, K.H.; et al. Comparative systems biology across an evolutionary gradient within the Shewanella genus. Proc. Natl. Acad. Sci. USA 2009, 106, 15909–15914. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ke, C.; Jiang, M.; Li, Y.; Huang, W.; Dang, Z.; Guo, C. S(-II) reactivates Cd2+-stressed Shewanella oneidensis via promoting low-molecular-weight thiols synthesis and activating antioxidant defense. Environ. Pollut. 2023, 327, 121516. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Wang, J.; Ma, Y.; Xu, Y.; Zhang, X.; Li, Z.; Xu, D.; Wang, F. Electroactive Shewanella algae accelerates the crevice corrosion of X70 pipeline steel in marine environment. Corros. Sci. 2024, 235, 112226. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Dong, Y.; Xu, D.; Zhang, X.; Wu, J.; Gu, T.; Wang, F. Synergistic effect of chloride ion and Shewanella algae accelerates the corrosion of Ti-6Al-4V alloy. J. Mater. Sci. Technol. 2020, 71, 177–185. [Google Scholar] [CrossRef]
- Jin, Y.; Zhou, E.; Ueki, T.; Zhang, D.; Fan, Y.; Xu, D.; Wang, F.; Lovley, D.R. Accelerated Microbial Corrosion by Magnetite and Electrically Conductive Pili through Direct Fe0-to-Microbe Electron Transfer. Angew. Chem. 2023, 135, e202309005. [Google Scholar] [CrossRef]
- Videla, H.A.; Herrera, L.K. Understanding microbial inhibition of corrosion. A comprehensive overview. Int. Biodeterior. Biodegrad. 2009, 63, 896–900. [Google Scholar] [CrossRef]
- Wurzler, N.; Sobol, O.; Altmann, K.; Radnik, J.; Ozcan, O. Preconditioning of AISI 304 stainless steel surfaces in the presence of flavins—Part II: Effect on biofilm formation and microbially influenced corrosion processes. Mater. Corros. 2020, 72, 983–994. [Google Scholar] [CrossRef]
- Abbas, B.; Kiani, K.M.; Beigi, H.B. Establishing the root cause of a failure in a firewater pipeline. Eng. Fail. Anal. 2021, 127, 105474. [Google Scholar]
- Xu, C.; Zhang, Y.; Cheng, G.; Zhu, W. Localized corrosion behavior of 316L stainless steel in the presence of sulfate-reducing and iron-oxidizing bacteria. Mater. Sci. Eng. A 2006, 443, 235–241. [Google Scholar] [CrossRef]
- Satoshi, W.; Kimio, I.; Takao, I.; Yasuyoshi, T.; Koji, M.; Shigeaki, H. Corrosion of iron by iodide-oxidizing bacteria isolated from brine in an iodine production facility. Microb. Ecol. 2014, 68, 519–527. [Google Scholar]
- Li, J.; Jin, Y.; Li, J.; Li, Z.; Zhang, M.; Xu, D.; Mol, A.; Wang, F. The effect of dissolved oxygen and Shewanella algae on the corrosion mechanism of titanium in a simulated marine environment. Corros. Sci. 2024, 239, 112400. [Google Scholar] [CrossRef]
- Sun, S.; Zhou, Y.; Yu, H.; Li, W.; Zhou, W.; Luo, G.; Zhang, W. Effect of Pipe Materials on Bacterial Community, Redox Reaction, and Functional Genes. Coatings 2022, 12, 1747. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Song, Y.; Liu, W.; Zhang, J.; Li, N.; Dong, K.; Cai, Y.; Han, E.H. The respective roles of sulfate-reducing bacteria (SRB) and iron-oxidizing bacteria (IOB) in the mixed microbial corrosion process of carbon steel pipelines. Corros. Sci. 2024, 240, 112479. [Google Scholar] [CrossRef]
- Chongdar, S.; Gunasekaran, G.; Kumar, P. Corrosion inhibition of mild steel by aerobic biofilm. Electrochim. Acta 2005, 50, 4655–4665. [Google Scholar] [CrossRef]
- Liu, H.; Fu, C.; Gu, T.; Zhang, G.; Lv, Y.; Wang, H.; Liu, H. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water. Corros. Sci. 2015, 100, 484–495. [Google Scholar] [CrossRef]
- Starosvetsky, J.; Starosvetsky, D.; Pokroy, B.; Hilel, T.; Armon, R. Electrochemical behaviour of stainless steels in media containing iron-oxidizing bacteria (IOB) by corrosion process modeling. Corros. Sci. 2007, 50, 540–547. [Google Scholar] [CrossRef]
- Lv, M.; Du, M.; Li, X.; Yue, Y.; Chen, X. Mechanism of microbiologically influenced corrosion of X65 steel in seawater containing sulfate-reducing bacteria and iron-oxidizing bacteria. J. Mater. Res. Technol. 2019, 8, 4066–4078. [Google Scholar] [CrossRef]
- Kotloski, N.J.; Gralnick, J.A. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. mBio 2013, 4, e00553-00512. [Google Scholar] [CrossRef]
- Marsili, E.; Baron, D.B.; Shikhare, I.D.; Coursolle, D.; Gralnick, J.A.; Bond, D.R. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci. USA 2008, 105, 3968–3973. [Google Scholar] [CrossRef]
- Hedrich, S.; Hedrich, S.; Schlömann, M.; Johnson, D.B. The iron-oxidizing proteobacteria. Microbiology 2011, 157 Pt 6, 1551–1564. [Google Scholar] [CrossRef]
Reagents | Content (g/L) |
---|---|
Sodium sulfate | 0.50 |
Calcium chloride hexahydrate | 0.20 |
Dipotassium hydrogen phosphate | 0.50 |
Magnesium sulfate heptahydrate | 0.50 |
Sodium nitrate | 0.50 |
Iron ammonium citrate | 6.00 |
Reagents | Content (g/L) |
---|---|
Peptone | 5.00 |
Sodium chloride | 19.45 |
Magnesium chloride | 5.98 |
Sodium sulfate | 3.24 |
Yeast extract powder | 1.00 |
Iron citrate | 0.10 |
Calcium chloride | 1.80 |
Potassium chloride | 0.55 |
Sodium carbonate | 0.16 |
Potassium bromide | 0.08 |
Strontium chloride | 0.034 |
Boric acid | 0.022 |
Sodium silicate | 0.004 |
Sodium fluoride | 0.0024 |
Sodium nitrate | 0.0016 |
Disodium hydrogen phosphate | 0.0008 |
Sodium chloride | 19.45 |
Element | Title 2 Content |
---|---|
C | 0.18 |
Mn | 0.38 |
P | 0.014 |
S | 0.0086 |
Si | 0.19 |
Gr | 0.04 |
Ni | 0.019 |
Fe | margin |
Name of Instrument | Model Number |
---|---|
Field emission scanning electron microscope | Quanta 200F |
Confocal laser scanning microscopy | OLS5100 |
Electrochemical workstation | CHI1660E |
Biochemical incubator | LRH-250 |
Electronic balance | ME 104E/02 |
Autoclave | DGL |
Experimental Condition | βa (V/dec) | βc (V/dec) | icorr (A/cm2) | Ecorr (V) vs. SCE |
---|---|---|---|---|
S. algae | 0.304 | −0.130 | 2.38 × 10−5 | −0.997 |
S. algae + IOB | 0.202 | −0.129 | 2.20 × 10−5 | −0.896 |
IOB | 0.196 | −0.126 | 1.81 × 10−4 | −1.027 |
Condition | Day | Rs (Ω·cm2) | Qf (F·cm−2) | Rf (Ω·cm2) | Qdl (F·cm−2) | Rct (Ω·cm2) |
---|---|---|---|---|---|---|
S. algae | 1 | 2 | 0.0001 | 3 | 0.0002 | 35,060 |
3 | 2 | 0.0001 | 216 | 0.0002 | 50,090 | |
5 | 2 | 0.0002 | 248 | 0.0002 | 14,010 | |
7 | 2 | 0.0003 | 575 | 0.0002 | 4,790 | |
S. algae + IOB | 1 | 3 | 0.0007 | 2 | 0.0004 | 354 |
3 | 3 | 0.0013 | 921 | 0.0006 | 3,753 | |
5 | 6 | 0.0015 | 3,496 | 0.0006 | 10,290 | |
7 | 6 | 0.0014 | 2,835 | 0.0004 | 21,800 | |
IOB | 1 | 2 | 0.0001 | 433 | 0.0002 | 7,862 |
3 | 3 | 0.0001 | 9 | 0.0002 | 7,351 | |
5 | 2 | 0.0003 | 181 | 0.0002 | 4,423 | |
7 | 2 | 0.0099 | 99 | 0.0428 | 300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, F.; Liu, Y.; Wu, C.; Li, K.; Hu, Y.; Liu, W.; Yu, S.; Li, M.; Dong, X.; Yu, H. Microbial Corrosion Behavior of L245 Pipeline Steel in the Presence of Iron-Oxidizing Bacteria and Shewanella algae. Microorganisms 2025, 13, 1476. https://doi.org/10.3390/microorganisms13071476
Zhu F, Liu Y, Wu C, Li K, Hu Y, Liu W, Yu S, Li M, Dong X, Yu H. Microbial Corrosion Behavior of L245 Pipeline Steel in the Presence of Iron-Oxidizing Bacteria and Shewanella algae. Microorganisms. 2025; 13(7):1476. https://doi.org/10.3390/microorganisms13071476
Chicago/Turabian StyleZhu, Fanghui, Yiyang Liu, Chunsheng Wu, Kai Li, Yingshuai Hu, Wei Liu, Shuzhen Yu, Mingxing Li, Xiaohuan Dong, and Haobo Yu. 2025. "Microbial Corrosion Behavior of L245 Pipeline Steel in the Presence of Iron-Oxidizing Bacteria and Shewanella algae" Microorganisms 13, no. 7: 1476. https://doi.org/10.3390/microorganisms13071476
APA StyleZhu, F., Liu, Y., Wu, C., Li, K., Hu, Y., Liu, W., Yu, S., Li, M., Dong, X., & Yu, H. (2025). Microbial Corrosion Behavior of L245 Pipeline Steel in the Presence of Iron-Oxidizing Bacteria and Shewanella algae. Microorganisms, 13(7), 1476. https://doi.org/10.3390/microorganisms13071476