In Silico Exploration of CD200 as a Therapeutic Target for COVID-19
Abstract
1. Introduction
2. Materials and Methods
2.1. Viruses
2.2. Informational Spectrum Method
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- COVID—Coronavirus Statistics—Worldometer. Available online: https://www.worldometers.info/coronavirus/ (accessed on 6 March 2024).
- Delardas, O.; Kechagias, K.S.; Pontikos, P.N.; Giannos, P. Socio-Economic Impacts and Challenges of the Coronavirus Pandemic (COVID-19): An Updated Review. Sustainability 2022, 14, 9699. [Google Scholar] [CrossRef]
- Szymanski, F.M.; Smuniewski, C.; Platek, A.E. Will the COVID-19 pandemic change national security and healthcare in the spectrum of cardiovascular disease? Curr. Probl. Cardiol. 2020, 45, 100645. [Google Scholar] [CrossRef]
- Filip, R.; Gheorghita Puscaselu, R.; Anchidin-Norocel, L.; Dimian, M.; Savage, W.K. Global Challenges to Public Health Care Systems during the COVID-19 Pandemic: A Review of Pandemic Measures and Problems. J. Pers. Med. 2022, 12, 1295. [Google Scholar] [CrossRef]
- Boehm, E.; Kronig, I.; Neher, R.A.; Eckerle, I.; Vetter, P.; Kaiser, L. Geneva Centre for Emerging Viral Diseases. Novel SARS-CoV-2 variants: The pandemics within the pandemic. Clin. Microbiol. Infect. 2021, 27, 1109–1117. [Google Scholar] [CrossRef]
- Islam, M.R.; Hoque, M.N.; Rahman, M.S.; Alam, A.R.U.; Akther, M.; Puspo, J.A.; Akter, S.; Sultana, M.; Crandall, K.A.; Hossain, M.A. Genome-wide analysis of SARS-CoV-2 virus strains circulating worldwide implicates heterogeneity. Sci. Rep. 2020, 10, 14004. [Google Scholar] [CrossRef]
- Tao, K.; Tzou, P.L.; Nouhin, J.; Gupta, R.K.; de Oliveira, T.; Kosakovsky Pond, S.L.; Fera, D.; Shafer, R.W. The biological and clinical significance of emerging SARS-CoV-2 variants. Nat. Rev. Genet. 2021, 22, 757–773. [Google Scholar] [CrossRef]
- Rees-Spear, C.; Muir, L.; Griffith, S.A.; Heaney, J.; Aldon, Y.; Snitselaar, J.L.; Thomas, P.; Graham, C.; Seow, J.; Lee, N.; et al. SAFER In-vestigators; Doores KJ, van Gils MJ, McCoy LE. The effect of spike mutations on SARS-CoV-2 neutralization. Cell Rep. 2021, 34, 108890. [Google Scholar] [CrossRef]
- Cao, Y.; Jian, F.; Wang, J.; Yu, Y.; Song, W.; Yisimayi, A.; Wang, J.; An, R.; Chen, X.; Zhang, N.; et al. Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. Nature 2023, 614, 521–529. [Google Scholar] [CrossRef]
- Bhat, S.; Pandey, A.; Kanakan, A.; Maurya, R.; Vasudevan, J.S.; Devi, P.; Chattopadhyay, P.; Sharma, S.; Khyalappa, R.J.; Joshi, M.G.; et al. Learning from Biological and Computational Machines: Importance of SARS-CoV-2 Genomic Surveillance, Mutations and Risk Stratification. Front. Cell. Infect. Microbiol. 2021, 11, 783961. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, L.; Cheng, G. The battle between host and SARS-CoV-2: Innate immunity and viral evasion strategies. Mol. Ther. 2022, 30, 1869–1884. [Google Scholar] [CrossRef]
- Veljkovic, N.; Glisic, S.; Perovic, V.; Veljkovic, V. The role of long-range interactions in discovery of new drugs. Exp. Opin. Drug Disc. 2011, 6, 1263–1270. [Google Scholar] [CrossRef]
- Veljkovic, V.; Metlas, R.; Raspopovic, J.; Pongor, S. Spectral and sequence similarity between VIP and the second con-served region of HIV envelope glycoprotein gp120: Possible consequences on prevention and therapy of AIDS. Biochem. Biophys. Res. Commun. 1992, 189, 705–710. [Google Scholar] [CrossRef]
- Veljkovic, V.; Glisic, S.; Muller, C.P.; Scotch, M.; Branch, D.R.; Perovic, V.R.; Sencanski, M.; Veljkovic, N.; Colombatti, A. In silico analysis suggests interaction between Ebola virus and the extracellular matrix. Front. Microbiol. 2015, 6, 135. [Google Scholar] [CrossRef]
- Veljkovic, V.; Veljkovic, N.; Muller, C.P.; Muller, S.; Glisic, S.; Perovic, V.; Kohler, H. Characterization of conserved properties of hemagglutinin of H5N1 and human influenza viruses: Possible consequences for therapy and infection control. BMC Struct Biol. 2009, 9, 21. [Google Scholar] [CrossRef]
- Veljkovic, V.; Vergara-Alert, J.; Segalés, J.; Paessler, S. Use of the informational spectrum methodology for rapid biolo-gi-cal analysis of the novel coronavirus 2019-CoV: Prediction of potential receptor, natural reservoir, tropism and therapeu-tic/vaccine target. F1000Research 2020, 9, 52–65. [Google Scholar] [CrossRef]
- Khare, S.; Gurry, C.; Freitas, L.; Schultz, M.B.; Bach, G.; Diallo, A.; Akite, N.; Ho, J.; Lee, R.T.; Yeo, W.; et al. GISAID’s role in pandemic response. China CDC Wkly. 2021, 3, 1049. [Google Scholar] [CrossRef]
- GISAID Initiative. Available online: https://www.epicov.org/epi3/cfrontend#1b945 (accessed on 2 May 2024).
- Veljkovic, V. A Theoretical Approach to Preselection of Carcinogens and Chemical Carcinogenesis; Gordon & Breach: New York, NY, USA, 1980. [Google Scholar]
- Faraji, E.; Franzosi, R.; Mancini, S.; Pettini, M. Transition between random and periodic electron currents on a DNA chain. Int. J. Mol. Sci. 2021, 22, 7361. [Google Scholar] [CrossRef]
- Veljkovic, V.; Slavic, I. Simple general-model pseudopotential. Phys. Rev. Lett. 1972, 29, 105–107. [Google Scholar] [CrossRef]
- Veljkovic, V. The dependence of the Fermi energy on the atomic number. Phys. Lett. 1973, 45A, 41–42. [Google Scholar] [CrossRef]
- Uniprot. Available online: https://www.uniprot.org/help/downloads (accessed on 25 January 2024).
- Olin, M. CD200 Inhibitors and Methods of Use Thereof. U.S. Patent 10,576,145 B2, 3 March 2020. [Google Scholar]
- Denison, M.R.; Graham, R.L.; Donaldson, E.F.; Eckerle, L.D.; Baric, R.S. Coronaviruses: An RNA proofreading machine regulates replication fidelity and diversity. RNA Biol. 2011, 8, 270–279. [Google Scholar] [CrossRef] [PubMed]
- CDC Variants of the Virus. Available online: https://www.cdc.gov/coronavirus/2019-ncov/variants/index.html (accessed on 5 March 2024).
- Infections, Associated with Large Public Gatherings—Barnstable County, Massachusetts, July 2021. CDC Morb. Mortal. Wkly. Rep. 2021, 70, 1059–1062. [CrossRef] [PubMed]
- Vashishtha, V.M.; Kumar, P. Looking to the future: Is a universal coronavirus vaccine feasible? Expert Rev. Vaccines 2022, 21, 277–280. [Google Scholar] [CrossRef]
- Nachbagauer, R.; Palese, P. Is a universal influenza virus vaccine possible? Annu. Rev. Med. 2020, 71, 315–327. [Google Scholar] [CrossRef]
- Sisteré-Oró, M.; Martínez-Pulgarín, S.; Solanes, D.; Veljkovic, V.; López-Serrano, S.; Córdoba, L.; Cordón, I.; Escribano, J.M.; Darji, A. Conserved HA-peptides expressed along with flagellin in Trichoplusia ni larvae protects chicken against intranasal H7N1 HPAIV challenge. Vaccine 2020, 38, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Sisteré-Oró, M.; Vergara-Alert, J.; Stratmann, T.; López-Serrano, S.; Pina-Pedrero, S.; Córdoba, L.; Pérez-Maillo, M.; Ple-guezuelos, P.; Vidal, E.; Veljkovic, V.; et al. Conserved HA-peptide NG34 for-mulated in pCMV-CTLA4-Ig reduces viral shedding in pigs after a heterosubtypic influenza virus SwH3N2 chal-lenge. PLoS ONE 2019, 14, e0212431. [Google Scholar] [CrossRef] [PubMed]
- Sisteré-Oró, M.; López-Serrano, S.; Veljkovic, V.; Pina-Pedrero, S.; Vergara-Alert, J.; Córdoba, L.; Pérez-Maillo, M.; Ple-guezuelos, P.; Vidal, E.; Segalés, J.; et al. DNA vaccine based on conserved HA-peptides in-duces strong immune response and rapidly clears influenza virus infection from vaccinated pigs. PLoS ONE 2019, 14, e0222201. [Google Scholar] [CrossRef]
- Vergara-Alert, J.; Argilaguet, J.M.; Busquets, N.; Ballester, M.; Martín-Valls, G.E.; Rivas, R.; López-Soria, S.; Solanes, D.; Majó, N.; Segalés, J.; et al. Conserved synthetic peptides from the hemagglutinin of in-flu-enza viruses induce broad humoral and T-cell responses in a pig model. PLoS ONE 2012, 7, e40524. [Google Scholar] [CrossRef]
- Nguyen, T.T.N.; Choo, E.M.; Nakamura, Y.; Suzuki, R.; Shiina, T.; Shin, I.T.; Fukuta, M.; Nguyen, C.T.; Nguyen, T.T.T.; Nguyen, L.K.H.; et al. Pre-existing cross-reactive neutralizing activity against SARS-CoV-2 and seasonal coronaviruses prior to the COVID-19 pandemic (2014–2019) with limited immunity against recent emerging SARS-CoV-2 variants, Vietnam. Int. J. Infect. Dis. 2024, 139, 109–117. [Google Scholar] [CrossRef]
- Glisic, S.; Veljkovic, V. Design of targeting peptides for nanodrugs for treatment of infectious diseases and cancer. In Drug Targeting and Stimuli Sensitive Drug Delivery Systems; Grumezescu, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Snelgrove, R.J.; Goulding, J.; Didierlaurent, A.M.; Lyonga, D.; Vekaria, S.; Edwards, L.; Gwyer, E.; Sedgwick, J.D.; Barclay, A.N.; Hussell, T. A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nat. Immunol. 2008, 9, 1074–1083. [Google Scholar] [CrossRef]
- Kotwica-Mojzych, K.; Jodłowska-Jedrych, B.; Mojzych, M. CD200:CD200R interactions and their importance in immunoregulation. Int. J. Mol. Sci. 2021, 22, 1602. [Google Scholar] [CrossRef]
- Langlais, C.L.; Jones, J.M.; Estep, R.D.; Wong, S.W. Rhesus rhadinovirus R15 encodes a functional homologue of human CD200. J. Virol. 2006, 80, 3098–3103. [Google Scholar] [CrossRef]
- Stack, G.; Jones, E.; Marsden, M.; Stacey, M.A.; Snelgrove, R.J.; Lacaze, P.; Jacques, L.C.; Cuff, S.M.; Stanton, R.J.; Gallimore, A.M.; et al. CD200 receptor restriction of myeloid cell responses antagonizes antiviral immunity and facilitates cytomegalovirus persistence within mucosal tissue. PLoS Pathog. 2015, 11, e1004641. [Google Scholar] [CrossRef]
- Lee, H.R.; Lee, S.; Chaudhary, P.M.; Gill, P.; Jung, J.U. Immune evasion by Kaposi’s sarcoma-associated herpesvirus. Future Microbiol. 2010, 5, 1349–1365. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kwong, P.D.; Wyatt, R.; Robinson, J.; Sweet, R.W.; Sodroski, J.; Hendrickson, W.A. Structure of an HIV gp120 envelope glyco-protein in complex with the CD4 receptor and a neutralizing human antibody. Nature 1998, 393, 648–659. [Google Scholar] [CrossRef]
- Gorczynski, R.; Khatri, I.; Lee, L.; Boudakov, I. An interaction between CD200 and monoclonal antibody agonists to CD200R2 in development of dendritic cells that preferentially induce populations of CD4+CD25+ T regulatory cells. J. Immunol. 2008, 180, 5946–5955. [Google Scholar] [CrossRef]
- Forouzani-Haghighi, B.; Rezvani, A.; Vazin, A. Immune targeted therapies for COVID-19 infection: A narrative review. Iran. J. Med. Sci. 2022, 47, 291. [Google Scholar]
- Qian, H.; Gao, F.; Wu, X.; Lin, D.; Huang, Y.; Chen, A.; Deng, J.; Gong, C.; Chen, X.; Zheng, X. Activation of the CD200/CD200R1 axis attenuates neuroinflammation and improves postoperative cognitive dysfunction via the PI3K/Akt/NF-κB signal-ing pathway in aged mice. Inflamm Res. 2023, 72, 2127–2144. [Google Scholar] [CrossRef]
- Al-Qahtani, A.A.; Pantazi, I.; Alhamlan, F.S.; Alothaid, H.; Matou-Nasri, S.; Sourvinos, G.; Vergadi, E.; Tsatsanis, C. SARS-CoV-2 modulates inflammatory responses of alveolar epithelial type II cells via PI3K/AKT pathway. Front. Immunol. 2022, 13, 1020624. [Google Scholar] [CrossRef]
- Gorczynski, R.; Boudakov, I.; Khatri, I. Peptides of CD200 modulate LPS-Induced TNF-alpha induction and mortality in vivo. J. Surg. Res. 2008, 145, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Gorczynski, R.M. CD200: CD200R-mediated regulation of immunity. Int. Sch. Res. Not. 2012. [Google Scholar] [CrossRef]
- Veljkovic, N.; Glisic, S.; Prljic, J.; Perovic, V.; Botta, M.; Veljkovic, V. Discovery of new therapeutic targets by the informational spectrum method. Curr. Protein Pept. Sci. 2008, 9, 493–506. [Google Scholar] [CrossRef]
- Mandić, M.; Drinovec, L.; Glisic, S.; Veljkovic, N.; Nøhr, J.; Vrecl, M. Demonstration of a direct interaction between β2-adrenergic receptor and insulin receptor by BRET and bioinformatics. PLoS ONE 2014, 9, e112664. [Google Scholar] [CrossRef]
- Sencanski, M.; Glisic, S.; Šnajder, M.; Veljkovic, N.; Poklar Ulrih, N.; Mavri, J.; Vrecl, M. Computational design and characteri-zation of nanobody-derived peptides that stabilize the active conformation of the β2-adrenergic receptor (β2-AR). Sci. Rep. 2019, 9, 16555. [Google Scholar] [CrossRef] [PubMed]
- Norris, E.G.; Pan, X.S.; Hocking, D.C. Receptor-binding domain of SARS-CoV-2 is a functional αv-integrin agonist. J. Biol. Chem. 2023, 299, 102922. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, Z.; Nguyen, H.T.T.; Watson, A.J.; Lao, Q.; Li, A.; Zhu, J. Integrin α5β1 contributes to cell fusion and inflammation mediated by SARS-CoV-2 spike via RGD-independent interaction. Proc. Natl. Acad. Sci. USA 2023, 120, e2311913120. [Google Scholar] [CrossRef]
- Hudák, A.; Veres, G.; Letoha, A.; Szilák, L.; Letoha, T. Syndecan-4 Is a Key Facilitator of the SARS-CoV-2 Delta Variant’s Superior Transmission. Int. J. Mol. Sci. 2022, 23, 796. [Google Scholar] [CrossRef]
- Vaine, C.A.; Soberman, R.J. The CD200-CD200R1 inhibitory signaling pathway: Immune regulation and host-pathogen interactions. Adv. Immunol. 2014, 121, 191–211. [Google Scholar] [PubMed]
- Gatto, L.; Franceschi, E.; Nunno, V.D.; Brandes, A.A. Potential protective and therapeutic role of immune checkpoint inhibi-tors against viral infections and COVID-19. Immunotherapy 2020, 12, 1111–1114. [Google Scholar] [CrossRef]
- Lv, K.; Li, M.; Sun, C.; Miao, Y.; Zhang, Y.; Liu, Y.; Guo, J.; Meng, Q.; Yao, J.; Zhang, G.; et al. Jingfang Granule alleviates bleomycin-induced acute lung injury via CD200-CD200R immunoregulatory pathway. J. Ethnopharmacol. 2023, 311, 116423. [Google Scholar] [CrossRef]
Amino Acid | EIIP [Ry] |
---|---|
Leu | 0.0000 |
Ile | 0.0000 |
Asn | 0.0036 |
Gly | 0.0050 |
Glu | 0.0057 |
Val | 0.0058 |
Pro | 0.0198 |
His | 0.0242 |
Lys | 0.0371 |
Ala | 0.0373 |
Tyr | 0.0516 |
Trp | 0.0548 |
Gln | 0.0761 |
Met | 0.0823 |
Ser | 0.0829 |
Cys | 0.0829 |
Thr | 0.0941 |
Phe | 0.0946 |
Arg | 0.0959 |
Asp | 0.1263 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perovic, V.; Glisic, S.; Veljkovic, M.; Paessler, S.; Veljkovic, V. In Silico Exploration of CD200 as a Therapeutic Target for COVID-19. Microorganisms 2024, 12, 1185. https://doi.org/10.3390/microorganisms12061185
Perovic V, Glisic S, Veljkovic M, Paessler S, Veljkovic V. In Silico Exploration of CD200 as a Therapeutic Target for COVID-19. Microorganisms. 2024; 12(6):1185. https://doi.org/10.3390/microorganisms12061185
Chicago/Turabian StylePerovic, Vladimir, Sanja Glisic, Milena Veljkovic, Slobodan Paessler, and Veljko Veljkovic. 2024. "In Silico Exploration of CD200 as a Therapeutic Target for COVID-19" Microorganisms 12, no. 6: 1185. https://doi.org/10.3390/microorganisms12061185
APA StylePerovic, V., Glisic, S., Veljkovic, M., Paessler, S., & Veljkovic, V. (2024). In Silico Exploration of CD200 as a Therapeutic Target for COVID-19. Microorganisms, 12(6), 1185. https://doi.org/10.3390/microorganisms12061185