Cefiderocol-Based versus Colistin-Based Regimens for Severe Carbapenem-Resistant Acinetobacter baumannii Infections: A Propensity Score-Weighted, Retrospective Cohort Study during the First Two Years of the COVID-19 Pandemic
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rangel, K.; Chagas, T.P.G.; De-Simone, S.G. Acinetobacter baumannii Infections in Times of COVID-19 Pandemic. Pathogens 2021, 10, 1006. [Google Scholar] [CrossRef] [PubMed]
- Kariyawasam, R.M.; Julien, D.A.; Jelinski, D.C.; Larose, S.L.; Rennert-May, E.; Conly, J.M.; Dingle, T.C.; Chen, J.Z.; Tyrrell, G.J.; Ronksley, P.E.; et al. Antimicrobial resistance (AMR) in COVID-19 patients: A systematic review and meta-analysis (November 2019–June 2021). Antimicrob. Resist. Infect. Control 2022, 11, 45. [Google Scholar] [CrossRef]
- Patel, A.; Agarwal, R.; Rudramurthy, S.M.; Shevkani, M.; Xess, I.; Sharma, R.; Savio, J.; Sethuraman, N.; Madan, S.; Shastri, P.; et al. Multicenter Epidemiologic Study of Coronavirus Disease-Associated Mucormycosis, India. Emerg. Infect. Dis. 2021, 27, 2349–2359. [Google Scholar] [CrossRef] [PubMed]
- Badulak, J.; Antonini, M.V.; Stead, C.M.; Shekerdemian, L.; Raman, L.; Paden, M.L.; Agerstrand, C.; Bartlett, R.H.; Barrett, N.; Combes, A.; et al. Extracorporeal Membrane Oxygenation for COVID-19: Updated 2021 Guidelines from the Extracorporeal Life Support Organization. ASAIO J. 2021, 67, 485–495. [Google Scholar] [CrossRef]
- Taniguchi, Y.; Kuno, T.; Komiyama, J.; Adomi, M.; Suzuki, T.; Abe, T.; Ishimaru, M.; Miyawaki, A.; Saito, M.; Ohbe, H.; et al. Comparison of patient characteristics and in-hospital mortality between patients with COVID-19 in 2020 and those with influenza in 2017–2020: A multicenter, retrospective cohort study in Japan. Lancet Reg. Health West Pac. 2022, 20, 100365. [Google Scholar] [CrossRef]
- Al-Hadidi, S.H.; Alhussain, H.; Abdel Hadi, H.; Johar, A.; Yassine, H.M.; Al Thani, A.A.; Eltai, N.O. The Spectrum of Antibiotic Prescribing during COVID-19 Pandemic: A Systematic Literature Review. Microb. Drug Resist. 2021, 27, 1705–1725. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Soucy, J.R.; Westwood, D.; Daneman, N.; MacFadden, D.R. Antibiotic prescribing in patients with COVID-19: Rapid review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 520–531. [Google Scholar] [CrossRef]
- Lai, C.C.; Chen, S.Y.; Ko, W.C.; Hsueh, P.R. Increased antimicrobial resistance during the COVID-19 pandemic. Int. J. Antimicrob. Agents 2021, 57, 106324. [Google Scholar] [CrossRef]
- World Health Organization. WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. 2017. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 15 November 2022).
- De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020, 33, e00181-19. [Google Scholar] [CrossRef]
- Vazquez-Lopez, R.; Solano-Galvez, S.G.; Juarez Vignon-Whaley, J.J.; Abello Vaamonde, J.A.; Padro Alonzo, L.A.; Rivera Resendiz, A.; Muleiro Alvarez, M.; Vega Lopez, E.N.; Franyuti-Kelly, G.; Alvarez-Hernandez, D.A.; et al. Acinetobacter baumannii Resistance: A Real Challenge for Clinicians. Antibiotics 2020, 9, 205. [Google Scholar] [CrossRef]
- Gordon, N.C.; Wareham, D.W. Multidrug-resistant Acinetobacter baumannii: Mechanisms of virulence and resistance. Int. J. Antimicrob. Agents 2010, 35, 219–226. [Google Scholar] [CrossRef]
- Du, X.; Xu, X.; Yao, J.; Deng, K.; Chen, S.; Shen, Z.; Yang, L.; Feng, G. Predictors of mortality in patients infected with carbapenem-resistant Acinetobacter baumannii: A systematic review and meta-analysis. Am. J. Infect. Control 2019, 47, 1140–1145. [Google Scholar] [CrossRef]
- Bassetti, M.; Labate, L.; Russo, C.; Vena, A.; Giacobbe, D.R. Therapeutic options for difficult-to-treat Acinetobacter baumannii infections: A 2020 perspective. Expert. Opin. Pharmacother. 2021, 22, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Alrahmany, D.; Omar, A.F.; Alreesi, A.; Harb, G.; Ghazi, I.M. Acinetobacter baumannii Infection-Related Mortality in Hospitalized Patients: Risk Factors and Potential Targets for Clinical and Antimicrobial Stewardship Interventions. Antibiotics 2022, 11, 1086. [Google Scholar] [CrossRef]
- Piperaki, E.T.; Tzouvelekis, L.S.; Miriagou, V.; Daikos, G.L. Carbapenem-resistant Acinetobacter baumannii: In pursuit of an effective treatment. Clin. Microbiol. Infect. 2019, 25, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Carrara, E.; Retamar, P.; Tangden, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of AmpC beta-Lactamase-Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections. Clin. Infect. Dis. 2022, 74, 2089–2114. [Google Scholar] [CrossRef] [PubMed]
- Giacobbe, D.R.; Saffioti, C.; Losito, A.R.; Rinaldi, M.; Aurilio, C.; Bolla, C.; Boni, S.; Borgia, G.; Carannante, N.; Cassola, G.; et al. Use of colistin in adult patients: A cross-sectional study. J. Glob. Antimicrob. Resist. 2020, 20, 43–49. [Google Scholar] [CrossRef]
- Stracquadanio, S.; Torti, E.; Longshaw, C.; Henriksen, A.S.; Stefani, S. In vitro activity of cefiderocol and comparators against isolates of Gram-negative pathogens from a range of infection sources: SIDERO-WT-2014-2018 studies in Italy. J. Glob. Antimicrob. Resist. 2021, 25, 390–398. [Google Scholar] [CrossRef]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef]
- Falcone, M.; Tiseo, G.; Nicastro, M.; Leonildi, A.; Vecchione, A.; Casella, C.; Forfori, F.; Malacarne, P.; Guarracino, F.; Barnini, S.; et al. Cefiderocol as Rescue Therapy for Acinetobacter baumannii and Other Carbapenem-resistant Gram-negative Infections in Intensive Care Unit Patients. Clin. Infect. Dis. 2021, 72, 2021–2024. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Tiseo, G.; Leonildi, A.; Della Sala, L.; Vecchione, A.; Barnini, S.; Farcomeni, A.; Menichetti, F. Cefiderocol- Compared to Colistin-Based Regimens for the Treatment of Severe Infections Caused by Carbapenem-Resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2022, 66, e0214221. [Google Scholar] [CrossRef] [PubMed]
- Trecarichi, E.M.; Quirino, A.; Scaglione, V.; Longhini, F.; Garofalo, E.; Bruni, A.; Biamonte, E.; Lionello, R.; Serapide, F.; Mazzitelli, M.; et al. Successful treatment with cefiderocol for compassionate use in a critically ill patient with XDR Acinetobacter baumannii and KPC-producing Klebsiella pneumoniae: A case report. J. Antimicrob. Chemother. 2019, 74, 3399–3401. [Google Scholar] [CrossRef]
- Pascale, R.; Pasquini, Z.; Bartoletti, M.; Caiazzo, L.; Fornaro, G.; Bussini, L.; Volpato, F.; Marchionni, E.; Rinaldi, M.; Trapani, F.; et al. Cefiderocol treatment for carbapenem-resistant Acinetobacter baumannii infection in the ICU during the COVID-19 pandemic: A multicentre cohort study. JAC Antimicrob. Resist. 2021, 3, dlab174. [Google Scholar] [CrossRef]
- Zingg, S.; Nicoletti, G.J.; Kuster, S.; Junker, M.; Widmer, A.; Egli, A.; Hinic, V.; Sendi, P.; Battegay, M.; Battig, V.; et al. Cefiderocol for Extensively Drug-Resistant Gram-Negative Bacterial Infections: Real-world Experience from a Case Series and Review of the Literature. Open Forum. Infect. Dis. 2020, 7, ofaa185. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Bloodstream Infection Event (Central Line-Associated Bloodstream). 2023. Available online: https://www.cdc.gov/nhsn/pdfs/pscmanual/4psc_clabscurrent.pdf (accessed on 15 March 2023).
- Infection and Non-central Line Associated Bloodstream Infection. 2023. Available online: https://www.cdc.gov/nhsn/pdfs/pscmanual/4psc_clabscurrent.pdf (accessed on 15 March 2023).
- Centers for Disease Control and Prevention. Pneumonia (Ventilator-Associated [VAP] and Non-Ventilatorassociated Pneumonia [PNEU]) Event. 2023. Available online: https://www.cdc.gov/nhsn/pdfs/pscmanual/6pscvapcurrent.pdf (accessed on 15 March 2023).
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef] [PubMed]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 11.0. 2021. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_11.0_Breakpoint_Tables.pdf (accessed on 15 March 2023).
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 10.0. 2020. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_10.0_Breakpoint_Tables.xlsx (accessed on 15 March 2023).
- Matuschek, E.; Longshaw, C.; Takemura, M.; Yamano, Y.; Kahlmeter, G. Cefiderocol: EUCAST criteria for disc diffusion and broth microdilution for antimicrobial susceptibility testing. J. Antimicrob. Chemother. 2022, 77, 1662–1669. [Google Scholar] [CrossRef]
- Aydemir, H.; Akduman, D.; Piskin, N.; Comert, F.; Horuz, E.; Terzi, A.; Kokturk, F.; Ornek, T.; Celebi, G. Colistin vs. the combination of colistin and rifampicin for the treatment of carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia. Epidemiol. Infect. 2013, 141, 1214–1222. [Google Scholar] [CrossRef]
- Russo, A.; Gavaruzzi, F.; Ceccarelli, G.; Borrazzo, C.; Oliva, A.; Alessandri, F.; Magnanimi, E.; Pugliese, F.; Venditti, M. Multidrug-resistant Acinetobacter baumannii infections in COVID-19 patients hospitalized in intensive care unit. Infection 2022, 50, 83–92. [Google Scholar] [CrossRef]
- Schmid, A.; Wolfensberger, A.; Nemeth, J.; Schreiber, P.W.; Sax, H.; Kuster, S.P. Monotherapy versus combination therapy for multidrug-resistant Gram-negative infections: Systematic Review and Meta-Analysis. Sci. Rep. 2019, 9, 15290. [Google Scholar] [CrossRef] [PubMed]
- Bavaro, D.F.; Belati, A.; Diella, L.; Stufano, M.; Romanelli, F.; Scalone, L.; Stolfa, S.; Ronga, L.; Maurmo, L.; Dell’Aera, M.; et al. Cefiderocol-Based Combination Therapy for “Difficult-to-Treat” Gram-Negative Severe Infections: Real-Life Case Series and Future Perspectives. Antibiotics 2021, 10, 652. [Google Scholar] [CrossRef] [PubMed]
- Marino, A.; Stracquadanio, S.; Campanella, E.; Munafo, A.; Gussio, M.; Ceccarelli, M.; Bernardini, R.; Nunnari, G.; Cacopardo, B. Intravenous Fosfomycin: A Potential Good Partner for Cefiderocol. Clinical Experience and Considerations. Antibiotics 2022, 12, 49. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Bassetti, M.; Bellelli, V.; Bianchi, L.; Marincola Cattaneo, F.; Mazzocchetti, S.; Paciacconi, E.; Cottini, F.; Schiattarella, A.; Tufaro, G.; et al. Efficacy of a Fosfomycin-Containing Regimen for Treatment of Severe Pneumonia Caused by Multidrug-Resistant Acinetobacter baumannii: A Prospective, Observational Study. Infect. Dis. Ther. 2021, 10, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shu, Y.; Zhu, F.; Feng, B.; Zhang, Z.; Liu, L.; Wang, G. Comparative efficacy and safety of combination therapy with high-dose sulbactam or colistin with additional antibacterial agents for multiple drug-resistant and extensively drug-resistant Acinetobacter baumannii infections: A systematic review and network meta-analysis. J. Glob. Antimicrob. Resist. 2021, 24, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Bian, X.; Liu, X.; Feng, M.; Bergen, P.J.; Li, J.; Chen, Y.; Zheng, H.; Song, S.; Zhang, J. Enhanced bacterial killing with colistin/sulbactam combination against carbapenem-resistant Acinetobacter baumannii. Int. J. Antimicrob. Agents 2021, 57, 106271. [Google Scholar] [CrossRef]
- Koulenti, D.; Tsigou, E.; Rello, J. Nosocomial pneumonia in 27 ICUs in Europe: Perspectives from the EU-VAP/CAP study. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 1999–2006. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Malik, S.; Kaminski, M.; Landman, D.; Quale, J. Cefiderocol Resistance in Acinetobacter baumannii: Roles of beta-Lactamases, Siderophore Receptors, and Penicillin Binding Protein 3. Antimicrob. Agents Chemother. 2020, 64, e01221-20. [Google Scholar] [CrossRef]
- Nishimura, B.; Escalante, J.; Tuttobene, M.R.; Subils, T.; Mezcord, V.; Pimentel, C.; Georgeos, N.; Pasteran, F.; Rodriguez, C.; Sieira, R.; et al. Acinetobacter baumannii response to cefiderocol challenge in human urine. Sci. Rep. 2022, 12, 8763. [Google Scholar] [CrossRef]
- Bonnin, R.A.; Emeraud, C.; Jousset, A.B.; Naas, T.; Dortet, L. Comparison of disk diffusion, MIC test strip and broth microdilution methods for cefiderocol susceptibility testing on carbapenem-resistant enterobacterales. Clin. Microb. Infect. 2022, 28, 1156.e1–1156.e5. [Google Scholar] [CrossRef]
- Marano, V.; Marascio, N.; Pavia, G.; Lamberti, A.G.; Quirino, A.; Musarella, R.; Casalinuovo, F.; Mazzitelli, M.; Trecarichi, E.M.; Torti, C.; et al. Identification of pmrB mutations as putative mechanism for colistin resistance in A. baumannii strains isolated after in vivo colistin exposure. Microb. Pathog. 2020, 142, 104058. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Overall n = 111 | Cefiderocol n = 60 | Colistin n = 51 | p-Value | ||
---|---|---|---|---|---|---|
Age, years, median (IQR) | 69 (59–78) | 62 (48–75) | 72 (64–81) | <0.001 | ||
Gender, male, n (%) | 75 (68) | 38 (63) | 37 (73) | 0.300 | ||
Number of comorbidities, median (IQR) | 3 (2–4) | 2.4 (1–4) | 3 (2–4) | 0.067 | ||
Coinfections, n (%) | COVID-19 | 36 (32) | 16 (27) | 20 (39) | 0.160 | |
Gram-positive infection | 22 (19.8) | 11 (18.3) | 11 (21.6) | 0.670 | ||
Candidemia | 7 (6.3) | 5 (8.3) | 2 (3.9) | 0.340 | ||
Comorbidities, n (%) | Cardiovascular disease | 73 (66) | 35 (58) | 38 (75) | 0.073 | |
Diabetes | 27 (24) | 10 (17) | 17 (33) | 0.041 | ||
Obesity | 41 (37) | 16 (27) | 25 (49) | 0.015 | ||
Lung disease | 30 (27) | 20 (33) | 10 (20) | 0.100 | ||
Chronic kidney disease | 18 (16) | 12 (22) | 5 (10) | 0.091 | ||
Psychiatric disorders | 43 (39) | 20 (33) | 23 (45) | 0.100 | ||
Malignancy | 19 (17) | 9 (15) | 10 (20) | 0.520 | ||
Type of infection, n (%) | Bloodstream infection | 53 (47.7) | 34 (56.6) | 19 (37.2) | 0.003 | |
Pneumonia | 58 (52.3) | 26 (43.4) | 32 (62.8) | |||
Length of stay, days, median (IQR) | 45 (24–70) | 52 (32–73) | 34 (20–72) | 0.023 | ||
Ward of admission, n (%) | Medical | 51 (46) | 22 (27) | 29 (57) | 0.087 | |
Surgery | 25 (23) | 17 (28) | 8 (16) | |||
ICU | 35 (32) | 21 (25) | 14 (27) | |||
CVVH, n (%) | 5 (4.5) | 4 (6.6) | 1 (1.9) | 0.23 | ||
ECMO, n (%) | 3 (2.7) | 3 (5) | 0 (0) | 0.1 | ||
Mechanical ventilation, n (%) | 22 (20) | 13 (22) | 9 (18) | 0.6 | ||
SOFA score, median (IQR) | 2.5 (1–4.2) | 3.5 (2–5) | 2 (1–4) | 0.072 | ||
APACHE score, median (IQR) | 10 (7–13) | 10 (7.8–13.2) | 10 (7–13) | 0.890 | ||
C-reactive protein, mg/dl, median (IQR) | 104 (66–160) | 97 (67–160) | 110 (61–162) | 0.880 | ||
Procalcitonin, ng/mL, median (IQR) | 0.74 (0.16–3) | 0.52 (0.13–1.65) | 1.1 (0.2–5.1) | 0.270 | ||
White blood count, median (IQR) | 11.9 (7.6–17.6) | 11.8 (7.3–17.6) | 11.9 (7.8–17.6) | 0.830 | ||
Creatinine, mmol/L, median (IQR) | 69 (44–101) | 64 (36–88) | 77 (52–118) | 0.042 | ||
Acute kidney injury, n (%) | 19 (17.1) | 6 (10) | 13 (25.5) | 0.031 | ||
Study outcomes | Clinical cure, n (%) | 78 (70) | 44 (73) | 34 (67) | 0.440 | |
Microbiological cure, n (%) | 47 (42) | 26 (43) | 21 (41) | 0.820 | ||
Deaths, n (%) | 48 (43) | 26 (51) | 22 (37) | 0.130 |
Regimen-Associated Antimicrobial Agents | Cefiderocol n = 60 | Colistin n = 51 | p-Value |
---|---|---|---|
Fosfomycin, n (%) * | 8 (13.3) | 3 (5.8) | 0.19 |
Meropenem, n (%) * | 13 (21.7) | 41 (80.4) | <0.001 |
Tigecycline, n (%) * | 18 (30) | 49 (96.1) | <0.001 |
Monotherapy | 30 (50) | 0 (0) | - |
Characteristics | Overall n = 60 | Cefiderocol Monotherapy n = 30 | Cefiderocol Combination Therapy n = 30 | p-Value | |
---|---|---|---|---|---|
Age, years, median (IQR) | 62 (48–75) | 63 (57–71) | 60.7 (47.3–74.9) | 0.47 | |
Gender, male, n (%) | 38 (63) | 19 (63.3) | 19 (63.3) | 1 | |
Number of comorbidities, median (IQR) | 2.4 (1–4) | 2 (1–3.7) | 3 (2–3) | 0.31 | |
Coinfections, n (%) | COVID-19 | 16 (27) | 6 (18.2) | 10 (33.3) | 0.77 |
Gram-positive infection | 11 (18.3) | 3 (10) | 8 (26.7) | 0.09 | |
Candidemia | 5 (8.3) | 2 (6.7) | 3 (10) | 0.64 | |
Type of infection, n (%) | Bloodstream infection | 34 (56.6) | 19 (63.3) | 15 (50) | 0.29 0.29 |
Pneumonia | 26 (43.4) | 11 (36.7) | 15 (50) | ||
Length of stay, days, median (IQR) | 52 (32–73) | 51 (30–69) | 51.5 (33.2–78.5) | 0.29 | |
Ward of admission, n (%) | Medical | 22 (27) | 11 (36.7) | 11 (36.7) | 1 0.77 0.78 |
Surgery | 17 (28) | 9 (30) | 8 (26.7) | ||
ICU | 21 (25) | 10 (33.3) | 11 (36.7) | ||
CVVH, n (%) | 4 (6.6) | 2 (6.7) | 2 (6.7) | 1 | |
ECMO, n (%) | 3 (5) | 1 (3.3) | 2 (6.7) | 0.55 | |
Study outcomes | Clinical cure, n (%) | 44 (73) | 23 (76.7) | 21 (70) | 0.55 |
Microbiological cure, n (%) | 26 (43) | 15 (50) | 11 (36.7) | 0.29 | |
Deaths, n (%) | 26 (51) | 10 (33.3) | 16 (53.3) | 0.81 |
Effect | 95% CI | p-Value | ||
---|---|---|---|---|
Mortality | OR | |||
ATE (Cefiderocol versus. Colistin) | 0.810 | 0.329 | 1.995 | 0.647 |
Age | 0.951 | 0.917 | 0.986 | 0.007 |
Length of stay | Gamma Coefficient | |||
ATE (Cefiderocol versus Colistin) | 8.467 | −7.848 | 24.782 | 0.315 |
Age | −0.267 | −0.665 | 0.125 | 0.180 |
Clinical cure | OR | |||
ATE (Cefiderocol versus Colistin) | 1.134 | 0.965 | 1.333 | 0.128 |
Age | 0.993 | 0.986 | 0.999 | 0.020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzitelli, M.; Gregori, D.; Sasset, L.; Trevenzoli, M.; Scaglione, V.; Lo Menzo, S.; Marinello, S.; Mengato, D.; Venturini, F.; Tiberio, I.; et al. Cefiderocol-Based versus Colistin-Based Regimens for Severe Carbapenem-Resistant Acinetobacter baumannii Infections: A Propensity Score-Weighted, Retrospective Cohort Study during the First Two Years of the COVID-19 Pandemic. Microorganisms 2023, 11, 984. https://doi.org/10.3390/microorganisms11040984
Mazzitelli M, Gregori D, Sasset L, Trevenzoli M, Scaglione V, Lo Menzo S, Marinello S, Mengato D, Venturini F, Tiberio I, et al. Cefiderocol-Based versus Colistin-Based Regimens for Severe Carbapenem-Resistant Acinetobacter baumannii Infections: A Propensity Score-Weighted, Retrospective Cohort Study during the First Two Years of the COVID-19 Pandemic. Microorganisms. 2023; 11(4):984. https://doi.org/10.3390/microorganisms11040984
Chicago/Turabian StyleMazzitelli, Maria, Dario Gregori, Lolita Sasset, Marco Trevenzoli, Vincenzo Scaglione, Sara Lo Menzo, Serena Marinello, Daniele Mengato, Francesca Venturini, Ivo Tiberio, and et al. 2023. "Cefiderocol-Based versus Colistin-Based Regimens for Severe Carbapenem-Resistant Acinetobacter baumannii Infections: A Propensity Score-Weighted, Retrospective Cohort Study during the First Two Years of the COVID-19 Pandemic" Microorganisms 11, no. 4: 984. https://doi.org/10.3390/microorganisms11040984
APA StyleMazzitelli, M., Gregori, D., Sasset, L., Trevenzoli, M., Scaglione, V., Lo Menzo, S., Marinello, S., Mengato, D., Venturini, F., Tiberio, I., Navalesi, P., & Cattelan, A. (2023). Cefiderocol-Based versus Colistin-Based Regimens for Severe Carbapenem-Resistant Acinetobacter baumannii Infections: A Propensity Score-Weighted, Retrospective Cohort Study during the First Two Years of the COVID-19 Pandemic. Microorganisms, 11(4), 984. https://doi.org/10.3390/microorganisms11040984