Evaluation of Autof MS2600 and MBT Smart MALDI-TOF MS Systems for Routine Identification of Clinical Bacteria and Yeasts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial and Yeast Strains
2.2. MALDI-TOF MS Identification
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oviaño, M.; Rodríguez-Sánchez, B. MALDI-TOF mass spectrometry in the 21st century clinical microbiology laboratory. Enfermedades Infecc. Microbiol. Clin. 2021, 39, 192–200. [Google Scholar] [CrossRef]
- Cuénod, A.; Foucault, F.; Pflüger, V.; Egli, A. Factors Associated with MALDI-TOF Mass Spectral Quality of Species Identification in Clinical Routine Diagnostics. Front. Cell. Infect. Microbiol. 2021, 11, 646648. [Google Scholar] [CrossRef] [PubMed]
- Patel, R. A Moldy Application of MALDI: MALDI-ToF Mass Spectrometry for Fungal Identification. J. Fungi 2019, 5, 4. [Google Scholar] [CrossRef] [PubMed]
- Anneloes, V.; Kolecka, A.; Khayhan, K.; Theelen, B.; Groenewald, M.; Boel, E.; Multicenter Study Group; Boekhout, T. Interlaboratory comparison of sample preparation methods, database expansions, and cutoff values for identification of yeasts by matrix-assisted laser desorption ionization-time of flight mass spectrometry using a yeast test panel. J. Clin. Microbiol. 2014, 52, 3023–3029. [Google Scholar] [CrossRef]
- Gorton, R.L.; Seaton, S.; Ramnarain, P.; McHugh, T.D.; Kibbler, C.C. Evaluation of a short, on-plate formic acid extraction method for matrix-assisted laser desorption ionization-time of flight mass spectrometry-based identification of clinically relevant yeast isolates. J. Clin. Microbiol. 2014, 52, 1253–1255. [Google Scholar] [CrossRef] [PubMed]
- Buchan, B.W.; Ledeboer, N.A. Advances in identification of clinical yeast isolates by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2013, 51, 1359–1366. [Google Scholar] [CrossRef] [PubMed]
- De Carolis, E.; Vella, A.; Vaccaro, L.; Torelli, R.; Posteraro, P.; Ricciardi, W.; Sanguinetti, M.; Posteraro, B. Development and Validation of an In-House Database for Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry-Based Yeast Identification Using a Fast Protein Extraction Procedure. J. Clin. Microbiol. 2014, 52, 1453. [Google Scholar] [CrossRef] [PubMed]
- Gouriet, F.; Ghiab, F.; Couderc, C.; Bittar, F.; Tissot Dupont, H.; Flaudrops, C.; Casalta, J.-P.; Sambe-Ba, B.; Fall, B.; Raoult, D.; et al. Evaluation of a new extraction protocol for yeast identification by mass spectrometry. J. Microbiol. Methods 2016, 129, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Ceballos-Garzon, A.; Amado, D.; Vélez, N.; Jiménez-A, M.J.; Rodríguez, C.; Parra-Giraldo, C.M. Development and Validation of an in-House Library of Colombian Candida auris Strains with MALDI-TOF MS to Improve Yeast Identification. J. Fungi 2020, 6, 72. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, Q.; Yuan, Y.; Yan, W.; Wang, S.; Xu, J.; Zhang, J.; Wang, Y.; Li, Y. Evaluation of the Autof MS1000 mass spectrometer in the identification of clinical isolates. BMC Microbiol. 2020, 20, 318. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Jang, Y.; Yoon, I.; Kim, T.S.; Park, H. Comparison of Autof ms1000 and Bruker Biotyper MALDI-TOF MS Platforms for Routine Identification of Clinical Microorganisms. BioMed Res. Int. 2021, 2021, 6667623. [Google Scholar] [CrossRef]
- Xiong, L.; Long, X.; Ni, L.; Wang, L.; Zhang, Y.; Cui, L.; Guo, J.; Yang, C. Comparison of Autof Ms1000 and EXS3000 MALDI-TOF MS Platforms for Routine Identification of Microorganisms. Infect. Drug Resist. 2023, 16, 913. [Google Scholar] [CrossRef] [PubMed]
- Yi, Q.; Xiao, M.; Fan, X.; Zhang, G.; Yang, Y.; Zhang, J.J.; Duan, S.-M.; Cheng, J.-W.; Li, Y.; Zhou, M.-L.; et al. Evaluation of Autof MS 1000 and Vitek MS MALDI-TOF MS System in Identification of Closely-Related Yeasts Causing Invasive Fungal Diseases. Front. Cell. Infect. Microbiol. 2021, 11, 628828. [Google Scholar] [CrossRef] [PubMed]
- M52Ed1: Verify Commercial Microbial ID & AST Systems. Available online: https://clsi.org/standards/products/microbiology/documents/m52/ (accessed on 15 January 2024).
- White, T.J.; Bruns, T.D.; Lee, S.B.; Taylor, J.W. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. Available online: https://www.researchgate.net/publication/223397588_White_T_J_T_D_Bruns_S_B_Lee_and_J_W_Taylor_Amplification_and_direct_sequencing_of_fungal_ribosomal_RNA_Genes_for_phylogenetics (accessed on 15 January 2024).
- Hoshino, T.; Fujiwara, T.; Kilian, M. Use of Phylogenetic and Phenotypic Analyses to Identify Nonhemolytic Streptococci Isolated from Bacteremic Patients. J. Clin. Microbiol. 2005, 43, 6073. [Google Scholar] [CrossRef] [PubMed]
- Banas, J.A.; Zhu, M.; Dawson, D.V.; Blanchette, D.R.; Drake, D.R.; Gu, H.; Frost, R.; McCaulley, G.; Levy, S.M. Acidogenicity and acid tolerance of Streptococcus oralis and Streptococcus mitis isolated from plaque of healthy and incipient caries teeth. J. Oral Microbiol. 2016, 8, 32940. [Google Scholar] [CrossRef] [PubMed]
- BLAST: Basic Local Alignment Search Tool. Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 15 January 2024).
- Chen, X.F.; Hou, X.; Xiao, M.; Zhang, L.; Cheng, J.W.; Zhou, M.L.; Huang, J.-J.; Zhang, J.-J.; Xu, Y.-C.; Hsueh, P.-R. Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) Analysis for the Identification of Pathogenic Microorganisms: A Review. Microorganisms 2021, 9, 1536. [Google Scholar] [CrossRef] [PubMed]
- Wan, T.W.; Lee, T.F.; Chen, X.J.; Hunag, Y.T.; Teng, L.J.; Hsueh, P.R.; Chiu, H.C. Performance assessment of the Bruker Biotyper MALDI-TOF MS for the identification of difficult-to-identify viridans group streptococci. J. Clin. Microbiol. 2023, 61, e0114323. [Google Scholar] [CrossRef] [PubMed]
- Rychert, J. Benefits and Limitations of MALDI-TOF Mass Spectrometry for the Identification of Microorganisms. J. Infect. Epidemiol. 2019, 2, 1–5. [Google Scholar] [CrossRef]
- Bao, J.R.; Master, R.N.; Azad, K.N.; Schwab, D.A.; Clark, R.B.; Jones, R.S.; Moore, E.C.; Shier, K.L. Rapid, Accurate Identification of Candida auris by Using a Novel Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) Database (Library). J. Clin. Microbiol. 2018, 56, 1110–1128. [Google Scholar] [CrossRef] [PubMed]
Bacterial Species | Autobio MS2600 | MBT Smart a | ||||||
---|---|---|---|---|---|---|---|---|
n. Tested | ≥9.0 | ≥7.0 | Incorrect | ≥2.0 | ≥1.9 | ≥1.7 | Incorrect | |
Achromobacter xylosoxidans | 2 | 2/2 | - | - | 2/2 | - | - | - |
Acinetobacter baumannii | 11 | 11/11 | - | - | 10/1 | - | - | 1/10 |
Actinomyces europaeus | 1 | 1/1 | - | - | 1/1 | - | - | - |
Actinomyces neuii | 1 | 1/1 | - | - | 1/1 | - | - | - |
Actinomyces turicensis | 2 | 2/2 | - | - | 2/2 | - | - | - |
Aeromonas hydrophila | 1 | 1/1 | - | - | 1/1 | - | - | - |
Bacteroides faecis | 2 | 2/2 | - | - | 2/2 | - | - | - |
Bacteroides fluxus | 1 | 1/1 | - | - | 1/1 | - | - | - |
Bacteroides fragilis | 8 | 8/8 | - | - | 8/8 | - | - | - |
Bacteroides ovatus | 2 | 2/2 | - | - | 2/2 | - | - | - |
Bacteroides thetaiotaomicron | 2 | 2/2 | - | - | 2/2 | - | - | - |
Bifidobacterium bifidum | 1 | 1/1 | - | - | 1/1 | - | - | - |
Burkholderia gladioli | 1 | 1/1 | - | - | 1/1 | - | - | - |
Citrobacter freundii | 2 | 2/2 | - | - | 1/2 | - | - | 1/2 |
Citrobacter koseri | 1 | 1/1 | - | - | 1/1 | - | - | - |
Clostridium hathewayi | 1 | 1/1 | - | - | 1/1 | - | - | - |
Clostridium perfringens | 1 | 1/1 | - | - | 1/1 | - | - | - |
Clostridium ramosum | 1 | 1/1 | - | - | 1/1 | - | - | - |
Clostridium septicum | 1 | 1/1 | - | - | 1/1 | - | - | - |
Corynebacterium striatum | 5 | 5/5 | - | - | 5/5 | - | - | - |
Cutibacterium acnes | 2 | 2/2 | - | - | 2/2 | - | - | - |
Dermabacter hominis | 3 | 3/3 | - | - | 3/3 | - | - | - |
Eggerthella lenta | 1 | 1/1 | - | - | 1/1 | - | - | - |
Enterobacter cloacae | 4 | 4/4 | - | - | 4/4 | - | - | - |
Enterobacter hormaechei | 4 | 3/4 | - | 1/4 | 4/4 | - | - | - |
Enterobacter kobei | 4 | 4/4 | - | - | 4/4 | - | - | - |
Enterococcus avium | 2 | 2/2 | - | - | 2/2 | - | - | - |
Enterococcus faecalis | 31 | 31/31 | - | - | 31/31 | - | - | - |
Enterococcus faecium | 25 | 25/25 | - | - | 25/25 | - | - | - |
Enterococcus gallinarum | 3 | 3/3 | - | - | 3/3 | - | - | - |
Enterococcus malodoratus | 1 | 1/1 | - | - | 1/1 | - | - | - |
Escherichia coli | 41 | 41/41 | - | - | 40/41 | - | 1/41 | - |
Haemophilus haemolyticus | 2 | 2/2 | - | - | 2/2 | - | - | - |
Haemophilus influenzae | 4 | 4/4 | - | - | 4/4 | - | - | - |
Hafnia alvei | 2 | 2/2 | - | - | 2/2 | - | - | - |
Klebsiella aerogenes | 2 | 2/2 | - | - | 2/2 | - | - | - |
Klebsiella oxytoca | 6 | 6/6 | - | - | 6/6 | - | - | - |
Klebsiella pneumoniae | 35 | 35/35 | - | - | 34/35 | - | - | 1/35 |
Klebsiella variicola | 1 | 1/1 | - | - | 1/1 | - | - | - |
Lacticaseibacillus rhamnosus | 1 | 1/1 | - | - | 1/1 | - | - | - |
Lactobacillus delbrueckii | 1 | 1/1 | - | - | 1/1 | - | - | - |
Lactobacillus gasseri | 2 | 2/2 | - | - | 2/2 | - | - | - |
Lactobacillus rhamnosus | 4 | 4/4 | - | - | 4/4 | - | - | - |
Morganella morganii | 9 | 9/9 | - | - | 9/9 | - | - | - |
Pantoea ananatis | 1 | 1/1 | - | - | 1/1 | - | - | - |
Parvimonas micra | 1 | 1/1 | - | - | 1/1 | - | - | - |
Peptostreptococcus anaerobius | 1 | 1/1 | - | - | 1/1 | - | - | - |
Prevotella bivia | 2 | 2/2 | - | - | 2/2 | - | - | - |
Proteus mirabilis | 25 | 25/25 | - | - | 25/25 | - | - | - |
Providencia rettgeri | 1 | 1/1 | - | - | 1/1 | - | - | - |
Providencia stuartii | 3 | 3/3 | - | - | 3/3 | - | - | - |
Pseudomonas aeruginosa | 30 | 30/30 | - | - | 30/30 | - | - | - |
Serratia marcescens | 2 | 2/2 | - | - | 2/2 | - | - | - |
Staphylococcus aureus | 34 | 34/34 | - | - | 34/34 | - | - | - |
Staphylococcus capitis | 6 | 6/6 | - | - | 6/6 | - | - | - |
Staphylococcus caprae | 1 | 1/1 | - | - | 1/1 | - | - | - |
Staphylococcus epidermidis | 24 | 24/24 | - | - | 24/24 | - | - | - |
Staphylococcus haemolyticus | 7 | 7/7 | - | - | 7/7 | - | - | - |
Staphylococcus hominis | 2 | 2/2 | - | - | 2/2 | - | - | - |
Staphylococcus lugdunensis | 2 | 2/2 | - | - | 2/2 | - | - | - |
Staphylococcus pasteuri | 1 | 1/1 | - | - | 1/1 | - | - | - |
Staphylococcus pseudintermedius | 1 | 1/1 | - | - | 1/1 | - | - | - |
Stenotrophomonas maltophilia | 2 | 2/2 | - | - | 2/2 | - | - | - |
Streptococcus agalactiae | 9 | 9/9 | - | - | 9/9 | - | - | - |
Streptococcus anginosus | 7 | 7/7 | - | - | 7/7 | - | - | - |
Streptococcus constellatus | 1 | 1/1 | - | - | 1/1 | - | - | - |
Streptococcus dysgalactiae | 2 | 2/2 | - | - | 2/2 | - | - | - |
Streptococcus gallolyticus | 7 | 7/7 | - | - | 7/7 | - | - | - |
Streptococcus gordonii | 1 | 1/1 | - | - | 1/1 | - | - | - |
Streptococcus infantis | 3 | 1/3 | 1/3 | 1/3 | 0/3 | - | 2/3 | 1/3 |
Streptococcus intermedius | 1 | 1/1 | - | - | 1/1 | - | - | - |
Streptococcus oralis | 3 | 3/3 | - | - | 0/3 | - | - | - |
Streptococcus mitis | 3 | 3/3 | - | - | 0/3 | - | - | - |
Streptococcus parasanguinis | 1 | 1/1 | - | - | 1/1 | - | - | - |
Streptococcus pneumoniae | 3 | 3/3 | - | - | 3/3 | - | - | - |
Streptococcus pseudopneumoniae | 1 | 1/1 | - | - | 1/1 | - | - | - |
Streptococcus pyogenes | 6 | 6/6 | - | - | 6/6 | - | - | - |
Streptococcus salivarius | 1 | 1/1 | - | - | 1/1 | - | - | - |
Veillonella atypica | 1 | 1/1 | - | - | 1/1 | - | - | - |
Yersinia enterocolitica | 1 | 1/1 | - | - | 1/1 | - | - | - |
Total | 434 | |||||||
Yeast Species | n. tested | Autobio MS2600 | MBT smart b | |||||
≥9.0 | ≥7.0 | Incorrect | ≥2.0 | ≥1.9 | ≥1.7 | Incorrect | ||
Candida albicans | 35 | 35/35 | - | - | 35/35 | - | - | - |
Candida auris | 4 | 4/4 | - | - | 4/4 | - | - | - |
Candida dubliniensis | 2 | 2/2 | - | - | 2/2 | - | - | - |
Candida glabrata | 10 | 10/10 | - | - | 10/10 | - | - | - |
Candida haemulonii | 2 | 2/2 | - | - | 0/2 | - | - | 2/2 |
Candida kefyr | 1 | 1/1 | - | - | 1/1 | - | - | - |
Candida krusei | 5 | 5/5 | - | - | 5/5 | - | - | - |
Candida metapsilosis | 6 | 6/6 | - | - | 6/6 | - | - | - |
Candida nivariensis | 2 | 2/2 | - | - | 2/2 | - | - | - |
Candida norvegensis | 2 | 2/2 | - | - | 2/2 | - | - | - |
Candida orthopsilosis | 5 | 5/5 | - | - | 5/5 | - | - | - |
Candida parapsilosis | 4 | 4/4 | - | - | 4/4 | - | - | - |
Candida tropicalis | 7 | 7/7 | - | - | 7/7 | - | - | - |
Cryptococcus neoformans | 5 | 4/5 | 1/5 | - | 4/5 | - | - | 1/5 |
Rhodotorula mucillaginosa | 5 | 5/5 | - | - | 5/5 | - | - | - |
Saccharomyces cerevisiae | 3 | 3/3 | - | - | 3/3 | - | - | - |
Saprochaete clavata | 1 | 0/1 | - | 1/1 | 0/1 | - | - | 1/1 |
Trichosporon asahii | 2 | 2/2 | - | - | 2/2 | - | - | - |
Total | 101 |
n. Correct Identification (%) | n. Undetermined (%) | |||
---|---|---|---|---|
Species | Genus | |||
MBTsmart | ≥2 | ≥1.9 | ≥1.7 | |
Bacteria | 98.39 | 98.85 | 100 | - |
Yeasts | 38.61 | 45.55 | 61.39 | 38.61 |
Yeasts updated | 85.15 | 93.07 | 96.04 | 3.96 |
Yeasts combined | 96.04 | 96.04 | 96.04 | 3.96 |
Total | 97.94 | 98.32 | 99.25 | 0.75 |
Autof MS2600 | ≥9.0 | ≥7.0 | ||
Bacteria | 99.31 | 100 | - | |
Yeasts | 98.02 | 99.01 | 0.99 | |
Total | 99.07 | 99.81 | 0.19 |
Technical Specifications | Biotyper MBT Smart | Autof MS2600 |
---|---|---|
Laser | 337 nm solid-state | 355 nm solid-state |
Maximum pulse rate | 200 Hz | 300 Hz |
Linear flight tube drift length | 0.95 m | 1.05 m |
Mass analyzer | Linear TOF | Linear TOF |
Mass accuracy | 150 ppm | <100 ppm |
Database | 3893 species, 10.833 entries | 5189 species, 17800 entries |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Carolis, E.; Ivagnes, V.; Magrì, C.; Falasca, B.; Spanu, T.; Sanguinetti, M. Evaluation of Autof MS2600 and MBT Smart MALDI-TOF MS Systems for Routine Identification of Clinical Bacteria and Yeasts. Microorganisms 2024, 12, 382. https://doi.org/10.3390/microorganisms12020382
De Carolis E, Ivagnes V, Magrì C, Falasca B, Spanu T, Sanguinetti M. Evaluation of Autof MS2600 and MBT Smart MALDI-TOF MS Systems for Routine Identification of Clinical Bacteria and Yeasts. Microorganisms. 2024; 12(2):382. https://doi.org/10.3390/microorganisms12020382
Chicago/Turabian StyleDe Carolis, Elena, Vittorio Ivagnes, Carlotta Magrì, Benedetta Falasca, Teresa Spanu, and Maurizio Sanguinetti. 2024. "Evaluation of Autof MS2600 and MBT Smart MALDI-TOF MS Systems for Routine Identification of Clinical Bacteria and Yeasts" Microorganisms 12, no. 2: 382. https://doi.org/10.3390/microorganisms12020382
APA StyleDe Carolis, E., Ivagnes, V., Magrì, C., Falasca, B., Spanu, T., & Sanguinetti, M. (2024). Evaluation of Autof MS2600 and MBT Smart MALDI-TOF MS Systems for Routine Identification of Clinical Bacteria and Yeasts. Microorganisms, 12(2), 382. https://doi.org/10.3390/microorganisms12020382