Legionella in Hot Water Heat Pump (HWHP) Systems
Abstract
:1. Introduction
Types of HWHP and Risk of Legionella Contamination
2. Methods
2.1. Search Terms and Search Strategy
2.2. Data Extraction and Evidence Summary
2.3. Relevant Questions
3. Results
3.1. Presence of Legionella and Risk of Exposure
3.2. Mitigation of Legionella Growth
3.3. Legionella Mitigation and Economic Concerns
4. Discussion
4.1. Control Measures
4.2. Removal of Bacteria from Water Prior to Introduction into the System
4.3. Ultraviolet (UV) Radiation Treatment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barnes, J.; Taylor, M.; Silvonen, T. Domestic Heat Pumps: A Rapid Assessment of An Emerging Market; University of Oxford: Oxford, UK, 2023. [Google Scholar] [CrossRef]
- Office of National Statistics Census 2021. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/housing/articles/census2021howhomesareheatedinyourarea/2023-01-05 (accessed on 15 January 2024).
- Monteleone, W.; Ochs, F.; Dermentzis, G.; Breuss, S. Simulation-assisted design of a silent façade-integrated R290 mini-split heat pump. Appl. Therm. Eng. 2024, 243, 122520. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Legionnaires’ Disease—Annual Epidemiological Report for 2021; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2023. [Google Scholar]
- Dufresne, S.; Locas, M.; Duchesne, A.; Restieri, C.; Ismaïl, J.; Lefebvre, B.; Labbé, A.; Dion, R.; Plante, M.; Laverdière, M. Sporadic Legionnaires’ disease: The role of domestic electric hot-water tanks. Epidemiol. Infect. 2011, 140, 172–181. [Google Scholar] [CrossRef]
- Viasus, D.; Gaia, V.; Manzur-Barbur, C.; Carratalà, J. Legionnaires’ Disease: Update on diagnosis and treatment. Infect. Dis. Ther. 2022, 11, 973–986. [Google Scholar] [CrossRef]
- Farhat, M.; Moletta-Denat, M.; Fr�re, J.; Onillon, S.; Trouilhï, M.; Robine, E. Effects of Disinfection on Legionella spp., Eukarya, and Biofilms in a Hot Water System. Appl. Environ. Microbiol. 2012, 78, 6850–6858. [Google Scholar] [CrossRef]
- Abdel-Nour, M.; Duncan, C.; Low, D.; Guyard, C. Biofilms: The Stronghold of Legionella pneumophila. Int. J. Mol. Sci. 2013, 14, 21660–21675. [Google Scholar] [CrossRef]
- Murga, R.; Forster, T.S.; Brown, E.; Pruckler, J.M.; Fields, B.S.; Donlan, R.M. Role of biofilms in the survival of Legionella pneumophila in a model potable-water system. Microbiology 2001, 147, 3121–3126. [Google Scholar] [CrossRef]
- Toleikyte, A.; Reina, J.; Volt, J.; Carlsson, J.; Lyons, L.; Gasparella, A.; Koolen, D.; De Felice, M.; Tarvydas, D.; Czako, V.; et al. The Heat Pump Wave: Opportunities and Challenges. In JRC Science for Policy Report; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar] [CrossRef]
- Kleefkens, O. Legionella and Heat Pump Water Heaters. Sweden: Technology Collaboration Program on Heat Pumping Technologies; Heat Pump Centre: Borås, Sweden, 2020. [Google Scholar]
- Bédard, É.; Prévost, M.; Déziel, É. Pseudomonas aeruginosa in premise plumbing of large buildings. Microbiol. Open 2016, 5, 937–956. [Google Scholar] [CrossRef]
- Papagianeli, S.D.; Aspridou, Z.; Didos, S.; Chochlakis, D.; Psaroulaki, A.; Koutsoumanis, K. Dynamic modelling of Legionella pneumophila thermal inactivation in water. Water Res. 2021, 190, 116743. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.M.; Coughlin, D.; Miller, J.; Kirk, S. The Production of Quick Scoping Reviews and Rapid Evidence Assessments: A How to Guide. 2015. Available online: https://assets.publishing.service.gov.uk/media/5a7f3a76ed915d74e33f5206/Production_of_quick_scoping_reviews_and_rapid_evidence_assessments.pdf (accessed on 15 January 2024).
- Boait, P.J.; Dixon, D.; Fan, D.; Stafford, A. Production efficiency of hot water for domestic use. Energy Build. 2012, 54, 160–168. [Google Scholar] [CrossRef]
- Baumann, C.; Huber, G.; Alavanja, J.; Preißinger, M.; Kepplinger, P. Experimental validation of a state-of-the-art model predictive control approach for demand side management with a hot water heat pump. Energy Build. 2023, 285, 112923. [Google Scholar] [CrossRef]
- Best, I. District Heating Systems for New Residential Areas: On the Impact of System Temperatures; University of Kassel: Kassel, Germany, 2022. [Google Scholar] [CrossRef]
- Elmegaard, B.; Ommen, T.S.; Markussen, M.; Iversen, J. Integration of space heating and hot water supply in low temperature district heating. Energy Build. 2015, 124, 255–264. [Google Scholar] [CrossRef]
- Hadengue, B.; Morgenroth, E.; Larsen, T.A. How to get your feet wet: Integrating urban water and building engineering for low-energy domestic hot water systems. Energy Build. 2022, 271, 112318. [Google Scholar] [CrossRef]
- Heinz, A.; Gritzer, F.; Thür, A. The effect of using a desuperheater in an air-to-water heat pump system supplying a multi-family building. J. Build. Eng. 2022, 49, 104002. [Google Scholar] [CrossRef]
- Han, X.Y. Effects of climate changes and road exposure on the rapidly rising legionellosis incidence rates in the United States. PLoS ONE 2021, 16, e0250364. [Google Scholar] [CrossRef]
- Kelly, N.J.; Tuohy, P.G.; Hawkes, A.D. Performance assessment of tariff-based air source heat pump load shifting in a UK detached dwelling featuring phase change-enhanced buffering. Appl. Therm. Eng. 2014, 71, 809–820. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.Y. Effects of a Groundwater Heat Pump on Thermophilic Bacteria Activity. Water 2019, 11, 12. [Google Scholar] [CrossRef]
- Kim, H.; Mok, J.; Park, Y.; Kaown, D.; Lee, K. Composition of Groundwater Bacterial Communities before and after Air Surging in a Groundwater Heat Pump System According to a Pyrosequencing Assay. Water 2017, 9, 891. [Google Scholar] [CrossRef]
- Liang, J.; Cameron, G.; Faucher, S.P. Development of heat-shock resistance in Legionella pneumophila modelled by experimental evolution. Appl. Environ. Microbiol. 2023, 89, e0066623. [Google Scholar] [CrossRef]
- Líu, H.; Zhang, H.; Javed, S. Long-Term performance measurement and analysis of a Small-Scale ground source heat pump system. Energies 2020, 13, 4527. [Google Scholar] [CrossRef]
- National Institute of Infectious Diseases (NIID); Tuberculosis and Infectious Diseases Control Division, Ministry of Health, Labour and Welfare (MHLW). Legionella (Legionellosis) and control measures in Japan. Infect. Agents Surveill. Rep. 2005, 26, 221–222. (In Japanese) [Google Scholar]
- Ottosson, K.; Karlsson, L. Overcoming Issues with Legionella in DHW in LTDH Systems; Lunds University: Lund, Sweden, 2018; Available online: https://lup.lub.lu.se/student-papers/record/8945437/file/8952668.pdf (accessed on 15 January 2024).
- Schang, C.; Schmidt, J.; Gao, L.; Bergmann, D.; McCormack, T.; Henry, R.; McCarthy, D. Rainwater for residential hot water supply: Managing microbial risks. Sci. Total Environ. 2021, 782, 146889. [Google Scholar] [CrossRef]
- Toffanin, R.; Curti, V.; Barbato, M. Impact of Legionella regulation on a 4th generation district heating substation energy use and cost: The case of a Swiss single-family household. Energy 2021, 228, 120473. [Google Scholar] [CrossRef]
- Williams, A.; Thomson, M. Significance of Insulation and Heat Pumps in Decarbonising the UK. J. Energy Power Technol. 2023, 5, 1–12. [Google Scholar] [CrossRef]
- Yang, X.; Li, H.; Svendsen, S. Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating. Energy 2016, 109, 248–259. [Google Scholar] [CrossRef]
- Yang, X.; Li, H.; Svendsen, S. Alternative solutions for inhibiting Legionella in domestic hot water systems based on low-temperature district heating. Build. Serv. Eng. Res. Technol. 2015, 37, 468–478. [Google Scholar] [CrossRef]
- Yang, X.; Li, H.; Svendsen, S. Energy, economy and exergy evaluations of the solutions for supplying domestic hot water from low-temperature district heating in Denmark. Energy Convers. Manag. 2016, 122, 142–152. [Google Scholar] [CrossRef]
- Yang, X.; Li, H.; Svendsen, S. Decentralized substations for low-temperature district heating with no Legionella risk, and low return temperatures. Energy 2016, 110, 65–74. [Google Scholar] [CrossRef]
- Arabkooshar, A. Non-uniform temperature district heating system with decentralized heat pumps and standalone storage tanks. Energy 2019, 170, 931–941. [Google Scholar] [CrossRef]
- Kaschewski, S.; Breuer, K.; Dünnebier, S.; Horstmeyer, S.; Breuer, N.; Horn, K.; Nürenberg, H.; Müller, M.; Dünnebier, D. Energy savings in hot water supply by legionella modelling. REHVA 2020, 6, 54–59. [Google Scholar]
- Genuardi, M.W. Installation of an ultrafiltration plant in a multi-family house to reduce the hot-water temperature and energy demand: A case study in Germany. J. Build. Eng. 2023, 66, 105898. [Google Scholar] [CrossRef]
- Knapp, S.; Nordell, B. Energy-efficient Legionella control that mimics nature and an open-source computational model to aid system design. Appl. Therm. Eng. 2017, 127, 370–377. [Google Scholar] [CrossRef]
- Lidberg, T.; Olofsson, T.; Ödlund, L. Impact of domestic hot water systems on district heating temperatures. Energies 2019, 12, 4694. [Google Scholar] [CrossRef]
- Mathys, W.; Stanke, J.; Harmuth, M.; Junge-Mathys, E. Occurrence of Legionella in hot water systems of single-family residences in suburbs of two German cities with special reference to solar and district heating. Int. J. Hyg. Environ. Health 2008, 211, 179–185. [Google Scholar] [CrossRef]
- Schmidt, D.; Kallert, A.; Blesl, M.; Svendsen, S.; Li, H.; Nord, N.; Sipilä, K. Low temperature district heating for future energy systems. Energy Procedia 2017, 116, 26–38. [Google Scholar] [CrossRef]
- Moodley, S.J.; Muchesa, P.; Bartie, C.; Barnard, T.G.; Clarke, R.; Masenge, A.; Venter, S.N. Prevalence of free-living acanthamoeba and its associated bacteria in energy efficient hot water systems in South Africa. Water SA 2023, 49, 1–7. [Google Scholar] [CrossRef]
- SIA 385/1:2011; Heating Systems in Buildings—Water Heating Systems Requirements. SIA (Swiss Society of Engineers and Architects): Zürich, Switzerland, 2011; pp. 1–28.
- ÖNORM B 1921:2023; Microbiological Requirements for Water Quality and Its Monitoring in Drinking Water Heating Systems. Austrian Standards Institute: Vienna, Austria, 2023.
- Tanimoto, T.; Takahashi, K.; Crump, A. Legionellosis in Japan: A self-inflicted wound? Intern. Med. 2021, 60, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Lee, S. An Overview of the European Technical Guidelines for the Prevention, Control and Investigation of Infections Caused by Legionella species. Perspect. Public Health 2018, 138, 241–247. [Google Scholar] [CrossRef]
- Li, X.; Cai, M.; Lei, W.; Niu, F.; Yang, D.; Zhang, G. Evaluation survey of microbial disinfection methods in UV-LED water treatment systems. Sci. Total Environ. 2019, 659, 1415–1427. [Google Scholar] [CrossRef]
- Gao, W.; Liang, H.; Ma, J.; Han, M.; Chen, Z.; Han, Z. Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination 2011, 272, 1–8. [Google Scholar] [CrossRef]
- Chang, H.; Zhu, Y.; Yu, H.; Qu, F.; Zhou, Z.; Li, X.; Yang, Y.; Tang, X.; Liang, H. Long-term operation of ultrafiltration membrane in full-scale drinking water treatment plants in China: Characteristics of membrane performance. Desalination 2022, 543, 116122. [Google Scholar] [CrossRef]
- Singh, H.; Bhardwaj, S.K.; Khatri, M.; Kim, K.; Bhardwaj, N. UVC radiation for food safety: An emerging technology for the microbial disinfection of food products. Chem. Eng. J. 2021, 417, 128084. [Google Scholar] [CrossRef]
- Li, H.; Osman, H.; Kang, C.W.; Ba, T. Numerical and experimental investigation of UV disinfection for water treatment. Appl. Therm. Eng. 2017, 111, 280–291. [Google Scholar] [CrossRef]
- Shin, M.; Na, G.; Kang, J.; Kang, D. Application of combined treatment of peracetic acid and ultraviolet-C for inactivating pathogens in water and on surface of apples. Int. J. Food Microbiol. 2024, 411, 110519. [Google Scholar] [CrossRef] [PubMed]
Reference | Goal of Study | Control Measures | Geographical Location | Future Technology | Type of System Delivery |
---|---|---|---|---|---|
[36] | Novel concept of non-uniform temperature district heating (NUTDH) system with decentralised heat pumps and standalone heat storage units (HPHS) | Proposed system will increase temperatures in distribution to 70 °C during short periods of time | Central Europe | Yes | District Heating |
[37] | Energy savings in hot water supplies and Legionella modelling | Removal of stagnation, temperature control and integration of UV-LED technology | Western Europe | Yes | Multi-Family Home/District Heating |
[38] | Ultrafiltration plant installation to reduce water temperature and energy demand | Addition of ultrafiltration plant in hot water system | Western Europe | Yes | Multi-Family Home |
[39] | Efficiency of Duck Foot Heat Exchange Model | Pasteurisation system | US/Canada | Yes | Domestic Hot Water |
[40] | Examination of Energy Refurbishment Packages (ERPs) to lower temperature need | Temperature | Sweden | No | Multi-Family Space Heating/District Hot Water/District Heating |
[41] | Testing of hot water systems in randomly selected residences between two cities | Temperature | Germany | No | Single-Family Residences |
[42] | Low temperature district heating | No | Western Europe | Yes | District Heating |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brookes, J.; Senior, H.; Gosling, R.J.; Smith, D.; Wade, M. Legionella in Hot Water Heat Pump (HWHP) Systems. Microorganisms 2025, 13, 1134. https://doi.org/10.3390/microorganisms13051134
Brookes J, Senior H, Gosling RJ, Smith D, Wade M. Legionella in Hot Water Heat Pump (HWHP) Systems. Microorganisms. 2025; 13(5):1134. https://doi.org/10.3390/microorganisms13051134
Chicago/Turabian StyleBrookes, Jodi, Helena Senior, Rebecca J. Gosling, Duncan Smith, and Margaret Wade. 2025. "Legionella in Hot Water Heat Pump (HWHP) Systems" Microorganisms 13, no. 5: 1134. https://doi.org/10.3390/microorganisms13051134
APA StyleBrookes, J., Senior, H., Gosling, R. J., Smith, D., & Wade, M. (2025). Legionella in Hot Water Heat Pump (HWHP) Systems. Microorganisms, 13(5), 1134. https://doi.org/10.3390/microorganisms13051134