Genomic Insights into Carbapenem-Resistant Organisms Producing New Delhi Metallo-β-Lactamase in Live Poultry Markets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Strain Identification
2.2. Antimicrobial Susceptibility Testing
2.3. Plasmid Conjugation Assay
2.4. Whole-Genome Sequencing of blaNDM-Positive Strains
2.5. Bioinformatics Analysis of Assembled Genomes
2.6. Genetic Environment Analysis of blaNDM-Positive Strains
2.7. Identification of blaNDM-Positive Pathogenic E. coli Strains
2.8. Statistical Analysis
3. Results
3.1. blaNDM-Positive Strains Profile
3.2. Genomic Analysis of blaNDM-Positive Strains
3.3. Genetic Environment Analysis of Various blaNDM Gene Variants
3.4. Correlation Analysis of blaNDM with Other ARGs, ISs and Plasmid Replicons
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alam, M.U.; Rahman, M.; Abdullah, A.M.; Islam, M.A.; Asaduzzaman, M.; Sarker, S.; Rousham, E.; Unicomb, L. Human exposure to antimicrobial resistance from poultry production: Assessing hygiene and waste-disposal practices in Bangladesh. Int. J. Hyg. Environ. Health 2019, 222, 1068–1076. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hu, Y.; Cao, J.; Bi, Y.; Lv, N.; Liu, F.; Liang, S.; Shi, Y.; Jiao, X.; Gao, G.F.; et al. Antibiotic resistance gene reservoir in live poultry markets. J. Infect. 2019, 78, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lyu, N.; Liu, F.; Liu, W.J.; Bi, Y.; Zhang, Z.; Ma, S.; Cao, J.; Song, X.; Wang, A.; et al. More diversified antibiotic resistance genes in chickens and workers of the live poultry markets. Environ. Int. 2021, 153, 106534. [Google Scholar] [CrossRef]
- Gao, X.L.; Shao, M.F.; Luo, Y.; Dong, Y.F.; Ouyang, F.; Dong, W.Y.; Li, J. Airborne bacterial contaminations in typical Chinese wet market with live poultry trade. Sci. Total Environ. 2016, 572, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Patel, G.; Bonomo, R.A. “Stormy waters ahead”: Global emergence of carbapenemases. Front. Microbiol. 2013, 4, 48. [Google Scholar] [CrossRef]
- Yong, D.; Toleman, M.A.; Giske, C.G.; Cho, H.S.; Sundman, K.; Lee, K.; Walsh, T.R. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother. 2009, 53, 5046–5054. [Google Scholar] [CrossRef]
- Wu, W.; Feng, Y.; Tang, G.; Qiao, F.; McNally, A.; Zong, Z. NDM Metallo-β-Lactamases and Their Bacterial Producers in Health Care Settings. Clin. Microbiol. Rev. 2019, 32, e00115-18. [Google Scholar] [CrossRef]
- Diebold, P.J.; Rhee, M.W.; Shi, Q.; Trung, N.V.; Umrani, F.; Ahmed, S.; Kulkarni, V.; Deshpande, P.; Alexander, M.; Thi Hoa, N.; et al. Clinically relevant antibiotic resistance genes are linked to a limited set of taxa within gut microbiome worldwide. Nat. Commun. 2023, 14, 7366. [Google Scholar] [CrossRef]
- Too, R.J.; Kariuki, S.M.; Gitao, G.C.; Bebora, L.C.; Mollenkopf, D.F.; Wittum, T.E. Carbapenemase-producing bacteria recovered from Nairobi River, Kenya surface water and from nearby anthropogenic and zoonotic sources. PLoS ONE 2024, 19, e0310026. [Google Scholar] [CrossRef]
- Su, Y.; Xin, L.; Zhang, F.; Peng, C.; Li, Z.; Liu, C.; Wang, F. Drug resistance analysis of three types of avian-origin carbapenem-resistant Enterobacteriaceae in Shandong Province, China. Poult. Sci. 2023, 102, 102483. [Google Scholar] [CrossRef]
- Yang, H.; Xiong, Z.; Cao, K.; He, Y.; Song, S.; Lan, F.; Yang, K.; Liu, X.; Duan, C.; Zhou, Z. Risk factors and molecular epidemiology of colonizing carbapenem-resistant Enterobacterales in pediatric inpatient in Shenzhen, China. J. Infect. Public Health 2025, 18, 102614. [Google Scholar] [CrossRef] [PubMed]
- Al-mustapha, A.I.; Tiwari, A.; Laukkanen-Ninios, R.; Lehto, K.M.; Oikarinen, S.; Lipponen, A.; Pitkänen, T.; Heikinheimo, A.; WastPan Study Group. Wastewater based genomic surveillance key to population level monitoring of AmpC/ESBL producing Escherichia coli. Sci. Rep. 2025, 15, 7400. [Google Scholar] [CrossRef]
- Li, C.A.; Guo, C.H.; Yang, T.Y.; Li, F.Y.; Song, F.J.; Liu, B.T. Whole-Genome Analysis of bla(NDM)-Bearing Proteus mirabilis Isolates and mcr-1-Positive Escherichia coli Isolates Carrying bla(NDM) from the Same Fresh Vegetables in China. Foods 2023, 12, 492. [Google Scholar] [CrossRef]
- Humphries, R.; Bobenchik, A.M.; Hindler, J.A.; Schuetz, A.N. Overview of Changes to the Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing, M100, 31st Edition. J. Clin. Microbiol. 2021, 59, e0021321. [Google Scholar] [CrossRef] [PubMed]
- Kahlmeter, G.; Brown, D.F.; Goldstein, F.W.; MacGowan, A.P.; Mouton, J.W.; Odenholt, I.; Rodloff, A.; Soussy, C.J.; Steinbakk, M.; Soriano, F.; et al. European Committee on Antimicrobial Susceptibility Testing (EUCAST) Technical Notes on antimicrobial susceptibility testing. Clin. Microbiol. Infect. 2006, 12, 501–503. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, L.; Peng, K.; Wang, Q.; Liu, R.; Wang, Z.; Li, R. Characterisation of a Novel Tigecycline Resistance Gene tet(X22) and its Coexistence with bla(NDM-1) in a Pseudomonas caeni Isolate. Int. J. Antimicrob. Agents 2023, 62, 106961. [Google Scholar] [CrossRef]
- Yin, Y.; Peng, K.; Li, Y.; Zhang, W.H.; Gao, Y.Y.; Sun, X.R.; Chen, S.; Wang, Z.Q.; Li, R.C. Transmission patterns of multiple strains producing New Delhi metallo-β-lactamase variants among animals and the environment in live poultry markets. One Health Adv. 2024, 2, 12. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Shi, C.; Huang, Z.; Zhang, Y.; Li, S.; Li, Y.; Ye, J.; Yu, C.; Li, Z.; et al. SOAPnuke: A MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 2018, 7, gix120. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Siguier, P.; Perochon, J.; Lestrade, L.; Mahillon, J.; Chandler, M. ISfinder: The reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006, 34, D32–D36. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Zankari, E.; García-fernández, A.; Voldby, L.M.; Lund, O.; Villa, L.; Møller, A.F.; Hasman, H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yang, J.; Yu, J.; Yao, Z.; Sun, L.; Shen, Y.; Jin, Q. VFDB: A reference database for bacterial virulence factors. Nucleic Acids Res. 2005, 33, D325–D328. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Li, X.; Xie, Y.; Bi, D.; Sun, J.; Li, J.; Tai, C.; Deng, Z.; Ou, H.Y. ICEberg 2.0: An updated database of bacterial integrative and conjugative elements. Nucleic Acids Res. 2019, 47, D660–D665. [Google Scholar] [CrossRef]
- Bessonov, K.; Laing, C.; Robertson, J.; Yong, I.; Ziebell, K.; Gannon, V.P.J.; Nichani, A.; Arya, G.; Nash, J.H.E.; Christianson, S. ECTyper: In silico Escherichia coli serotype and species prediction from raw and assembled whole-genome sequence data. Microb. Genom. 2021, 7, 000728. [Google Scholar] [CrossRef]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef]
- Tian, R.; Zhou, J.; Imanian, B. PlasmidHunter: Accurate and fast prediction of plasmid sequences using gene content profile and machine learning. Brief. Bioinform. 2024, 25, bbae322. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 2009, 26, 1641–1650. [Google Scholar] [CrossRef]
- Alikhan, N.F.; Petty, N.K.; Ben Zakour, N.L.; Beatson, S.A. BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genom. 2011, 12, 402. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, X.; Dong, N.; Wang, Z.; Li, R. Global distribution and genomic characteristics of carbapenemase-producing Escherichia coli among humans, 2005–2023. Drug Resist. Updates 2024, 72, 101031. [Google Scholar] [CrossRef] [PubMed]
- Chklovski, A.; Parks, D.H.; Woodcroft, B.J.; Tyson, G.W. CheckM2: A rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Nat. Methods 2023, 20, 1203–1212. [Google Scholar] [CrossRef] [PubMed]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. Proc. Int. AAAI Conf. Web Soc. Media 2009, 3, 361–362. [Google Scholar] [CrossRef]
- Panchalingam, S.; Antonio, M.; Hossain, A.; Mandomando, I.; Ochieng, B.; Oundo, J.; Ramamurthy, T.; Tamboura, B.; Zaidi, A.K.; Petri, W.; et al. Diagnostic microbiologic methods in the GEMS-1 case/control study. Clin. Infect. Dis. 2012, 55 (Suppl. S4), S294–S302. [Google Scholar] [CrossRef]
- Yao, J.; Hu, Y.; Wang, X.; Sheng, J.; Zhang, Y.; Zhao, X.; Wang, J.; Xu, X.; Li, X. Carbapenem-resistant Morganella morganii carrying bla(KPC-2) or bla(NDM-1) in the clinic: One-decade genomic epidemiology analysis. Microbiol. Spectr. 2025, 13, e0247624. [Google Scholar] [CrossRef]
- Ke, Y.; Zhu, Z.; Lu, W.; Liu, W.; Ye, L.; Jia, C.; Yue, M. Emerging bla(NDM)-positive Salmonella enterica in Chinese pediatric infections. Microbiol. Spectr. 2024, 12, e0148524. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, L.; Ye, K.; Wang, L.; Yang, J.; Ye, L. Epidemiology, Phylogeny and Genetic Characterization of Carbapenem-resistant Citrobacter spp. from 5 hospitals in China. J. Glob. Antimicrob. Resist. 2025, 42, 207–213. [Google Scholar] [CrossRef]
- Marano, R.B.M.; Oster, Y.; Benenson, S.; Motro, Y.; Ayalon, O.; Rosenbluh, C.; Cuénod, A.; Michael-Gayego, A.; Temper, V.; Strahilevitz, J.; et al. An Omics-Guided Investigation of a Hospital Outbreak Caused by blaNDM-1-Producing Pseudocitrobacter faecalis. J. Infect. Dis. 2025, jiaf103. [Google Scholar] [CrossRef]
- Lian, S.; Liu, C.; Cai, M.; Cao, Y.; Xu, X. Risk factors and molecular characterization of carbapenem resistant Escherichia coli recovered from a tertiary hospital in Fujian, China from 2021 to 2023. BMC Microbiol. 2024, 24, 374. [Google Scholar] [CrossRef]
- Morris, R.; Wang, S. Building a pathway to One Health surveillance and response in Asian countries. Sci. One Health 2024, 3, 100067. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Wang, Z.; Shang, Z.; Zou, H.; Zhao, L.; Hou, X.; Wu, T.; Meng, M.; Li, X. Steady existence of Escherichia coli co-resistant to carbapenem and colistin in an animal breeding area even after the colistin forbidden. J. Environ. Manag. 2024, 371, 123084. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, G.B.; Zhang, R.; Shen, Y.; Tyrrell, J.M.; Huang, X.; Zhou, H.; Lei, L.; Li, H.Y.; Doi, Y.; et al. Prevalence, risk factors, outcomes, and molecular epidemiology of mcr-1-positive Enterobacteriaceae in patients and healthy adults from China: An epidemiological and clinical study. Lancet Infect. Dis. 2017, 17, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Quan, J.; Huang, L.; Zhou, M.; Zhang, C.; Chen, L.; Hu, H.; Zhou, J.; Li, X.; Jiang, Y.; et al. Emergence of a clinical carbapenem resistant Escherichia coli co-harboring bla(ndm-5) and mcr-1.1 on the same plasmid. Int. J. Antimicrob. Agents 2025, 66, 107495. [Google Scholar] [CrossRef] [PubMed]
- Shafiq, M.; Zeng, M.; Permana, B.; Bilal, H.; Huang, J.; Yao, F.; Algammal, A.M.; Li, X.; Yuan, Y.; Jiao, X. Coexistence of bla (NDM-5) and tet(X4) in international high-risk Escherichia coli clone ST648 of human origin in China. Front. Microbiol. 2022, 13, 1031688. [Google Scholar] [CrossRef]
- Swedan, S.; Abu Alrub, H. Antimicrobial Resistance, Virulence Factors, and Pathotypes of Escherichia coli Isolated from Drinking Water Sources in Jordan. Pathogens 2019, 8, 86. [Google Scholar] [CrossRef]
- Raseala, C.M.; Ekwanzala, M.D.; Momba, M.N.B. Multilocus-based phylogenetic analysis of extended-spectrum beta-lactamase Escherichia coli O157:H7 uncovers related strains between agriculture and nearby water sources. J. Infect. Public Health 2020, 13, 1899–1906. [Google Scholar] [CrossRef]
- Zenebe, T.; Eguale, T.; Desalegn, Z.; Beshah, D.; Gebre-Selassie, S.; Mihret, A.; Abebe, T. Distribution of ß-Lactamase Genes Among Multidrug-Resistant and Extended-Spectrum ß-Lactamase-Producing Diarrheagenic Escherichia coli from Under-Five Children in Ethiopia. Infect. Drug Resist. 2023, 16, 7041–7054. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, C.; Zhang, Q.; Qi, J.; Liu, H.; Wang, Y.; He, T.; Ma, L.; Lai, J.; Shen, Z.; et al. Identification of New Delhi metallo-β-lactamase 1 in Acinetobacter lwoffii of food animal origin. PLoS ONE 2012, 7, e37152. [Google Scholar] [CrossRef]
- Medugu, N.; Tickler, I.A.; Duru, C.; Egah, R.; James, A.O.; Odili, V.; Hanga, F.; Olateju, E.K.; Jibir, B.; Ebruke, B.E.; et al. Phenotypic and molecular characterization of beta-lactam resistant Multidrug-resistant Enterobacterales isolated from patients attending six hospitals in Northern Nigeria. Sci. Rep. 2023, 13, 10306. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Z.; Liu, X.; Hu, Y.; Zhao, J.; Zhang, Y.; Fan, Y.; Lei, Z.; Yang, X.; Li, Z.; et al. Carbapenem-resistant Citrobacter freundii harboring bla(KPC-2) and bla(NDM-1): A study on their transferability and potential dissemination via generating a transferrable hybrid plasmid mediated by IS6100. Front. Microbiol. 2023, 14, 1239538. [Google Scholar] [CrossRef]
- Pajand, O.; Rahimi, H.; Badmasti, F.; Gholami, F.; Alipour, T.; Darabi, N.; Aarestrup, F.M.; Leekitcharoenphon, P. Various arrangements of mobile genetic elements among CC147 subpopulations of Klebsiella pneumoniae harboring bla(NDM-1): A comparative genomic analysis of carbapenem resistant strains. J. Biomed. Sci. 2023, 30, 73. [Google Scholar] [CrossRef] [PubMed]
- Oyelade, A.A.; Ikhimiukor, O.O.; Nwadike, B.I.; Fagade, O.E.; Adelowo, O.O. Assessing the risk of exposure to antimicrobial resistance at public beaches: Genome-based insights into the resistomes, mobilomes and virulomes of beta-lactams resistant Enterobacteriaceae from recreational beaches in Lagos, Nigeria. Int. J. Hyg. Environ. Health 2024, 258, 114347. [Google Scholar] [CrossRef] [PubMed]
- Zi, P.; Fang, M.; Yang, H.; Zheng, J.; Ma, N.; Liu, Q. Characterization of an NDM-1-Producing Citrobacter koseri Isolate from China. Infect. Drug Resist. 2024, 17, 61–67. [Google Scholar] [CrossRef]
Collection Location | Source Location | Sample Type | No. of Samples | No. of Positive Samples (%) |
---|---|---|---|---|
Live poultry market A | Anhui | Chicken manure | 18 | 13 (72.22) |
Duck manure | 13 | 4 (30.77) | ||
Pigeon manure | 12 | 3 (25) | ||
Huai’an | Chicken manure | 31 | 22 (70.97) | |
Nanjing | Chicken manure | 13 | 1 (7.69) | |
Nantong | Chicken manure | 6 | 3 (50) | |
Taizhou | Chicken manure | 4 | 2 (50) | |
Yangzhou | Environment | 33 | 15 (45.45) | |
Goose droppings | 64 | 0 (0) | ||
Plant | 3 | 0 (0) | ||
Soil | 9 | 0 (0) | ||
Water | 20 | 8 (40) | ||
Live poultry market B | Nantong | Chicken manure | 30 | 11 (36.67) |
Yancheng | Chicken manure | 57 | 29 (50.87) | |
Yangzhou | Duck manure | 16 | 12 (75) | |
Environment | 24 | 5 (20.83) | ||
Goose droppings | 2 | 2 (100) | ||
Pigeon manure | 9 | 3 (33.33) | ||
Soil | 8 | 0 (0) | ||
Water | 16 | 11 (68.75) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, X.; Yin, Y.; Kong, J.; Wang, M.; Wang, Z.; Li, R. Genomic Insights into Carbapenem-Resistant Organisms Producing New Delhi Metallo-β-Lactamase in Live Poultry Markets. Microorganisms 2025, 13, 1195. https://doi.org/10.3390/microorganisms13061195
Xin X, Yin Y, Kong J, Wang M, Wang Z, Li R. Genomic Insights into Carbapenem-Resistant Organisms Producing New Delhi Metallo-β-Lactamase in Live Poultry Markets. Microorganisms. 2025; 13(6):1195. https://doi.org/10.3390/microorganisms13061195
Chicago/Turabian StyleXin, Xueqiang, Yi Yin, Jiayong Kong, Mianzhi Wang, Zhiqiang Wang, and Ruichao Li. 2025. "Genomic Insights into Carbapenem-Resistant Organisms Producing New Delhi Metallo-β-Lactamase in Live Poultry Markets" Microorganisms 13, no. 6: 1195. https://doi.org/10.3390/microorganisms13061195
APA StyleXin, X., Yin, Y., Kong, J., Wang, M., Wang, Z., & Li, R. (2025). Genomic Insights into Carbapenem-Resistant Organisms Producing New Delhi Metallo-β-Lactamase in Live Poultry Markets. Microorganisms, 13(6), 1195. https://doi.org/10.3390/microorganisms13061195