Challenges and Potential of Antibody–Drug Conjugates as Prospective Tuberculosis Therapeutics
Abstract
1. Introduction
2. Critical Features of Next-Generation TB Therapeutics
- TB drugs should maintain robust bactericidal activity across diverse metabolic states, including Mtb variants with phenotypic heterogeneity and adaptive resistance.
- TB drugs must overcome the pharmacokinetic (PK) barriers of passive diffusion in reaching tissue or cellular barriers, e.g., granuloma and intracellular compartmentation.
- TB drugs must act as a potent, pan-TB regimen with improved pharmacodynamic (PD) and PK profiles relative to current therapeutics.
- Increased efficacy translates into regimens with shorter treatment duration relative to current therapeutics.
- TB drug regimens would preferably employ a single-agent therapy. Such simplification should improve patient adherence and enhance the operational feasibility of large-scale implementation in global public health programs.
3. Rationale for MtbADCs
- Payload: the bioactive agent or agents responsible for the therapeutic effect.
- Ab: a targeting moiety for precise delivery and a biodegradable carrier for the therapeutic payload.
- Linker: a chemical entity that covalently attaches the payload to the Ab, ensuring stability during circulation and controlled release primarily at the target site.
3.1. MtbADCs’ Potential for Robust Bactericidal Activity
3.2. MtbADCs’ Potential to Overcome Passive Diffusion Limitations
3.3. MtbADCs Hold Strong Potential as Pan-TB Agents
3.4. MtbADCs Support the Development of Potent TB Therapeutics with Shorter Treatment Duration: Linker Function
4. Payloads in MtbADCs
5. Linkers for ADCs
6. Mtb Antibody Resource for MtbADC Abs
6.1. Antibody Selection for MtbADC Development
6.2. Ab Effector Function for MtbADC Development
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TB | Tuberculosis |
Mtb | Mycobacterium tuberculosis or M. tuberculosis |
LAM | Lipoarabinomannan |
HspX | Heat shock protein X |
Ag85 | Antigen 85 complex |
HBHA | Heparin-binding haemagglutinin |
LprG | Lipoprotein regulatory G |
SodA | Superoxide Dismutase A |
KatG | Catalase–Peroxidase G |
Mpt64 | Mycobacterium protein 64 |
PhoS1/PstS1 | Phosphate-binding protein S1 |
Ab | Antibody |
Ig | Immunoglobulin |
IgV | Immunoglobulin variable chain |
CDR | Complementarity determined regions |
FR | Framework regions |
Fab | Fragment antigen-binding |
Fc | Immunoglobulin constant fragment |
References
- Chakaya, J.; Khan, M.; Ntoumi, F.; Aklillu, E.; Fatima, R.; Mwaba, P.; Kapata, N.; Mfinanga, S.; Hasnain, S.E.; Katoto, P.D.M.C.; et al. Global Tuberculosis Report 2020–Reflections on the Global TB burden, treatment and prevention efforts. Int. J. Infect. Dis. 2021, 113, S7–S12. [Google Scholar] [CrossRef]
- Friedrich, M.J. Tuberculosis Update 2017. JAMA 2017, 318, 2287. [Google Scholar] [CrossRef]
- Pai, M.; Behr, M.A.; Dowdy, D.; Dheda, K.; Divangahi, M.; Boehme, C.C.; Ginsberg, A.; Swaminathan, S.; Spigelman, M.; Getahun, H.; et al. Tuberculosis. Nat. Rev. Dis. Primers. 2016, 2, 16076. [Google Scholar] [CrossRef]
- Jarachvarawat, C. Epidemiology of Tuberculosis in South-East Asia Region. J. Public Health 2010, 39, 111–122. [Google Scholar]
- Andrews, J.R.; Morrow, C.; Wood, R. Modeling the role of public transportation in sustaining tuberculosis transmission in South Africa. Am. J. Epidemiol. 2013, 177, 556–561. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Tuberculosis, 2021c. 2025. Available online: https://www.who.int/news-room/fact-sheets/detail/tuberculosis (accessed on 19 September 2025).
- WHO. Global Tuberculosis Report 2024. 2024. Available online: https://www.who.int/teams/global-programme-on-tuberculosis-and-lung-health/tb-reports/global-tuberculosis-report-2024 (accessed on 19 September 2025).
- Gagneux, S. Ecology and evolution of Mycobacterium tuberculosis. Nat. Rev. Microbiol. 2018, 16, 202–213. [Google Scholar] [CrossRef]
- Lai, R.; Williams, T.; Rakib, T.; Lee, J.; Behar, S.M. Heterogeneity in lung macrophage control of Mycobacterium tuberculosis is modulated by T cells. Nat. Commun. 2024, 15, 5710. [Google Scholar] [CrossRef]
- Philips, J.A.; Ernst, J.D. Tuberculosis pathogenesis and immunity. Annu. Rev. Pathol. 2012, 7, 353–384. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, S.H.E. How can immunology contribute to the control of tuberculosis? Nat. Rev. Immunol. 2001, 1, 20–30. [Google Scholar] [CrossRef]
- Bo, H.; Moure, U.A.E.; Yang, Y.; Pan, J.; Li, L.; Wang, M.; Ke, X.; Cui, H. Mycobacterium tuberculosis-macrophage interaction: Molecular updates. Front. Cell Infect. Microbiol. 2023, 13, 1062963. [Google Scholar] [CrossRef] [PubMed]
- Sia, J.K.; Rengarajan, J. Immunology of Mycobacterium tuberculosis Infections. Microbiol. Spectr. 2019, 7, 1–37. [Google Scholar] [CrossRef]
- Gomez, J.E.; McKinney, J.D.M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis 2004, 84, 29–44. [Google Scholar] [CrossRef]
- Gupta, A.; Kaul, A.; Tsolaki, A.G.; Kishore, U.; Bhakta, S. Mycobacterium tuberculosis: Immune evasion, latency and reactivation. Immunobiology 2012, 217, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Golden, M.P.; Vikram, H.R. Extrapulmonary tuberculosis: An overview. Am. Fam. Physician 2005, 72, 1761–1768. [Google Scholar]
- WHO. Global Tuberculosis Report 2020 (WHO/HTM/TB/2020.20). 2020. Available online: https://www.who.int/publications/i/item/9789240013131 (accessed on 8 August 2025).
- Dinnes, J.; Deeks, J.; Kunst, H.; Gibson, A.; Cummins, E.; Waugh, N.; Drobniewski, F.; Lalvani, A. A systematic review of rapid diagnostic tests for the detection of tuberculosis infection. Health Technol. Assess 2007, 11, 1–196. [Google Scholar] [CrossRef] [PubMed]
- Dartois, V.A.; Rubin, E.J. Anti-tuberculosis treatment strategies and drug development: Challenges and priorities. Nat. Rev. Microbiol. 2022, 20, 685–701. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, R.; Qi, Y.; Yan, X.; Qi, G.; Peng, Q. The progress of Mycobacterium tuberculosis drug targets. Front. Med. 2024, 11, 1455715. [Google Scholar] [CrossRef]
- Horsburgh, C.R., Jr.; Barry, C.E., 3rd; Lange, C. Treatment of Tuberculosis. N. Engl. J. Med. 2015, 373, 2149–2160. [Google Scholar] [CrossRef]
- Mereškevičienė, R.; Danila, E. The Adverse Effects of Tuberculosis Treatment: A Comprehensive Literature Review. Medicina 2025, 61, 911. [Google Scholar] [CrossRef]
- Tune, B.X.-J.; Stephen, A.; Guad, R.M.; Fuloria, N.K.; Subramaniyan, V.; Sekar, M.; Wu, Y.S. Pharmacological Management of Tuberculosis, Challenges, and Potential Strategies. Prog. Drug Discov. Amp; Biomed. Sci. 2024, 7, a0000438. [Google Scholar] [CrossRef]
- WHO. WHO Consolidated Guidelines on Tuberculosis: Module 4: Treatment: Drug-Susceptible Tuberculosis Treatment. 2022. Available online: https://www.who.int/publications/i/item/9789240048126 (accessed on 8 August 2025).
- Conradie, F.; Bagdasaryan, T.R.; Borisov, S.; Howell, P.; Mikiashvili, L.; Ngubane, N.; Samoilova, A.; Skornykova, S.; Tudor, E.; Variava, E.; et al. Bedaquiline-Pretomanid-Linezolid Regimens for Drug-Resistant Tuberculosis. N. Engl. J. Med. 2022, 387, 810–823. [Google Scholar] [CrossRef]
- Conradie, F.; Diacon, A.H.; Ngubane, N.; Howell, P.; Everitt, D.; Crook, A.M.; Mendel, C.M.; Egizi, E.; Moreira, J.; Timm, J.; et al. Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. N. Engl. J. Med. 2020, 382, 893–902. [Google Scholar] [CrossRef]
- Conradie, F.; Diacon, A.H.; Ngubane, N.; Howell, P.; Everitt, D.E.; Crook, A.; Mendel, C.M.; Egizi, E.; Moreira, J.; Timm, J.; et al. Bedaquiline, pretomanid and linezolid for treatment of extensively drug resistant, intolerant or non-responsive multidrug resistant pulmonary tuberculosis. N. Engl. J. Med. 2020, 382, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Ojha, A.K.; Baughn, A.D.; Sambandan, D.; Hsu, T.; Trivelli, X.; Guerardel, Y.; Alahari, A.; Kremer, L.; Jacobs, W.R., Jr.; Hatfull, G.F. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol. Microbiol. 2008, 69, 164–174. [Google Scholar] [CrossRef]
- Gengenbacher, M.; Kaufmann, S.H.E. Mycobacterium tuberculosis: Success through dormancy. FEMS Microbiol. Rev. 2012, 36, 514–532. [Google Scholar] [CrossRef]
- Coates, A.; Hu, Y.; Bax, R.; Page, C. The future challenges facing the development of new antimicrobial drugs. Nat. Rev. Drug Discov. 2002, 1, 895–910. [Google Scholar] [CrossRef]
- Lin, P.L.; Flynn, J.L. Understanding latent tuberculosis: A moving target. J. Immunol. 2010, 185, 15–22. [Google Scholar] [CrossRef]
- Campbell, J.R.; Dowdy, D.; Schwartzman, K. Treatment of latent infection to achieve tuberculosis elimination in low-incidence countries. PLoS Med. 2019, 16, e1002824. [Google Scholar] [CrossRef]
- WHO. WHO Consolidated Guidelines on Tuberculosis: Module 1: Prevention–Tuberculosis Preventive Treatment. 2020. Available online: https://www.who.int/publications/i/item/9789240096196 (accessed on 8 August 2025).
- Andersen, P.; Doherty, T.M. The success and failure of BCG-implications for a novel tuberculosis vaccine. Nat. Rev. Microbiol. 2005, 3, 656–662. [Google Scholar] [CrossRef]
- Zhou, F.Q.; Zhang, Y.; Zhang, D. Latest advances in the development of tuberculosis vaccines in global clinical trials: A review. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi Chin. J. Schistosomiasis Control 2024, 36, 201–206. [Google Scholar]
- An, Y.; Ni, R.; Zhuang, L.; Yang, L.; Ye, Z.; Li, L.; Parkkila, S.; Aspatwar, A.; Gong, W. Tuberculosis vaccines and therapeutic drug: Challenges and future directions. Mol. Biomed. 2025, 6, 4. [Google Scholar] [CrossRef]
- Lu, R.-M.; Hwang, Y.-C.; Liu, I.J.; Lee, C.-C.; Tsai, H.-Z.; Li, H.-J.; Wu, H.-C. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 2020, 27, 1. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.; Li, J. Engineering Antibodies for the Treatment of Infectious Diseases. Adv. Exp. Med. Biol. 2017, 1053, 207–220. [Google Scholar] [CrossRef] [PubMed]
- Saeed, A.F.; Wang, R.; Ling, S.; Wang, S. Antibody Engineering for Pursuing a Healthier Future. Front. Microbiol. 2017, 8, 495. [Google Scholar] [CrossRef] [PubMed]
- Sievers, S.A.; Scharf, L.; West, A.P., Jr.; Bjorkman, P.J. Antibody engineering for increased potency, breadth and half-life. Curr. Opin. HIV AIDS 2015, 10, 151–159. [Google Scholar] [CrossRef]
- Schroeder, H.W.; Cavacini, L. Structure and function of immunoglobulins. J. Allergy Clin. Immunol. 2010, 125, S41–S52. [Google Scholar] [CrossRef]
- Ekins, S. Hacking into the granuloma: Could antibody antibiotic conjugates be developed for TB? Tuberculosis 2014, 94, 715–716. [Google Scholar] [CrossRef]
- Foreman, H.C.; Frank, A.; Stedman, T.T. Determination of variable region sequences from hybridoma immunoglobulins that target Mycobacterium tuberculosis virulence factors. PLoS ONE 2021, 16, e0256079. [Google Scholar] [CrossRef]
- Baah, S.; Laws, M.; Rahman, K.M. Antibody-Drug Conjugates—A Tutorial Review. Molecules 2021, 26, 2943. [Google Scholar] [CrossRef]
- Coleman, N.; Yap, T.A.; Heymach, J.V.; Meric-Bernstam, F.; Le, X. Antibody-drug conjugates in lung cancer: Dawn of a new era? NPJ Precis. Oncol. 2023, 7, 5. [Google Scholar] [CrossRef]
- Wang, R.; Hu, B.; Pan, Z.; Mo, C.; Zhao, X.; Liu, G.; Hou, P.; Cui, Q.; Xu, Z.; Wang, W.; et al. Antibody–Drug Conjugates (ADCs): Current and future biopharmaceuticals. J. Hematol. Oncol. 2025, 18, 51. [Google Scholar] [CrossRef]
- Tvilum, A.; Johansen, M.I.; Glud, L.N.; Ivarsen, D.M.; Khamas, A.B.; Carmali, S.; Mhatre, S.S.; Sogaard, A.B.; Faddy, E.; de Vor, L.; et al. Antibody-Drug Conjugates to Treat Bacterial Biofilms via Targeting and Extracellular Drug Release. Adv. Sci. 2023, 10, e2301340. [Google Scholar] [CrossRef]
- Peck, M.; Rothenberg, M.E.; Deng, R.; Lewin-Koh, N.; She, G.; Kamath, A.V.; Carrasco-Triguero, M.; Saad, O.; Castro, A.; Teufel, L.; et al. A Phase 1, Randomized, Single-Ascending-Dose Study To Investigate the Safety, Tolerability, and Pharmacokinetics of DSTA4637S, an Anti-Staphylococcus aureus Thiomab Antibody-Antibiotic Conjugate, in Healthy Volunteers. Antimicrob. Agents Chemother. 2019, 63, 10-1128. [Google Scholar] [CrossRef]
- Zhou, C.; Cai, H.; Baruch, A.; Lewin-Koh, N.; Yang, M.; Guo, F.; Xu, D.; Deng, R.; Hazenbos, W.; Kamath, A.V. Sustained activity of novel THIOMAB antibody-antibiotic conjugate against Staphylococcus aureus in a mouse model: Longitudinal pharmacodynamic assessment by bioluminescence imaging. PLoS ONE 2019, 14, e0224096. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Bai, Y.; Li, Q.; Liu, L.; Wang, Y.; Xie, F.; Dong, Y.; Wang, Z.; Lv, K.; Zhu, H.; et al. Novel antibody-antibiotic conjugate using KRM-1657 as payload eliminates intracellular MRSA in vitro and in vivo. Bioorg. Chem. 2024, 150, 107532. [Google Scholar] [CrossRef]
- Zhang, D.; Hop, C.; Patilea-Vrana, G.; Gampa, G.; Seneviratne, H.K.; Unadkat, J.D.; Kenny, J.R.; Nagapudi, K.; Di, L.; Zhou, L.; et al. Drug Concentration Asymmetry in Tissues and Plasma for Small Molecule-Related Therapeutic Modalities. Drug Metab. Dispos. Biol. Fate Chem. 2019, 47, 1122–1135. [Google Scholar] [CrossRef] [PubMed]
- Datta, M.; Kennedy, M.; Siri, S.; Via, L.E.; Baish, J.W.; Xu, L.; Dartois, V.; Barry, C.E., 3rd; Jain, R.K. Mathematical model of oxygen, nutrient, and drug transport in tuberculosis granulomas. PLoS Comput. Biol. 2024, 20, e1011847. [Google Scholar] [CrossRef]
- Prideaux, B.; Via, L.E.; Zimmerman, M.D.; Eum, S.; Sarathy, J.; O’Brien, P.; Chen, C.; Kaya, F.; Weiner, D.M.; Chen, P.Y.; et al. The association between sterilizing activity and drug distribution into tuberculosis lesions. Nat. Med. 2015, 21, 1223–1227. [Google Scholar] [CrossRef] [PubMed]
- Kokesch-Himmelreich, J.; Treu, A.; Race, A.M.; Walter, K.; Hölscher, C.; Römpp, A. Do Anti-tuberculosis Drugs Reach Their Target?—High-Resolution Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Provides Information on Drug Penetration into Necrotic Granulomas. Anal. Chem. 2022, 94, 5483–5492. [Google Scholar] [CrossRef]
- Sarathy, J.P.; Via, L.E.; Weiner, D.; Blanc, L.; Boshoff, H.; Eugenin, E.A.; Barry, C.E., 3rd; Dartois, V.A. Extreme Drug Tolerance of Mycobacterium tuberculosis in Caseum. Antimicrob. Agents Chemother. 2018, 62, e02266-17. [Google Scholar] [CrossRef]
- Cronan, M.R. In the Thick of It: Formation of the Tuberculous Granuloma and Its Effects on Host and Therapeutic Responses. Front. Immunol. 2022, 13, 820134. [Google Scholar] [CrossRef]
- Lei, Y.; Zheng, M.; Chen, P.; Seng Ng, C.; Peng Loh, T.; Liu, H. Linker Design for the Antibody Drug Conjugates: A Comprehensive Review. ChemMedChem 2025, 20, e202500262. [Google Scholar] [CrossRef]
- Ordway, D.; Viveiros, M.; Leandro, C.; Bettencourt, R.; Almeida, J.; Martins, M.; Kristiansen Jette, E.; Molnar, J.; Amaral, L. Clinical Concentrations of Thioridazine Kill Intracellular Multidrug-Resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2003, 47, 917–922. [Google Scholar] [CrossRef]
- Maitra, A.; Bates, S.; Kolvekar, T.; Devarajan, P.V.; Guzman, J.D.; Bhakta, S. Repurposing—A ray of hope in tackling extensively drug resistance in tuberculosis. Int. J. Infect. Dis. 2015, 32, 50–55. [Google Scholar] [CrossRef]
- Hale, P.W., Jr.; Poklis, A. Cardiotoxicity of thioridazine and two stereoisomeric forms of thioridazine 5-sulfoxide in the isolated perfused rat heart. Toxicol. Appl. Pharmacol. 1986, 86, 44–55. [Google Scholar] [CrossRef]
- Gottschalk, L.A.; Dinovo, E.; Biener, R.; Nandi, B.R. Plasma concentrations of thioridazine metabolites and ECG abnormalities. J. Pharm. Sci. 1978, 67, 155–157. [Google Scholar] [CrossRef] [PubMed]
- Fujii, K.; Tsuji, A.; Miyazaki, S.; Yamaguchi, K.; Goto, S. In vitro and in vivo antibacterial activities of KRM-1648 and KRM-1657, new rifamycin derivatives. Antimicrob. Agents Chemother. 1994, 38, 1118–1122. [Google Scholar] [CrossRef] [PubMed]
- Vasiljeva, O.; Dolinar, M.; Pungercar, J.R.; Turk, V.; Turk, B. Recombinant human procathepsin S is capable of autocatalytic processing at neutral pH in the presence of glycosaminoglycans. FEBS Lett. 2005, 579, 1285–1290. [Google Scholar] [CrossRef] [PubMed]
- Kolloli, A.; Subbian, S. Host-Directed Therapeutic Strategies for Tuberculosis. Front. Med. 2017, 4, 171. [Google Scholar] [CrossRef]
- Young, C.; Walzl, G.; Du Plessis, N. Therapeutic host-directed strategies to improve outcome in tuberculosis. Mucosal Immunol. 2020, 13, 190–204. [Google Scholar] [CrossRef]
- Forrellad, M.A.; Klepp, L.I.; Gioffre, A.; Sabio y Garcia, J.; Morbidoni, H.R.; de la Paz Santangelo, M.; Cataldi, A.A.; Bigi, F. Virulence factors of the Mycobacterium tuberculosis complex. Virulence 2013, 4, 3–66. [Google Scholar] [CrossRef]
- Singh, B.; Saqib, M.; Chakraborty, A.; Bhaskar, S. Lipoarabinomannan from Mycobacterium indicus pranii shows immunostimulatory activity and induces autophagy in macrophages. PLoS ONE 2019, 14, e0224239. [Google Scholar] [CrossRef]
- Correia-Neves, M.; Sundling, C.; Cooper, A.; Kallenius, G. Lipoarabinomannan in Active and Passive Protection Against Tuberculosis. Front. Immunol. 2019, 10, 1968. [Google Scholar] [CrossRef] [PubMed]
- Vergne, I.; Gilleron, M.; Nigou, J. Manipulation of the endocytic pathway and phagocyte functions by Mycobacterium tuberculosis lipoarabinomannan. Front. Cell Infect. Microbiol. 2014, 4, 187. [Google Scholar] [CrossRef]
- Karbalaei Zadeh Babaki, M.; Soleimanpour, S.; Rezaee, S.A. Antigen 85 complex as a powerful Mycobacterium tuberculosis immunogene: Biology, immune-pathogenicity, applications in diagnosis, and vaccine design. Microb. Pathog. 2017, 112, 20–29. [Google Scholar] [CrossRef]
- Parra, M.; Pickett, T.; Delogu, G.; Dheenadhayalan, V.; Debrie, A.S.; Locht, C.; Brennan, M.J. The mycobacterial heparin-binding hemagglutinin is a protective antigen in the mouse aerosol challenge model of tuberculosis. Infect. Immun. 2004, 72, 6799–6805. [Google Scholar] [CrossRef] [PubMed]
- Stamm, C.E.; Pasko, B.L.; Chaisavaneeyakorn, S.; Franco, L.H.; Nair, V.R.; Weigele, B.A.; Alto, N.M.; Shiloh, M.U. Screening Mycobacterium tuberculosis Secreted Proteins Identifies Mpt64 as a Eukaryotic Membrane-Binding Bacterial Effector. mSphere 2019, 4, e00354-19. [Google Scholar] [CrossRef] [PubMed]
- Peirs, P.; Lefèvre, P.; Boarbi, S.; Wang, X.-M.; Denis, O.; Braibant, M.; Pethe, K.; Locht, C.; Huygen, K.; Content, J. Mycobacterium tuberculosis with Disruption in Genes Encoding the Phosphate Binding Proteins PstS1 and PstS2 Is Deficient in Phosphate Uptake and Demonstrates Reduced In Vivo Virulence. Infect. Immun. 2005, 73, 1898–1902. [Google Scholar] [CrossRef]
- Shukla, S.; Richardson, E.T.; Athman, J.J.; Shi, L.; Wearsch, P.A.; McDonald, D.; Banaei, N.; Boom, W.H.; Jackson, M.; Harding, C.V. Mycobacterium tuberculosis lipoprotein LprG binds lipoarabinomannan and determines its cell envelope localization to control phagolysosomal fusion. PLoS Pathog. 2014, 10, e1004471. [Google Scholar] [CrossRef]
- Aravindhan, V.; Christy, A.J.; Roy, S.; Ajitkumar, P.; Narayanan, P.R.; Narayanan, S. Mycobacterium tuberculosis groE promoter controls the expression of the bicistronic groESL1 operon and shows differential regulation under stress conditions. FEMS Microbiol. Lett. 2009, 292, 42–49. [Google Scholar] [CrossRef]
- Lopes, R.L.; Borges, T.J.; Zanin, R.F.; Bonorino, C. IL-10 is required for polarization of macrophages to M2-like phenotype by mycobacterial DnaK (heat shock protein 70). Cytokine 2016, 85, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Liu, A.; Menendez, M.C.; Garcia, M.J.; Oravcova, K.; Gillespie, S.H.; Davies, G.R.; Mitchison, D.A.; Coates, A.R. HspX knock-out in Mycobacterium tuberculosis leads to shorter antibiotic treatment and lower relapse rate in a mouse model—A potential novel therapeutic target. Tuberculosis 2015, 95, 31–36. [Google Scholar] [CrossRef]
- Nieto, R.L.; Mehaffy, C.; Creissen, E.; Troudt, J.; Troy, A.; Bielefeldt-Ohmann, H.; Burgos, M.; Izzo, A.; Dobos, K.M. Virulence of Mycobacterium tuberculosis after Acquisition of Isoniazid Resistance: Individual Nature of katG Mutants and the Possible Role of AhpC. PLoS ONE 2016, 11, e0166807. [Google Scholar] [CrossRef]
- Heym, B.; Zhang, Y.; Poulet, S.; Young, D.; Cole, S.T. Characterization of the katG gene encoding a catalase-peroxidase required for the isoniazid susceptibility of Mycobacterium tuberculosis. J. Bacteriol. 1993, 175, 4255–4259. [Google Scholar] [CrossRef]
- Liao, D.; Fan, Q.; Bao, L. The role of superoxide dismutase in the survival of Mycobacterium tuberculosis in macrophages. Jpn. J. Infect. Dis. 2013, 66, 480–488. [Google Scholar] [CrossRef]
- Teimourpour, R.; Peeridogaheh, H.; Teimourpour, A.; Arzanlou, M.; Meshkat, Z. A study on the immune response induced by a DNA vaccine encoding Mtb32C-HBHA antigen of Mycobacterium tuberculosis. Iran. J. Basic Med. Sci. 2017, 20, 1119–1124. [Google Scholar] [CrossRef]
- Izzo, A.A. Tuberculosis vaccines-perspectives from the NIH/NIAID Mycobacteria vaccine testing program. Curr. Opin. Immunol. 2017, 47, 78–84. [Google Scholar] [CrossRef]
- Chuang, Y.M.; Pinn, M.L.; Karakousis, P.C.; Hung, C.F. Intranasal Immunization with DnaK Protein Induces Protective Mucosal Immunity against Tuberculosis in CD4-Depleted Mice. Front. Cell Infect. Microbiol. 2018, 8, 31. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, S.H.; Weiner, J.; von Reyn, C.F. Novel approaches to tuberculosis vaccine development. Int. J. Infect. Dis. 2017, 56, 263–267. [Google Scholar] [CrossRef]
- Nguyen, T.N.A.; Anton-Le Berre, V.; Banuls, A.L.; Nguyen, T.V.A. Molecular Diagnosis of Drug-Resistant Tuberculosis; A Literature Review. Front. Microbiol. 2019, 10, 794. [Google Scholar] [CrossRef] [PubMed]
- Grønningen, E.; Nanyaro, M.; Sviland, L.; Ngadaya, E.; Muller, W.; Torres, L.; Mfinanga, S.; Mustafa, T. MPT64 antigen detection test improves diagnosis of pediatric extrapulmonary tuberculosis in Mbeya, Tanzania. Sci. Rep. 2021, 11, 17540. [Google Scholar] [CrossRef]
- Valafar, S.J. Systematic Review of Mutations Associated with Isoniazid Resistance Points to Continuing Evolution and Subsequent Evasion of Molecular Detection, and Potential for Emergence of Multidrug Resistance in Clinical Strains of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2021, 65. [Google Scholar] [CrossRef]
- Watson, A.; Li, H.; Ma, B.; Weiss, R.; Bendayan, D.; Abramovitz, L.; Ben-Shalom, N.; Mor, M.; Pinko, E.; Bar Oz, M.; et al. Human antibodies targeting a Mycobacterium transporter protein mediate protection against tuberculosis. Nat. Commun. 2021, 12, 602. [Google Scholar] [CrossRef]
- Liu, D.; Wang, J.; Xu, Z.; Chen, X.; Jiao, X.A. Phagocytosis: Strategies for macrophages to hunt Mycobacterium tuberculosis. One Health Adv. 2024, 2, 32. [Google Scholar] [CrossRef]
- Rajaram, M.V.S.; Arnett, E.; Azad, A.K.; Guirado, E.; Ni, B.; Gerberick, A.D.; He, L.-Z.; Keler, T.; Thomas, L.J.; Lafuse, W.P.; et al. M. tuberculosis-Initiated Human Mannose Receptor Signaling Regulates Macrophage Recognition and Vesicle Trafficking by FcRγ-Chain, Grb2, and SHP-1. Cell Rep. 2017, 21, 126–140. [Google Scholar] [CrossRef]
- Khan, H.S.; Nair, V.R.; Ruhl, C.R.; Alvarez-Arguedas, S.; Galvan Rendiz, J.L.; Franco, L.H.; Huang, L.; Shaul, P.W.; Kim, J.; Xie, Y.; et al. Identification of scavenger receptor B1 as the airway microfold cell receptor for Mycobacterium tuberculosis. eLife 2020, 9, e52551. [Google Scholar] [CrossRef]
- Madrid-Paulino, E.; Mata-Espinosa, D.; Leon-Contreras, J.C.; Serrano-Fujarte, I.; Diaz de Leon-Guerrero, S.; Villasenor, T.; Ramon-Luing, L.; Puente, J.L.; Chavez-Galan, L.; Hernandez-Pando, R.; et al. Klf10 favors Mycobacterium tuberculosis survival by impairing IFN-gamma production and preventing macrophages reprograming to macropinocytosis. J. Leukoc. Biol. 2022, 112, 475–490. [Google Scholar] [CrossRef] [PubMed]
- Arce-Mendoza, A.; Rodriguez-de Ita, J.; Salinas-Carmona, M.C.; Rosas-Taraco, A.G. Expression of CD64, CD206, and RAGE in adherent cells of diabetic patients infected with Mycobacterium tuberculosis. Arch. Med. Res. 2008, 39, 306–311. [Google Scholar] [CrossRef]
- Puri, R.V.; Reddy, P.V.; Tyagi, A.K. Secreted acid phosphatase (SapM) of Mycobacterium tuberculosis is indispensable for arresting phagosomal maturation and growth of the pathogen in guinea pig tissues. PLoS ONE 2013, 8, e70514. [Google Scholar] [CrossRef] [PubMed]
- Vergne, I.; Chua, J.; Deretic, V. Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin-PI3K hVPS34 cascade. J. Exp. Med. 2003, 198, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.; Bach, H.; Sun, J.; Hmama, Z.; Av-Gay, Y. Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification. Proc. Natl. Acad. Sci. USA 2011, 108, 19371–19376. [Google Scholar] [CrossRef]
- Sun, J.; Wang, X.; Lau, A.; Liao, T.Y.; Bucci, C.; Hmama, Z. Mycobacterial nucleoside diphosphate kinase blocks phagosome maturation in murine RAW 264.7 macrophages. PLoS ONE 2010, 5, e8769. [Google Scholar] [CrossRef]
- Crowley, M.T.; Costello, P.S.; Fitzer-Attas, C.J.; Turner, M.; Meng, F.; Lowell, C.; Tybulewicz, V.L.; DeFranco, A.L. A critical role for Syk in signal transduction and phagocytosis mediated by Fcgamma receptors on macrophages. J. Exp. Med. 1997, 186, 1027–1039. [Google Scholar] [CrossRef]
- Deghmane, A.E.; Soualhine, H.; Bach, H.; Sendide, K.; Itoh, S.; Tam, A.; Noubir, S.; Talal, A.; Lo, R.; Toyoshima, S.; et al. Lipoamide dehydrogenase mediates retention of coronin-1 on BCG vacuoles, leading to arrest in phagosome maturation. J. Cell Sci. 2007, 120, 2796–2806. [Google Scholar] [CrossRef]
- Lucas, A.T.; Robinson, R.; Schorzman, A.N.; Piscitelli, J.A.; Razo, J.F.; Zamboni, W.C. Pharmacologic Considerations in the Disposition of Antibodies and Antibody-Drug Conjugates in Preclinical Models and in Patients. Antibodies 2019, 8, 3. [Google Scholar] [CrossRef]
- Scherr, N.; Honnappa, S.; Kunz, G.; Mueller, P.; Jayachandran, R.; Winkler, F.; Pieters, J.; Steinmetz, M.O. Structural basis for the specific inhibition of protein kinase G, a virulence factor of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 2007, 104, 12151–12156. [Google Scholar] [CrossRef]
- Lee, H.J.; Ko, H.J.; Song, D.K.; Jung, Y.J. Lysophosphatidylcholine Promotes Phagosome Maturation and Regulates Inflammatory Mediator Production Through the Protein Kinase A-Phosphatidylinositol 3 Kinase-p38 Mitogen-Activated Protein Kinase Signaling Pathway During Mycobacterium tuberculosis Infection in Mouse Macrophages. Front. Immunol. 2018, 9, 920. [Google Scholar] [CrossRef]
- Grace, P.S.; Peters, J.M.; Sixsmith, J.; Lu, R.; Irvine, E.B.; Luedeman, C.; Fenderson, B.A.; Vickers, A.; Slein, M.D.; McKitrick, T.; et al. Antibody-Fab and -Fc features promote Mycobacterium tuberculosis restriction. Immunity 2025, 58, 1586–1597.e1585. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, A.R.M.; Trinklein, N.D.; Thie, H.; Wilkinson, I.C.; Tandon, A.K.; Anderson, S.; Bladen, C.L.; Jones, B.; Aldred, S.F.; Bestagno, M.; et al. When monoclonal antibodies are not monospecific: Hybridomas frequently express additional functional variable regions. MAbs 2018, 10, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Medina Pérez, V.M.; Baselga, M.; Schuhmacher, A.J. Single-Domain Antibodies as Antibody-Drug Conjugates: From Promise to Practice-A Systematic Review. Cancers 2024, 16, 2681. [Google Scholar] [CrossRef] [PubMed]
- Ying, T.; Wang, Y.; Feng, Y.; Prabakaran, P.; Gong, R.; Wang, L.; Crowder, K.; Dimitrov, D.S. Engineered antibody domains with significantly increased transcytosis and half-life in macaques mediated by FcRn. MAbs 2015, 7, 922–930. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.O.; Karki, S.; Lazar, G.A.; Chen, H.; Dang, W.; Desjarlais, J.R. Optimization of antibody binding to FcgammaRIIa enhances macrophage phagocytosis of tumor cells. Mol. Cancer Ther. 2008, 7, 2517–2527. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.Y.; Lee, B.S. Key Considerations for Developing Next-Generation Antibody-Drug Conjugates. Available online: https://www.drugdiscoveryonline.com/doc/key-considerations-for-developing-next-generation-antibody-drug-conjugates-0001 (accessed on 15 August 2025).
- Alley, S.C.; Benjamin, D.R.; Jeffrey, S.C.; Okeley, N.M.; Meyer, D.L.; Sanderson, R.J.; Senter, P.D. Contribution of Linker Stability to the Activities of Anticancer Immunoconjugates. Bioconjugate Chem. 2008, 19, 759–765. [Google Scholar] [CrossRef]
- Durbin, K.R.; Nottoli, M.S.; Catron, N.D.; Richwine, N.; Jenkins, G.J. High-Throughput, Multispecies, Parallelized Plasma Stability Assay for the Determination and Characterization of Antibody–Drug Conjugate Aggregation and Drug Release. ACS Omega 2017, 2, 4207–4215. [Google Scholar] [CrossRef]
- Rymut, S.M.; Deng, R.; Owen, R.; Saad, O.; Berhanu, A.; Lim, J.; Carrasco-Triguero, M.; Couch, J.A.; Peck, M.C. 1305. Comparison of Pharmacokinetics of DSTA4637S, a novel THIOMABTM Antibody-Antibiotic Conjugate, in Patients with Staphylococcus aureus Bacteremia Receiving Standard-of-Care Antibiotics with Pharmacokinetics in Healthy Volunteers. Open Forum Infect. Dis. 2020, 7, S666–S667. [Google Scholar] [CrossRef]
- Butler, M.S.; Henderson, I.R.; Capon, R.J.; Blaskovich, M.A.T. Antibiotics in the clinical pipeline as of December 2022. J. Antibiot. 2023, 76, 431–473. [Google Scholar] [CrossRef] [PubMed]
BEI-Cell Culture Collection | Clone | Antigen | Target Gene | Corresponding BEI-Ab Item | Ab Class |
---|---|---|---|---|---|
NRC-2893 | CS-35 | LAM | n/a | NR-13811 | IgG3κ |
NRC-2895 | CS-49 | HspX | Rv2031c | NR-13814 | IgG1 |
NRC-2897 | CS-90 | Ag85 complex | Rv3804c Rv1886c Rv0129c | NR-13816 | IgMκ |
NRC-2914 | a-HBHA | HBHA | Rv0475 | NR-13804 | IgG2a |
NRC-13806 | a-Rv1411c | LprG/P27 | Rv1411c | NR-55708 | IgG1κ |
NRC-49679 | clone A | DnaK | Rv0350 | NR-49679 | IgG1κ |
NRC-50100 | clone B | DnaK | Rv0350 | NR-50100 | IgG1κ |
NRC-50101 | clone B | KatG | Rv1908c | NR-50101 | IgMκ |
NRC-50703 | Anti-Mpt64, Clone A | Mpt64 | Rv1980c | NR-59474 | IgG1κ |
NRC-13810 | CS-18 | SodA | Rv03846 | NR-13810 | IgG1κ |
NRC-49680 | clone A | KatG | Rv1908c | NR-49680 | IgMκ |
NRC-2894 | IT-3 (SA-12) | GroES | Rv3418c | NR-49223 | IgG2aκ |
NRC-2410 | IT-15 (TB72) | PhoS1/PstS1 | Rv0934 | NR-13605 | IgG1κ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foreman, K.W.; Foreman, H.-C. Challenges and Potential of Antibody–Drug Conjugates as Prospective Tuberculosis Therapeutics. Microorganisms 2025, 13, 2234. https://doi.org/10.3390/microorganisms13102234
Foreman KW, Foreman H-C. Challenges and Potential of Antibody–Drug Conjugates as Prospective Tuberculosis Therapeutics. Microorganisms. 2025; 13(10):2234. https://doi.org/10.3390/microorganisms13102234
Chicago/Turabian StyleForeman, Kenneth W., and Hui-Chen Foreman. 2025. "Challenges and Potential of Antibody–Drug Conjugates as Prospective Tuberculosis Therapeutics" Microorganisms 13, no. 10: 2234. https://doi.org/10.3390/microorganisms13102234
APA StyleForeman, K. W., & Foreman, H.-C. (2025). Challenges and Potential of Antibody–Drug Conjugates as Prospective Tuberculosis Therapeutics. Microorganisms, 13(10), 2234. https://doi.org/10.3390/microorganisms13102234