Endophytic Bacteria from the Desiccation-Tolerant Plant Selaginella lepidophylla and Their Potential as Plant Growth-Promoting Microorganisms
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Plant Material Sterilization and Bacterial Endophytes Isolation
2.3. DNA Extraction and Analysis of Enterobacterial Repetitive Intergenic Consensus Sequences (ERIC-PCR)
2.4. Molecular Identification of Endophytic Bacteria
2.5. Analysis of Indole Acetic Acid (IAA) Production
2.6. Determination of Phosphate Solubilization (PS)
2.7. Determination of Biological Nitrogen Fixation (BNF)
2.8. Quantification of Trehalose Levels
2.9. Siderophore Production Assay
2.10. Arabidopsis Thaliana Growth Promotion Assay
2.11. Statistical Analysis
3. Results
3.1. Endophytic Bacteria Isolated from Selaginella lepidophylla
3.2. Analysis of Enterobacterial Repetitive Intergenic Consensus Sequences (ERIC-PCR)
3.3. Molecular Identification of Endophytic Bacteria
3.4. Indole-3-Acetic Acid Production (IAA)
3.5. Phosphate Solubilization (PS)
3.6. Biological Nitrogen Fixation (BNF)
3.7. Trehalose Quantification
3.8. Siderophore Production
3.9. Promotion of Plant Growth in Arabidopsis thaliana
3.9.1. PGP in A. thaliana in the MS 50% Culture Medium
3.9.2. PGP in A. thaliana in the AW Culture Medium
3.9.3. PGP in the Germination In Vitro: Direct Inoculation of Bacterial Isolates in A. thaliana Seeds in the AW Culture Medium
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basurto, M.; Núñez, A.; Pérez, R.; Hernández, O. Fisiología del estrés ambiental en plantas. Synthesis 2008, 48, 1–6. [Google Scholar]
- Shao, H.-B.; Chu, L.-Y.; Jaleei, C.A.; Zhao, C.-X. Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biol. 2008, 331, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P.; Kendall, E.; Kartha, K.K. Comparison of free sugars in growing and desiccated plants of Selaginella lepidophylla. Biochem. Syst. Ecol. 1990, 18, 107–110. [Google Scholar] [CrossRef]
- Iturriaga, G.; Gaff, D.F.; Zentella, R. New desiccation-tolerant plants, including a grass, in the central highlands of Mexico, accumulate trehalose. Aust. J. Bot. 2000, 48, 153–158. [Google Scholar] [CrossRef]
- Brighigna, L.; Bennici, A.; Tani, C.; Tani, G. Structural and ultrastructural characterization of Selaginella lepidophylla, a desiccation-tolerant plant, during the rehydration process. Flora Morphol. Distrib. Funct. Ecol. Plants. 2002, 197, 81–91. [Google Scholar] [CrossRef]
- Vázquez-Ramírez, M.A.; Meléndez-Camargo, M.E.; Arreguín, M.L.S. Estudio etnobotánico de Selaginella lepidophylla (Hook. Et Grev.) Spring (Selaginellaceae- Pteridophyta) en San José Xicoténcatl municipio de Huamantla, Tlaxcala, México. Polibotánica 2005, 19, 105–115. [Google Scholar]
- Banks, J.A. Selaginella and 400 million years of separation. Annu. Rev. Plant Biol. 2009, 60, 223–238. [Google Scholar] [CrossRef] [PubMed]
- VanBuren, R.; Wai, C.M.; Ou, S.; Pardo, J.; Bryant, D.; Jiang, N.; Mockler, T.C.; Edger, P.; Michael, T.P. Extreme haplotype variation in the desiccation-tolerant clubmoss Selaginella lepidophylla. Nat. commun. 2018, 9, 13. [Google Scholar] [CrossRef]
- Pampurova, S.; Verschooten, K.; Avonce, N.; Van Dijck, P. Functional screening of a cDNA library from the desiccation-tolerant plant Selaginella lepidophylla in yeast mutants identifies trehalose biosynthesis genes of plant and microbial origin. J. Plant Res. 2014, 127, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-Soto, C.G.; Iturriaga, G.; Valenzuela-Soto, E.M. Actividad de trehalosa 6-fosfato sintasa en plantas de Selaginella lepidophylla en respuesta a hidratación y desecación. Rev. Fitotec Mex. 2004, 27, 17–22. [Google Scholar] [CrossRef]
- Muller, J.; Boller, T.; Wiemken, A. Trehalose and trehalase in Plants: Recent developments. Plant Sci. 1995, 112, 1–9. [Google Scholar] [CrossRef]
- Elbein, A.D.; Pan, Y.T.; Pastuszak, I.; Carroll, D. New insights on trehalose: A multifunctional molecule. J. Glycobiol. 2003, 13, 17R–27R. [Google Scholar] [CrossRef] [PubMed]
- Avonce, N.; Mendoza-Vargas, A.; Morett, E.; Iturriaga, G. Insights on the evolution of trehalose biosynthesis. BMC Evol. Biol. 2006, 6, 109. [Google Scholar] [CrossRef]
- Loredo-Osti, C.; López-Reyes, L.; Espinosa-Victoria, D. Bacterias promotoras del crecimiento vegetal asociadas con gramíneas: Una revisión. Terra Latinoam. 2004, 22, 225–239. [Google Scholar]
- Ahmad, F.; Ahmad, I.; Khan, M.S. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 2008, 163, 173–181. [Google Scholar] [CrossRef]
- Moreno Reséndez, A.; Carda Mendoza, V.; Reyes Carrillo, J.L.; Vásquez Arroyo, J.; Cano Ríos, P. Rizobacterias promotoras del crecimiento vegetal: Una alternativa de biofertilización para la agricultura sustentable. Rev. Colomb. De Biotecnol. 2018, 20, 68–83. Available online: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-34752018000100068 (accessed on 3 June 2020). [CrossRef]
- Versalovic, J.; Koeuth, T.; Lupski, R. Distribution of repetitive DNA sequences in eubacteria and application to finerprinting of bacterial enomes. Nucleic Acids Res. 1991, 19, 6823–6831. [Google Scholar] [CrossRef]
- García Romero, I.A.; Valenzuela de Silva, E.M.; Saavedra, C.H.; Leal Castro, A.L.; Eslava Schmalbac, J.; Mantilla Anaya, J.R. Caracterización molecular de aislamientos de Enterobacter cloacae multirresistentes, productores de α-lactamasas provenientes de pacientes de un hospital de tercer nivel de Bogotá. Rev. De La Fac. De Med. 2005, 53, 148–158. Available online: https://revistas.unal.edu.co/index.php/revfacmed/article/view/43593/63682 (accessed on 23 March 2019).
- Marchesi, J.R.; Sato, T.; Weightman, A.J.; Martin, T.A.; Fry, J.C.; Hiom, S.J.; Wade, W.G. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 1998, 64, 795–799. [Google Scholar] [CrossRef] [PubMed]
- Nübel, U.; Engelen, B.; Felske, A.; Snaidr, J.; Wieshuber, A.; Amann, R.I.; Ludwig, W.; Backhaus, H. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 1996, 178, 5636–5643. [Google Scholar] [CrossRef] [PubMed]
- Souza, Á.; Nogueira, V.B.; Cruz, J.C.; Sousa, N.R.; Procópio, A.R.L.; Silva, G.F. Operational taxonomic units (OTUs) of endophytic bacteria isolated from banana cultivars in the Amazon. Genet. Mol. Res. 2015, 14, 9932–9938. [Google Scholar] [CrossRef] [PubMed]
- Sayers, E.W.; Bolton, E.E.; Brister, J.R.; Canese, K.; Chan, J.; Comeau, D.C.; Conner, R.; Funk, K.; Kelly, C.; Kim, S.; et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2022, 50, D20–D26. [Google Scholar] [CrossRef]
- de-Bashan, L.; Nannipieri, P. Recommendations for plant growth-promoting bacteria inoculation studies. Biol. Fertil. Soils 2024, 60, 259–261. [Google Scholar] [CrossRef]
- Jain, D.K.; Patriquin, D.G. Characterization of a substance produced by Azospirillum which causes branching of wheat root hairs. Can. J. Microbiol. 1985, 31, 206–210. [Google Scholar] [CrossRef]
- Glickmann, E.; Dessaux, Y. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 1995, 61, 793–796. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Akanda, A.M.; Prova, A.; Islam, M.T.; Hossain, M.M. Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Front. Microbiol. 2016, 6, 1360. [Google Scholar] [CrossRef]
- Goteti, P.K.; Desai, S.; Amalraj, E.L.D.; Taduri, M.; Sultana, U. Phosphate solubilization potential of Pseudomonas fluorescent spp. isolated from diverse agroecosystems of India. Int. J. Soil Sci. 2014, 9, 101–110. [Google Scholar] [CrossRef]
- Pikovskaya, R.I. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiology 1948, 17, 362–370, Erratum in Plant Soil Microbiology, 287, 77–84. [Google Scholar]
- Milagres, A.M.F.; Machuca, A.; Napoleao, D. Detection of siderophore production from several fungi and bacteria by a modification of Chrome azurol S (CAS) agar plate assay. J. Microbiol. Methods 1999, 37, 1–6. [Google Scholar] [CrossRef]
- Ramírez Rodríguez, D. Bacterias Endofíticas Aisladas de Fresa (Fragaria x ananassa Dutch.) y su Impacto Sobre Plantas de Interés Agrícola. Master’s Thesis, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Microbiología, Ciudad de México, Mexico, 2010. [Google Scholar]
- Pande, A.; Pandey, P.; Mehra, S.; Singh, M.; Kaushik, S. Phenotypic and genotypic characterization of phosphate solubilizing bacteria and their efficiency on the growth of maize. J. Genet. Eng. Biotechnol. 2017, 15, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Baldani, J.I.; Reis, V.M.; Videira, S.S.; Boddey, L.H.; Baldani, V.L.D. The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semisolid media: A practical guide for microbiologists. Plant Soil 2014, 384, 413–431. [Google Scholar] [CrossRef]
- Nova, F.B. Obtención y Caracterización de Cepas Mutantes de Rhizobium etli Sobreproductoras de Trehalosa. Bachelor’s Thesis, Universidad Autónoma del Estado de Morelos, Facultad de Ciencias Biológicas, Cuernavaca, Morelos, México, 2009. [Google Scholar]
- García, J.E.; Maroniche, G.; Creus, C.; Suárez-Rodríguez, R.; Ramírez-Trujillo, J.A.; Groppa, M.D. In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiol. Res. 2017, 202, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Louden, B.C.; Haarmann, D.; Lynne, A.M. Use of Blue Agar CAS Assay for Siderophore Detection. J. Microbiol. Biol. Educ. 2011, 12, 51–53. [Google Scholar] [CrossRef] [PubMed]
- Schwyn, B.; Neilands, J.B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assay with tobacco tissues cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Passari, A.K.; Mishra, V.K.; Leo, V.V.; Gupta, V.K.; Singh, B.P. Phytohormone production endowed with antagonistic potential and plant growth promoting abilities of culturable endophytic bacteria isolated from Clerodendrum colebrookianum Walp. Microbiol. Res. 2016, 193, 57–73. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, G.; Shah, R.; Patel, P.; Saraf, M. Role of endophytes in agricultural crops under drought stress: Current and future prospects. J. Adv. Microbiol. 2017, 3, 174–188. [Google Scholar] [CrossRef]
- Qi, M.; Berry, J.C.; Veley, K.W.; O’Connor, L.; Finkel, O.M.; Salas-González, I.; Kuhs, M.; Jupe, J.; Holcomb, E.; del Rio, T.G.; et al. Identification of beneficial and detrimental bacteria impacting sorghum responses to drought using multi-scale and multi-system microbiome comparisons. ISME J. 2022, 16, 1957–1969. [Google Scholar] [CrossRef]
- Castro-González, R.; Martínez-Aguilar, L.; Ramírez-Trujillo, A.; Estrada-de los Santos, P.; Caballero-Mellado, J. High diversity of culturable Burkholderia species associated with sugarcane. Plant Soil 2011, 345, 155–169. [Google Scholar] [CrossRef]
- Luna-Martínez, L.; Martínez-Peniche, R.A.; Hernández-Iturriaga, M.; Arvizu-Medrano, S.M.; Pacheco Aguilar, J.R. Caracterización de rizobacterias aisladas de tomate y su efecto en el crecimiento de tomate y pimiento. Rev. Fitotec. Mex. 2013, 36, 63–69. [Google Scholar] [CrossRef]
- Fernandes-Júnior, P.I.; de Tarso Aidar, S.; Morgante, C.V.; Gava, C.A.T.; Zilli, J.É.; de Sousa, S.B.; de Cássia Nunes Marinho, R.; Nóbrega, R.S.A.; da Silva Brasil, M.; Seido, S.L.; et al. The resurrection plant Tripogon spicatus (Poaceae) harbors a diversity of plant growth promoting bacteria in northeastern brazilian Caatinga. Rev. Bras. De Ciência Do Solo 2015, 39, 993–1002. [Google Scholar] [CrossRef]
- Ortega-Acosta, O.; Lopéz-Lopéz, E.; Rodríguez-Tovar, A.V.; Guerrero-Zuñiga, L.A.; Rodríguez-Dorantes, A.M. Análisis funcional comparativo de fitobacterias productoras de ácido indolacético aisladas de plantas Lemna gibba de la zona chinampera de Xochimilco, México. Hidrobiológica 2017, 27, 153–161. [Google Scholar] [CrossRef]
- Corral-Federico, A.G.; Meza-Contreras, J.J.; Delgado-Ramírez, C.S.; Hernández-Martínez, R.; Méndez-Bravo, A.; Sepúlveda, E. Colonization of Solanaceous crops by endophytic and rhizospheric plant growth-promoting bacteria from the native Solanaceae Solanum hindsianum Benth. Microbe 2024, 3, 100089. [Google Scholar] [CrossRef]
- El-Din Hassan, S. Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. J. Adv. Res. 2017, 8, 687–695. [Google Scholar] [CrossRef]
- Sánchez-Bautista, A.; León-García de Alba, C.D.; Aranda-Ocampo, S.; Zavaleta-Mejía, E.; Nava-Díaz, C.; Goodwin, P.H.; Leyva-Mir, S.G. Bacterias endófitas de la raíz en líneas de maíces tolerantes y susceptibles a sequía. Rev. Mex. De Fitopatol. 2018, 36, 35–55. [Google Scholar] [CrossRef]
- Ortiz-Galeana, M.A.; Hernández-Salmerón, J.E.; Valenzuela-Aragón, B.; de Lossantos-Villalobos, S.; del Carmen Rocha-Granados, M.; Santoyo, G. Diversidad de bacterias endófitas cultivables asociadas a plantas de arándano (Vaccinium corymbosum L.) cv. Biloxi con actividades promotoras del crecimiento vegetal. Chil. J. Agric. Anim. Sci. 2018, 34, 140–151. [Google Scholar] [CrossRef]
- Spaepen, S.; Vanderleyden, J.; Remans, R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 2007, 31, 425–448. [Google Scholar] [CrossRef]
- Spaepen, S.; Vanderleyden, J. Auxin and plant-microbe interactions. Cold Spring Harb. Perspect. Biol. 2011, 3, a001438. [Google Scholar] [CrossRef] [PubMed]
- Esquivel-Cote, R.; Gavilanes-Ruiz, M.; Cruz-Ortega, R.; Huante, P. Importancia agrobiotenológica de la enzima ACC desaminasa en rizobacterias, una revisión. Rev. Fitotec Mex. 2013, 36, 251–258. Available online: https://revfitotecnia.mx/index.php/RFM/article/view/279/253 (accessed on 28 May 2020).
- Jetiyanon, K. Multiple mechanisms of Enterobacter asburiae strain RS83 for plant growth enhancement. Songklanakarin J. Sci. Technol. 2015, 37, 29–36. Available online: https://www.thaiscience.info/journals/Article/SONG/10968369.pdf (accessed on 3 June 2020).
- Vega-Celedón, P.; Canchignia, H.; González, M.; Seeger, M. Biosíntesis de ácido indol-3-acético y promoción del crecimiento de plantas por bacterias. Cult. Trop. 2016, 37, 33–39. [Google Scholar] [CrossRef]
- Sánchez-Cruz, R.; Vázquez, I.T.; Batista-García, R.A.; Méndez-Santiago, E.W.; Sánchez-Carbente, M.d.R.; Leija, A.; Lira-Ruan, V.; Hernández, G.; Wong-Villarreal, A.; Folch-Mallol, J.L. Isolation and characterization of endophytes from nodules of Mimosa pudica with biotechnological potential. Microbiol. Res. 2019, 218, 76–86. [Google Scholar] [CrossRef]
- Pineda, M.E.B. La solubilización de fosfatos como estrategia microbiana para promover el crecimiento vegetal. Rev. Corpoic-Ciencia Y Tecnol. Agropecu. 2014, 15, 101–113. [Google Scholar] [CrossRef]
- Corrales, R.L.C.; Arévalo, G.Z.Y.; Moreno, B.V.E. Solubilización de fosfatos: Una función microbiana importante en el desarrollo vegetal. Nova 2014, 12, 67–79. [Google Scholar] [CrossRef]
- Herrera, B.L.R.; Angulo, J.A.C.G.; Behrens, N.B. Cofactor FeMco (M = Mo, V, Fe) en la nitrogenasa. Educ. Química 2008, 19, 34–41. [Google Scholar] [CrossRef]
- Secks, M.E.; Richardson, M.D.; West, C.P.; Marlatt, M.L.; Murphy, J.B. Role of trehalose in desiccation tolerance of endophyte-infected tall fescue. AAES Res. Series. 1999, 475, 134–140. [Google Scholar]
- Griffiths, C.A.; Paul, M.J.; Foyer, C.H. Metabolite transport and associated sugar signalling systems underpinning source/sink interactions. Biochim. Biophys. Acta (BBA) Bioenerg. 2016, 1857, 1715–1725. [Google Scholar] [CrossRef] [PubMed]
- Madhava, R.K.V.; Raghavendra, A.S.; Janardhan Reddy, K. Physiology and Molecular Biology of Stress Tolerance in Plants; Madhava, R.K.V., Raghavendra, A.S., Janardhan, K.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–14. [Google Scholar] [CrossRef]
- López, D.B.S.; Gómez-Vargas, R.M.; Rubiano, M.F.G.; Buitrago, R.R.B. Inoculación con bacterias promotoras de crecimiento vegetal en tomate bajo condiciones de invernadero. Rev. Mex. De Cienc. Agric. 2012, 3, 1401–1415. [Google Scholar] [CrossRef]
- Aguado-Santacruz, G.A.; Moreno-Gómez, B.; Jiménez-Francisco, B.; García-Moya, E.; Preciado-Ortiz, R.E. Impacto de los sideróforos microbianos y fitosideróforos en la asimilación de hierro por las plantas: Una síntesis. Rev. Filotec Mex. 2012, 35, 9–21. [Google Scholar] [CrossRef]
- de Los Santos-Villalobos, S.; Barrera-Galicia, G.C.; Miranda-Salcedo, M.A.; Peña-Cabriales, J.J. Burkholderia cepacia XXVI siderophore with biocontrol capacity against Colletotrichum gloeosporioides. World J. Microbiol. Biotechnol. 2012, 28, 2615–2623. [Google Scholar] [CrossRef]
- Chen, X.; Li, F.-L.; Kong, C.-H. Rhizosphere bacteria mediate flowering time of two genotypes of Arabidopsis with and without root-secreted signaling (−)-loliolide. Rhizosphere 2023, 27, 100774. [Google Scholar] [CrossRef]
Hydrated State (Rainy Season) | |||||
---|---|---|---|---|---|
Culture Media | AN | LB | PY | PDA | Subtotal |
Microphyll (Mi) | 8 | 14 | 24 | 16 | 62 |
Rhizophore (Ri) | 20 | 7 | 22 | 11 | 60 |
Subtotal | 28 | 21 | 46 | 27 | |
Total | 122 | ||||
Dehydrated State (Drought Season) | |||||
Microphyll (Mi) | 5 | 7 | 9 | 4 | 25 |
Rhizophore (Ri) | 3 | 3 | 8 | 2 | 16 |
Subtotal | 8 | 10 | 17 | 6 | |
Total | 41 |
Without Tryptophan | With Tryptophan | ||||
---|---|---|---|---|---|
48 h | 24 h | 48 h | |||
IAA Levels | Rain | Rain | Drought | Rain | Drought |
Low producers (1.0 a 10.9 µg/mL) | 0.81% (1) | 69.01% (49) | 32% (8) | 62.37% (63) | 13.33% (4) |
Medium producers (11.0 a 20.9 µg/mL) | 0 | 12.67% (9) | 20% (5) | 12.87% (13) | 23.33% (7) |
High producers (21.0 a 30.9 µg/mL) | 0 | 18.30% (13) | 48% (12) | 24.75% (25) | 63.33% (19) |
PGP in Arabidopsis thaliana col. 0 | |||
---|---|---|---|
MS 50% | AW | AW Direct Inoculation | |
Name | Root Length (mm)/Fresh Weight-Dry Weight (g) | ||
A. brasilense Cd | 72.86/0.1966-0.0171 | 16.33/0.0087-0.0004 | 8.30/0.0021-0.0001 |
A. chlorophenolicus 30.16 | 81.17/0.305-0.0418 | 12.32/0.0076-0.0014 | 3.98/0.0010-0.0003 |
Bacteria isolated from Selaginella lepidophylla in the hydrated state (rainy season). | |||
Pantoea sp. SlL1 | 33.59/0.193-0.018 | 13.50/0.0179-0 | ND |
Pseudomonas sp. SlL2 | 40.71/0.1438-0.0139 | 12.42/0.0331-0.001 | ND |
Pantoea sp. SlL4 | 38.21/0.163-0.0159 | 11.61/0.0307-0.0012 | ND |
Pseudomonas sp. SlL5 | 42.01/0.1922-0.1009 | 14.95/0.0154-0.0026 | ND |
Pseudomonas sp. SlL6 | 45.68/0.2755-0.0223 | 13.39/0.0152-0.0013 | ND |
Rhizobium sp. SlL9 | 71.74/0.2611-0.0217 | 13.08/0.0222-0.0009 | ND |
Pseudomonas sp. SlL10 | 50.12/0.2334-0.1009 | 19.25/0.0031-0.0004 | 7.42/0.0021-0.0003 |
Pseudomonas sp. SlL11 | 38.76/0.0746-0.0154 | 19.23/0.0257-0.0014 | ND |
Pantoea sp. SlL12 | 37.20/0.1806-0.0174 | 20.23/0.0231-0.0027 | ND |
Pseudomonas sp. SlL14 | 40.02/0.1563-0.0149 | 38.01/0.0084-0.0016 | 8.92/0.0027-0.0001 |
Streptomyces sp. SlL18 | 39.82/0.1593-0.0146 | 26.63/0.0366-0.0021 | ND |
Streptomyces sp. SlL20 | 38.89/0.18-0.018 | 35.40/0.0204-0.0024 | 12.29/0.0037-0.0001 |
Pseudomonas sp. SlL23 | 43.73/0.1848-0.0267 | 43.21/0.0289-0.0032 | 11.10/0.0122-0.0004 |
Pantoea sp. SlL24 | 30.20/0.1844-0.0245 | 27.15/0.0145-0.0016 | ND |
Pseudomonas sp. SlL25 | 57.10/0.1-0.011 | 23.81/0.0148-0.0024 | ND |
Pseudomonas sp. SlL26 | 36.59/0.15-0.0154 | 24.71/0.021-0.0017 | ND |
Pseudomonas sp. SlL29 | 37.52/0.21-0.0201 | 29.24/0.0212-0.0014 | 7.17/0.0094-0.0005 |
Rhizobium sp. SlL30 | 45.18/0.11-0.0121 | 36.68/0.011-0.0025 | 11.24/0.0094-0.0012 |
Pseudomonas sp. SlL33 | 50.96/0.08-0.0078 | 22.47/0.009-0.0016 | ND |
Pseudomonas sp. SlL36 | 37.82/0.09-0.0091 | 27.37/0.018-0.0018 | ND |
Pseudomonas sp. SlL38 | 40.23/0.18-0.0158 | 22.41/0.022-0.0016 | ND |
Pseudomonas sp. SlL39 | 35.31/0.1-0.0103 | 32.95/0.0184-0.0014 | 9.37/0.003-0.0001 |
Pseudomonas sp. SlL40 | 43.14/0.19-0.0135 | 21.40/0.0259-0.0012 | ND |
Pantoea sp. SlL44 | 35.05/0.08-0.0084 | 25.55/0.0245-0.0011 | 8.12/0.0043-0.0011 |
Pantoea sp. SlL46 | 42.32/0.4843-0.0557 | 16.73/0.0106-0.0007 | ND |
Pantoea sp. SlL47 | 39.54/0.3279-0.0424 | 19.22/0.023-0.0015 | ND |
Pseudomonas sp. SlL50 | 36.69/0.1781-0.017 | 21.84/0.0294-0.0016 | ND |
Pseudomonas sp. SlL51 | 48.79/0.2952-0.0259 | 25.06/0.0217-0.0014 | ND |
Pantoea sp. SlL55 | 47.14/0.1418-0.0134 | 27.00/0.0274-0.0015 | 7.55/0.0041-0.0003 |
Curtobacterium sp. SlL59 | 48.92/0.1348-0.0138 | 26.05/0.0256-0.0018 | ND |
Pseudomonas sp. SlL61 | 54.75/0.1047-0.0098 | 22.55/0.0353-0.0017 | ND |
Pseudomonas sp. SlL62 | 46.17/0.1535-0.0138 | 40.32/0.0416-0.0027 | 9.71/0.0078-0.0001 |
Pantoea sp. SlL67 | 46.19/0.1576-0.0144 | 36.32/0.0386-0.0025 | 14.35/0.0059-0.0008 |
Curtobacterium sp. SlL69 | 41.93/0.177-0.0171 | 22.20/0.0101-0.0018 | ND |
Pseudomonas sp. SlL70 | 43.73/0.1852-0.0175 | 20.48/0.013-0.0011 | ND |
Pantoea sp. SlL89 | 36.67/0.2193-0.0391 | 11.02/0.0179-0.0013 | ND |
Burkholderia sp. SlL91 | 36.77/0.3219-0.0432 | 14.11/0.0139-0.0007 | ND |
Pseudomonas sp. SlL96 | 33.69/0.1729-0.0332 | 18.93/0.0147-0.0011 | ND |
Pseudomonas sp. SlL97 | 68.21/0.5771-0.0464 | 24.29/0.0336-0.0023 | ND |
Pseudomonas sp. SlL104 | 64.48/0.4275-0.043 | 19.01/0.0314-0.0016 | ND |
Pseudomonas sp. SlL106 | 65.08/0.9001-0.0698 | 11.06/0.0242-0.0013 | ND |
Pseudomonas sp. SlL107 | 54.38/0.245-0.0197 | 21.35/0.0241-0.0015 | ND |
Pseudomonas sp. SlL109 | 37.06/0.0956-0.0145 | 13.61/0.0309-0.0018 | ND |
Pseudomonas sp. SlL110 | 46.79/0.3134-0.0338 | 25.61/0.0268-0.0026 | ND |
Curtobacterium sp. SlL111 | 47.59/0.2235-0.0229 | 23.43/0.0197-0.002 | ND |
Pseudomonas sp. SlL113 | 44.09/0.2123-0.0209 | 26.06/0.0355-0.0013 | ND |
Pseudomonas sp. SlL114 | 39.20/0.351-0.0447 | 31.57/0.0331-0.0018 | 8.07/0.0113-0.0008 |
Pseudomonas sp. SlL116 | 59.03/0.3433-0.0366 | 28.10/0.0809-0.0022 | 7.87/0.0072-0.0008 |
Bacteria isolated from Selaginella lepidophylla in the dehydrated state (drought season). | |||
Erwinia sp. SlS1 | 34.32/0.0917-0.0104 | 17.95/0.0086-0.0013 | ND |
Pantoea sp. SlS3 | 40.24/0.0916-0.0096 | 26.14/0.0179-0.0016 | 14.34/0.0092-0.0015 |
Pseudomonas sp. SlS4 | 40.83/0.1301-0.0145 | 34.69/0.0479-0.0023 | 16.21/0.0089-0.0013 |
Pseudomonas sp. SlS5 | 43.16/0.0477-0.0095 | 26.06/0.0079-0.0015 | ND |
Enterobacter sp. SlS9 | 64.96/0.506-0.0933 | 24.05/0.0355-0.0016 | 2.71/0.0031-0.0001 |
Agrobacterium sp. SlS10 | 37.62/0.202-0.0182 | 16.59/0.0155-0.0023 | ND |
Pseudomonas sp. SlS14 | 36.52/0.1418-0.0144 | 16.70/0.006-0.0017 | ND |
Pantoea sp. SlS15 | 46.63/0.0653-0.01 | 30.73/0.0251-0.0019 | 13.23/0.0080-0.0008 |
Pseudomonas sp. SlS21 | 61.14/0.1574-0.016 | 25.05/0.0313-0.0019 | ND |
Pantoea sp. SlS26 | 33.78/0.1544-0.0145 | 14.54/0.0139-0.0008 | ND |
Pantoea sp. SlS27 | 71.28/0.4356-0.0671 | 35.14/0.0105-0.0006 | 14.68/0.0108-0.0012 |
Rhizobium sp. SlS28 | 75.13/0.3169-0.0344 | 42.63/0.0366-0.0023 | 16.48/0.0143-0.0017 |
Pseudomonas sp. SlS36 | 53.82/0.4146-0.0537 | 16.83/0.0148-0.001 | ND |
Pseudomonas sp. SlS38 | 38.95/0.3679-0.043 | 39.54/0.0419-0.003 | 10.87/0.0097-0.0014 |
Pseudomonas sp. SlS39 | 56.37/0.28-0.0303 | 25.04/0.0474-0.0012 | 10.81/0.0085-0.0018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo-Texta, M.G.; Ramírez-Trujillo, J.A.; Dantán-González, E.; Ramírez-Yáñez, M.; Suárez-Rodríguez, R. Endophytic Bacteria from the Desiccation-Tolerant Plant Selaginella lepidophylla and Their Potential as Plant Growth-Promoting Microorganisms. Microorganisms 2024, 12, 2654. https://doi.org/10.3390/microorganisms12122654
Castillo-Texta MG, Ramírez-Trujillo JA, Dantán-González E, Ramírez-Yáñez M, Suárez-Rodríguez R. Endophytic Bacteria from the Desiccation-Tolerant Plant Selaginella lepidophylla and Their Potential as Plant Growth-Promoting Microorganisms. Microorganisms. 2024; 12(12):2654. https://doi.org/10.3390/microorganisms12122654
Chicago/Turabian StyleCastillo-Texta, Maria Guadalupe, José Augusto Ramírez-Trujillo, Edgar Dantán-González, Mario Ramírez-Yáñez, and Ramón Suárez-Rodríguez. 2024. "Endophytic Bacteria from the Desiccation-Tolerant Plant Selaginella lepidophylla and Their Potential as Plant Growth-Promoting Microorganisms" Microorganisms 12, no. 12: 2654. https://doi.org/10.3390/microorganisms12122654
APA StyleCastillo-Texta, M. G., Ramírez-Trujillo, J. A., Dantán-González, E., Ramírez-Yáñez, M., & Suárez-Rodríguez, R. (2024). Endophytic Bacteria from the Desiccation-Tolerant Plant Selaginella lepidophylla and Their Potential as Plant Growth-Promoting Microorganisms. Microorganisms, 12(12), 2654. https://doi.org/10.3390/microorganisms12122654